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Abstract

Background: There are increasing efforts to bring high-throughput systems biology techniques to bear on
complex animal model systems, often with a goal of learning about underlying regulatory network structures (e.g.,
gene regulatory networks). However, complex animal model systems typically have significant limitations on cohort
sizes, number of samples, and the ability to perform follow-up and validation experiments. These constraints are
particularly problematic for many current network learning approaches, which require large numbers of samples
and may predict many more regulatory relationships than actually exist.

Results: Here, we test the idea that by leveraging the accuracy and efficiency of classifiers, we can construct
high-quality networks that capture important interactions between variables in datasets with few samples. We start
from a previously-developed tree-like Bayesian classifier and generalize its network learning approach to allow for
arbitrary depth and complexity of tree-like networks. Using four diverse sample networks, we demonstrate that this
approach performs consistently better at low sample sizes than the Sparse Candidate Algorithm, a representative
approach for comparison because it is known to generate Bayesian networks with high positive predictive value.
We develop and demonstrate a resampling-based approach to enable the identification of a viable root for the
learned tree-like network, important for cases where the root of a network is not known a priori. We also develop
and demonstrate an integrated resampling-based approach to the reduction of variable space for the learning of
the network. Finally, we demonstrate the utility of this approach via the analysis of a transcriptional dataset of a
malaria challenge in a non-human primate model system, Macaca mulatta, suggesting the potential to capture
indicators of the earliest stages of cellular differentiation during leukopoiesis.

Conclusions: We demonstrate that by starting from effective and efficient approaches for creating classifiers, we
can identify interesting tree-like network structures with significant ability to capture the relationships in the
training data. This approach represents a promising strategy for inferring networks with high positive predictive
value under the constraint of small numbers of samples, meeting a need that will only continue to grow as more
high-throughput studies are applied to complex model systems.
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Background

While systems biology techniques—whether experimen-
tal or computational — are often developed on simple
model systems, their application to increasingly complex
model systems is one of the most exciting and promising
aspects of modern biological research. However, apply-
ing these techniques to complex systems often presents
new challenges. For example, systems biology approaches
are only recently being brought to bear on non-human
primate model systems [1-3], which can be critical to
translational biomedical research when simpler organisms
are not good models of human physiology [4]. However,
the number of experimental samples possible in these sys-
tems is limited: using a large cohort is cost-prohibitive
and ethically questionable, and animal welfare consider-
ations limit the volume and frequency of blood or other
tissue sampling. Also, validation experiments in non-
human primates are extremely difficult, which makes it
critical that only a small number of high-confidence hy-
potheses are tested.

Learning regulatory networks is a common task in sys-
tems biology research [5, 6], and one that is confounded
by the restrictions associated with complex model sys-
tems. Complex model systems usually do not allow for a
large number of samples, but robustly learning network
structure with few samples is difficult [7, 8]. For experi-
mental validation complex model systems require identifi-
cation of only a few high-confidence connections between
variables, but many common network analysis tools in-
stead generate high-connectivity graphs [9] (due to indir-
ect effects).

Given large sample sizes, Bayesian networks are effect-
ive at identifying a small number of meaningful con-
nections between features. Bayesian networks [10] are
probabilistic graphical models that account for condi-
tional dependencies when finding relationships between
features. These networks do not necessarily reflect caus-
ality, but they are typically concise (with limited indirect
effects) and allow for easier identification of the most
important relationships. However, with small sample
sizes learning Bayesian networks can be difficult. For ex-
ample, network learning on systems with as few as 20
variables may often be tested using 500 or more samples
[11]. Larger and more complex networks may require
even more samples for robust inference, which is typic-
ally infeasible in complex model systems. Bayesian net-
work inference also does not computationally scale well
to large numbers of features [12], though analysis of
high-dimensional datasets is at the core of systems-scale,
“omics” hypothesis-generating research.

Classifiers, which are algorithms that predict the cat-
egory of a sample based on data about that sample, are a
class of techniques that can perform their task well even
with comparatively few samples [13]. This is perhaps
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unsurprising, since only one feature or value is to be
predicted rather than an entire network of connections.
This focus only on relationships to one central feature,
rather than between all of them, also typically enables
classifiers to scale more easily to large numbers of fea-
tures. However, focusing on just individual relationships
to a central feature may ignore information that could
provide improved predictions. To this end, Bayesian net-
works have previously been used to create effective clas-
sifiers [14, 15] that exploit this information content. In
these Bayesian network based-classifiers, the actual
structure of the network is not viewed as important—it
is only a means to an end of correct classification — and
they thus are typically not assessed.

We hypothesized that if Bayesian network classifiers
can be so effective at prediction (even in cross-validation
assessment), then they likely contain useful information
about the underlying (regulatory) structure in the net-
works being learned for the classification task, even if
that is not an intended focus of the algorithms. The se-
lection of nodes for inclusion in the model and the
placement of edges between nodes, while intended
merely for classification purposes, may in fact capture
some of the most informative underlying structure that
we would like to learn for biological interpretation. The
fact that there is often some observed phenotype (e.g., a
clinical parameter) that one would like to explain based
on systems-scale data (e.g., transcriptomics) only further
supports the idea of using classifiers as the basis for net-
work learning: the systems-scale data can be used to
“classify” the observed phenotype and lead to the learn-
ing of a network.

Accordingly, we chose to harness a recently-published
tree-like Bayesian network classifier [16] (effective even
for small sample sizes) and modify it to learn regulatory
networks from biological datasets with comparatively
few observations. These constraints are driven by our
work in systems biology studies of non-human primate
models of malaria, where the number of samples ob-
tained per experiment is typically not greater than 50
but the number of features per experiment is sometimes
in the thousands. To our knowledge, the problem of
Bayesian structure learning under the constraint of ex-
tremely small sample sizes has not previously been con-
sidered in depth.

We leveraged the extremely effective predictivity of
the previously developed tree-like Bayesian network
classifier [16] by refining it to provide less topologically
restrictive learning of network structures. While this ap-
proach is most applicable for trees with known roots
(e.g., networks of genes associated with a specific pheno-
type as the root), here we show that it can also be ap-
plied to networks with an unknown root node (i.e., all
nodes are of the same type). We demonstrate the efficacy
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of this classifier-based structure learning method using sim-
ple synthetic models and established reference datasets. We
demonstrate that this approach produces reliable and lim-
ited predictions of network architecture under constrained
sample sizes, with the potential to generate more efficient
network models for complex systems. We also apply this
methodology to a real complex biological system dataset,
analyzing transcriptional data from a non-human primate
model of malaria infection to get better insight into the
animals’ response to the pathogen challenge.

Methods

Background and problem specification

A Bayesian network is defined as B =<S, ®>, where S
and ® respectively represent a directed acyclic graph
and a set of conditional probabilities associated with the
graph. Each vertex in the graph is a feature (or a vari-
able), and a directed arc from vertex i to another vertex
j shows a direct dependency relationship of feature j on
feature i. Feature i is called the parent of feature j, and
feature j is called the child of feature i. Specifically, in a
Bayesian network feature j is conditionally independent
of all vertices that are not its children, given its parents.
In this work, we look to learn S from a dataset consist-
ing of M x P measurements (D,.,;, a M x P data matrix),
where M is the number of experiments, P is the number
of features (or variables), and M < < P.

Previous tree-like Bayesian Network (BN-TL) classifier
Tree-like Bayesian networks are a subset of Bayesian
networks: they meet all of the requirements of being a
Bayesian network, but with the additional requirement
that all nodes except for one (the root node) have
exactly one parent, while the root node has no parents.
In recent work, Lin et al. developed a classifier that
learned a tree-like Bayesian Network (BN-TL) to per-
form the classification task [16]. They showed that this
method performed as well as or superior to three com-
mon Bayesian network classifiers.

Briefly, the BN-TL method constructs a tree by first
identifying the feature f* with the most mutual informa-
tion with the root and places it as a child of the root. It
then finds the feature f” with the most conditional mu-
tual information with f* given the root and places it as a
child of f* It then places all nodes with conditional mu-
tual information sufficiently close to that between f* and
f as children of f* If there are any features left, a new
branch is established in a similar fashion. This process is
repeated until all features are added to the tree.

Their method was tested on seven diverse datasets. Its
classification performance was shown to be comparable
to or better than three common Bayesian classifiers, in-
cluding naive Bayes, a general Bayesian classifier learned
using a K2 greedy search strategy [17], and another tree-
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like algorithm [18]. Based on the strength of this ap-
proach at predicting classifications, we hypothesized that
there is likely significant useful information in this clas-
sifier's network, even though that was not the stated goal
of the classifier. However, the exact topology of the clas-
sifier’s network was not likely to be informative: it was
flat, with a maximum of three layers and without consid-
eration of potential relationships between features on
the bottom layer (see Fig. 1a). Accordingly, we sought to
harness the predictive power of this classifier with more
flexible network construction to facilitate learning of
generalized tree-like regulatory networks (see Fig. 1b).

Computational algorithm

Here, we have designed a tree-like Bayesian structure
learning algorithm (TL-BSLA) that uses an approach
similar to the BN-TL classifier algorithm to infer a gen-
eralized tree-like network (Fig. 1b). The goal of this net-
work is to incorporate the most important dependency
relationships in the given dataset. The general outline of
the algorithm is provided in Table 1.

While the most direct application of this approach is
to infer trees that explain the behavior of some specified
root node (e.g., a phenotype of interest or a known gene
of interest), we have also designed the algorithm in a
more generalized fashion to allow for the learning of
networks in datasets where there is not an obvious root
node. If not otherwise provided, the algorithm starts by
selecting a reasonable root feature using statistical
methods and dataset resampling (using the subroutine
RootSelection, described in more detail below). After a
root is selected, new branches are extended from the
root node by adding children to the root. The first can-
didate child is the node with the largest mutual informa-
tion (MI) value with the root, where MI is defined as:

) = S playlog, LY
Ml(xvy) _xzwp( 7}’)1 g2p(x)p(y)’ (1)

From the root, a minimally significant MI value (based
on the ffc filter parameter, default value of 0.01) is re-
quired to allow the establishment of a new branch, helping
to filter out features with minimal relationship with the
root node if they exist. For the first established branch,
child nodes to be added to that branch are searched for it-
eratively (FindLayerNode), and are then configured into
sub-tree structures (StructureLayerNode) if they do exist.
Once all children to be added to that branch have been
identified and appropriately structured, the remaining un-
assigned node with the largest MI with the root is consid-
ered for addition as a new branch; this process is repeated
iteratively until all features have been added (or ignored
because of their small MI value with the root). The algo-
rithm then returns the learned tree-like structure.
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Fig. 1 Representation of the topological constraints of two tree-like Bayesian networks. a The topology of the previous tree-like Bayesian network
classifier (TN-BL) was constrained to three levels: a root, children of the root, and the terminal grandchildren of the root (leaf nodes). Construction
of this network did not account for conditional mutual information between siblings. b The proposed tree-like Bayesian structure learning
algorithm (TL-BSLA) has no constraints on maximum depth of the network and considers the mutual information and conditional mutual information
between siblings when creating the network structure

The boldface words above are three functions used re- and D, calculate its significance level S; with
peatedly in the algorithm. Below we provide more details the current root node as the following:

on each function.
MI"™(f ; current _root) —mean (MIP"" (f ; current _root) )

Si = >
a) RootSelection: If there is not a specified phenotype std (MIP™ (f; current _root))
to be described with the dataset or an obvious root (2)
node for the system, then the first step of the where MI”™ represents the MI value between
TL-BSLA approach is to select a reasonable root feature f;€ Dieql-1 OF Dyoisy and the current root,
node from the given feature set. As illustrated in and MP®™ represents the mutual information of
Table 2, this procedure consists of four steps: randomly permuted f; and the root. Np
permutations are used for each f; (e.g. Np = 300),
(1) Create a noisy dataset (D, @ Mx(aP) matrix), and the mean and standard deviation of the
where a is the ratio of synthetic noisy features to permuted MI are used to calculate S;. This
real features. A synthetic noisy feature is created captures the relative significance of the
by randomly permuting the M observations of a relationship between f; and the root given the
real feature; this is done « times for each of the P specific distribution of data in f.
real features. (3) For each temporarily selected root, compare the
(2) Treat every real feature as the root node S distribution for all & D,y to the S
temporarily, and consider two datasets D,,1.; and distribution for all ;& Dy, (e.g., via a t-test).
Dhoisys where Dyq1.1 is the original real dataset This captures the overall significance of the
with the observations for the current root node root’s relationships with all nodes given the

temporarily removed. For each feature in D,ey1. 1 specific distribution of data in D,y
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Table 1 Tree-like Bayesian Structure Learning Algorithm (TL-BSLA)
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Input: D,

Output: tree-structure

set a, ffe, ffc_filter, ffc_independent
[Root, D’']=RootSelection(D,,, a)
calculate MI for each pair <Root, f>, fED’
AF ={f,ED’}
sort AF in decreasing order based on their Ml values
bottomNodes = @
parentsOfBottom = &
tree-structure = @
while AF# @
select f (the first element in AF)
if MI(f, Root)<ffc_filter
break % directly return the current tree-structure
else
add the arc Root -> f, move f from AF to bottomNodes, update
parentsOfBottom %establish a new branch
possible_child = FindLayerNode(bottomNodes, parentsOfBottom, AF, ffc)
sub-structure = StructureLayerNode(bottomNodes, parentsOfBottom,
possible_child, ffc_independent)
update tree-structure, bottomNodes, parentsOfBottom, AF
end

(4) Select the feature with the largest difference
between its two S distributions (e.g. the one with
the smallest p-value in a t-test) as the final root.
This allows for the network that is inferred to
represent the strongest overall relationships in
the data.

Table 2 RootSelection subroutine of TL-BSLA

This function returns the selected root and a revised
set of nodes D" which includes all of the original nodes
except for the root.

b) FindLayerNode Given the nodes fyomom (foortom may
be a single node or a set of multiple nodes) at the

Input: Dy, @

Output: Rootm+1, Dyep-1)

for every fi € Dpep

create a noisy features by randomly permuting fl;, store in Dy,

end

forevery fie Dy % each f;is temporarily considered as the root

calculate S; values for each pair < f, £>, (& Dy, j#i)

collect Sjto form Sy

calculate Sy values for each pair < f;, >, (dk& Dioisy)

collect S to form Spisy

do t-test for distributions Sy and S,is,, calculate the p-value p;

end

sort p; in ascending order

set Root,~= f* that has the smallest p-value among f; € Dy,

remove f*from D,
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bottom layer of the current branch, the first step in
this procedure is to determine whether there exist
any child nodes that could continue this branch in
the next layer. A candidate feature f; will be
considered as a possible child of some node in the
current bottom layer if MIU(f; fyonom) = ffc, where ffc
is a user-determined parameter, MI'(f; fporom) is the
maximum value of MI(f; fponom) and the conditional
mutual information (CMI) of f; and fpomem given the
parent Of.fbottom (CMI(ﬂr Soottom lﬁoﬂamjurent))’ and
MI(f;; frottom) is the maximum value of MI(f; frorzom,))
for all fbottom,je _ﬁmttom'

Instead of MI, the MI" value is used here because it
not only accounts for the direct impact of the parent
nodes, but also considers the indirect influence originat-
ing from the grandparent nodes. The numerical value of
the parameter ffc is a user-determined parameter. Here,
we use 0.3 based on empirical experience and sugges-
tions from the previously-developed Bayesian network
classifier [16]. Although the selected value of ffc may
affect the ultimate inferred structure, parameter sensitiv-
ity analysis (discussed in detail in Results) has shown
there to be a fairly broad interval of ffc around 0.3 over
which the algorithm’s results are insensitive.

¢) StructureLayerNode The purpose of this procedure
is to arrange the candidate child nodes identified in
FindLayerNode into a sub-tree structure using the
nodes currently in the bottom layer of the current
branch as potential parent nodes. As schematically
described in Table 3, the input of this procedure
includes the current bottom nodes (bottomNodes),
which are considered as the temporary roots for the
sub-tree, the corresponding parent nodes of the
bottom nodes (parentsOfBottom), and the candidate
pool for searched child nodes (child_pool). The
configuration starts with the calculation of
MI'(bottomNodes;; f;) for all bottomNodes,=
bottomNodes and f,< child_pool. For each f, the
bottomNodes; with the largest MI" value with f; is
identified as a potential parent of f; we refer to these
pairs as (bottomNodes*, f;*). Then, each bottomNodes;*
is connected by an arc to the f* with the greatest MI’
value with bottomNodes;* from among all of its
potential children f*. For bottomNodes; with multiple
potential children, an additional independence test is
used to determine if additional children add sufficient
independent information to allow their inclusion
in this layer: if CMI(f; fi* | bottomNodes;)
< ffc_independent (default value of 0.1), an arc is
created between bottomNodes; and f;. That s, f; is
considered to be another child node of bottomNodes;
because it is (sufficiently close to) conditionally
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independent of the other children in the layer and
thus should not be a child of those nodes. This
process is continued iteratively until all nodes
returned by FindLayerNode have been added to the
tree.

Literature and synthetic datasets

Four examples were used to evaluate the performance of
the proposed TL-BSLA. We developed a simple syn-
thetic network (17 nodes, 15 edges) with a true tree
structure except for a single node that is not connected
to the rest of the graph. In this work we refer to this net-
work as synthetic-tree; the true network is illustrated in
Additional file 1: Figure S1. The other three example
networks used in this work are published networks
widely used in structure learning literature: the Child
system, the Alarm system, and the Asia system (http://
www.bnlearn.com/bnrepository/). The Child system is a
tree-like network with 20 nodes and 24 edges, but is not
exactly a tree. The Asia and Alarm networks are less
tree-like networks (8 nodes, 8 edges and 37 nodes, 46
edges, respectively) used to assess the algorithm’s per-
formance on data drawn from underlying networks
more similar to real “omics” data. Data was generated
based on the probabilities defined by each model net-
work, with all variables being discrete.

Experimental data

Transcriptional data was used from a recent malaria
challenge experiment in five rhesus macaques (Macaca
mulatta).

Ethics statement

The experimental design of this experiment involving
rhesus macaques (Macaca mulatta) was approved by
the Emory University Institutional Animal Care and
Use Committee (IACUC) under protocol #YER-2001892-
090415GA.

Malaria challenge experimental methods

The experimental protocol was similar to that used in
our previous malaria challenge experiment [19], with
four noteworthy exceptions: there was a longer follow-
up period for measurements, complete blood count
(CBC) profiles were determined every day, there was no
biotinylation of erythrocytes, and Plasmodium cynomolgi
sporozoites were used for the experimental infection.
Bone marrow aspirates were taken under anesthesia with
ketamine at seven time points over the course of ap-
proximately 100 days, corresponding to baseline, peak of
parasitemia, treatment of blood-stage parasites, and dur-
ing and after relapse. Transcriptional profiles were ob-
tained by sequencing on an Illumina HiSeq2000 at the
Yerkes National Primate Research Center Genomics
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Table 3 StructureLayerNode subroutine of TL-BSLA
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Input: bottomNodes, parentsOfBottom, child_pool, ffc_independent

Output: sub-tree

sub-tree = @
while child_pool # @
for every f; € child_pool

select one bottomNodes; € bottomNodes with largest MI'(f, bottomNodes;)

for every bottomNodes; € bottomNodes

if it is not selected by any f;

remove bottomNodes; from bottomNodes

elseif it is only selected by one f;

add the arc boftomNodes; -> f;, remove bottomNodes; from

bottomNodes

elseif it is selected by multiple f;

select f; (from the f; selecting bottomNodes;) with largest MI’, add

bottomNodes; -> f; , remove bottomNodes; from bottomNodes

calculate CMI(f,, flbottomNodes)) for f,E the remaining f; selecting

bottomNodes;

sort the fi by CMI(f,, flbottomNodes;) in ascending order

sn={f}
fork=1...

if CMI(fy, sn|bottomNodes;) <= ffc_independent

add the arc bottomNodes; -> fi, sn = {sn, f}

end
end
end

update sub_tree

move newly added nodes from child_pool to bottomNodes

update bottomNodes and parentsOfBottom

end

Core. Additional details on the infection protocol, sam-
pling protocol, and methods for initial processing of
transcriptional data are available in Additional file 1:
Supplemental Methods.

Experimental data processing

Since the transcriptional profiles consisted of continuous
variables, they were first discretized. This is a common
data processing step, as it decreases the computational
complexity and the minimum number of samples re-
quired for accurate structure learning. We have previ-
ously described methods for discretization of continuous
data and their potential impact on learned networks dur-
ing structure learning [8, 20]. Here, we have taken a sim-
plified approach for our proof-of-principle analysis of a
malaria-based dataset, using an equal-quantile discretiza-
tion to evenly divide the values for each variable into high,
medium, and low values. Genes describing the recently
identified axes of variation across large-scale human
population human cohorts were used as a starting point

for analysis, to facilitate data interpretation and network
construction [21].

Comparator algorithm

Our main goal in this work was to test the hypothesis
that the information contained in a Bayesian network
classifier would be sufficient to provide informative
learning of the actual underlying Bayesian network. To
provide a benchmark for acceptable performance in
network learning, we selected the Sparse Candidate
Algorithm (SCA) [22] as implemented in the Causal Ex-
plorer package [23]. Numerous algorithms have been
published for structure learning of Bayesian networks,
with no conclusively optimal algorithm. We selected
SCA as the main comparator because it is widely-used
and generally performs well, it is effective at handling
reasonably large-scale networks (critical for systems biol-
ogy datasets), and it typically provides better positive
predictive value in its inferred networks (fewer false pos-
itives per predicted positive). The avoidance of false
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positives is particularly important for the design of valid-
ation experiments in complex model systems. In previous
work [24] we have found that many other algorithms (for
example, PC [25], Max-Min Hill Climbing [11], and Three
Phase Dependency Analysis [26]) often learn many more
false positives than true positives when sample sizes are
limited. SCA learns a significant fraction of those true
positives with many fewer false positives, making it a de-
sirable choice.

Results

A classifier-inspired algorithm can effectively learn
tree-like network structures

As described in greater detail in the Methods, we have
developed a tree-like Bayesian Structure Learning Algo-
rithm (TL-BSLA) by building off the success of a previ-
ously published tree-like Bayesian network classifier
[16]. We removed some topological limitations from the
existing Bayesian network based-classifier and used con-
ditional mutual information to appropriately arrange the
nodes in the network.

Four example networks were used to evaluate the per-
formance of the proposed TL-BSLA relative to a bench-
mark algorithm. The networks included a simple
synthetic-tree network and three widely used literature
networks with tree-like (the Child system) and non-tree-
like (the Alarm and Asia systems) structures. For each
example, 10 randomly generated datasets were tested to
reduce the impact of dataset-specific biases introduced
by sampling; each dataset was analyzed using our pro-
posed TL-BSLA and the well-known Sparse Candidate
Algorithm (SCA) structure learning method [22] for
sample sizes ranging from 50 to 500 observations. More
detailed justification for using SCA is provided in the
Methods, but its key feature is that it typically provides
good positive predictive value (fewer false positives per
predicted positive).

Three metrics were used to assess the accuracy of
learned structures for each algorithm: (1) true positive
rate (TPR), the fraction of all actual edges that are cor-
rectly predicted by an algorithm; (2) false positive rate
(FPR), the fraction of all actual non-edges that are incor-
rectly predicted by an algorithm to be edges; and (3)
positive predictive value (PPV), the fraction of predicted
edges that are actually edges. Worth noting is that PPV
is the most relevant metric for the purposes of model
validation, as it determines the likelihood of success of
often extremely expensive or difficult validation experi-
ments: a low PPV will confound the experimental valid-
ation of network structure and have significant costs.
For identification of true positives, we considered two
cases in all analyses: if a learned edge needed to be the
correct direction in order to count as a true positive, or
if the correctness of each edge was determined without
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consideration of directionality. The same root was used
for all analyses of a given network in order to provide
sufficient consistency for comparison; roots were se-
lected as described in the Methods. The results of this
evaluation are presented in Fig. 2.

In the synthetic-tree system, TL-BSLA correctly recov-
ered almost all of the correct connections even when the
sample size was rather small (e.g., the average TPR was
80 % when the sample size was 100; Fig. 2). In compari-
son, the SCA approach achieved a lower TPR than TL-
BSLA, regardless of whether directionality was considered
in assessing the accuracy of the networks. When direc-
tionality was considered, SCA performed much more
poorly than TL-BSLA. This was particularly noticeable at
low sample sizes: SCA recovered no more than 50 % of
the true edges when the sample size was below 200. Even
without considering directionality, the performance of
SCA on this simple system was still significantly worse
than that of TL-BSLA. Moreover, the average FPR for
SCA was always greater than 10 % (for directed edges)
and 20 % (ignoring directionality), which was at least 4-
fold higher (and often an order of magnitude higher) than
that of TL-BSLA. Accordingly, the PPV for TL-BSLA was
much better for the synthetic-tree network.

The TPR for TL-BSLA was consistently higher than
for SCA for the Child system whether or not the direc-
tionality of the learned edges was considered (Fig. 2).
The magnitude of the difference was also fairly consistent
across the range of sample sizes; most importantly, there
are significant differences between the two methods at
low (50 or 100) sample sizes. The TL-BSLA also had a
much lower FPR than SCA, indicating that fewer incorrect
edges were learned by the algorithm. As a result, the PPV
of the TL-BSLA was again significantly better than that
of SCA.

We also analyzed whether the networks inferred were
sensitive to changes in the input datasets. It has previ-
ously been observed in biomarker discovery [27] and in
network inference [8] that resampling of data can yield
different outputs for machine learning and network infer-
ence algorithms. To assess this we followed a previously
published approach to assess robustness to resampling
[27]. From a fixed set of 500 samples for the Child net-
work, we selected subsets of 125 samples; we used TL-
BSLA to learn networks for 100 such resampled sets, with
each set having no more than 30 % similarity to any of the
others. The average number of connections found per
dataset was 19. Using the TL-BSLA, 18 connections were
found in at least 60 % of the resampled datasets, suggest-
ive of robust structure learning by TL-BSLA. 13 of those
connections were true positives (11 with correct direction-
ality). These results are consistent with the TPR and PPV
performance shown in Fig. 2. On the other hand, only 4
connections were found in every subsample, and 25
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Fig. 2 TL-BSLA performs consistently better than SCA in four example systems. The true positive rate (TPR), false positive rate (FPR), and positive
predictive value (PPV) are shown for four representative networks. Black lines show performance of TL-BSLA, blue lines show performance of SCA.
Dashed lines represent calculations without considering the direction of connections when assessing their correctness. TL-BSLA is almost universally
better than SCA, with the exception of TPR for the Asia and Alarm networks where the directionality is not accounted for in assessing correctness. In
these cases, the much higher FPR of SCA outweighs its potentially better coverage of true positives, as evidenced in the superior PPV curves for
TL-BSLA. For PPV, all performance metrics across all networks (directed and undirected) are statistically significant (p < 0.05, two-tailed t-test) except for
the 50 and 150 sample sizes for the Asia network for the undirected case. Error bars are one standard deviation

connections were found in at least one and at most 10 %
of subsamples (22 of those 25 were false positives). Thus,
while there is variability in the networks found based on
the input dataset just from resampling, TL-BSLA is cap-
able of consistently picking out a core of true positive con-
nections. This robustness may decrease, though, if real
biological samples have significantly greater noise than the
synthetic noisy data used here. Additionally, we note that
in the case where many samples are available, a resam-
pling technique such as this can be useful to identify the
highest-confidence and most robust connections for fur-
ther experimental and computational investigation [8, 27].

A tree-like algorithm can also perform well on
non-tree-like underlying structures

As for systems whose underlying structures do not re-
semble trees, such as the Alarm and Asia systems, Fig. 2
shows that the TL-BSLA performed competitively with,
and in some important respects better than, SCA. In
both datasets, for the identification of edges with the
correct directionality, the true positive rates for the two

algorithms were statistically indistinguishable. In both
cases the TL-BSLA was more robust to the reduction of
sample size to small values (or conversely, that the per-
formance of SCA was likely to improve faster than that
of the TL-BSLA as sample size increased to levels typic-
ally beyond that available for complex model systems).
When edge directionality was ignored, the performance
of SCA improved much more than that of TL-BSLA,
and was statistically significantly better for all sample
sizes in the Asia system. However, we note that at small
sample sizes, the true positive rate ignoring directionality
was statistically indistinguishable for the larger, more
realistic Alarm system.

Importantly, though, the false positive rate for the TL-
BSLA was much lower (two to four-fold lower, across all
sample sizes and regardless of directionality consider-
ation) than that of SCA. This ultimately resulted in PPV
performance such that TL-BSLA was significantly better
at learning connections than SCA across sample sizes,
with the difference even more prominent when the direc-
tionality of edges was considered. Taken together, this
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suggests that the use of a classifier-based Bayesian net-
work learning strategy that is computationally efficient
may be a viable replacement for existing network learning
algorithms.

Based on the across-the-board improved PPV per-
formance of the TL-BSLA and the details of how it
works, it is worth noting that the main benefit of SCA
(its ability to capture a greater fraction of the true posi-
tive edges) can likely be captured through iterative appli-
cation of TL-BSLA. Once a root is set for TL-BSLA,
areas of the network that are essentially insulated from
that root and its subnetwork (or are otherwise independ-
ent of that root) will not be considered. This is appropri-
ate for classifier-based tasks, but for the purposes of
learning a complete network from large-scale data sug-
gests that by initiating the algorithm with a separate root
that was not used in the initial inference, additional true
positive edges are likely to be discovered (with likely
similar PPV), resulting in even further improved per-
formance of the TL-BSLA.

Network learning performance is not sensitive to the
choice of ffc

We found that the parameter that most directly affected
structure learning results was ffc, used to determine
which nodes are children of the current bottom layer
nodes. It is a user-defined parameter with an optimal
value that is possibly data-specific. In our simulations,
we used ffc=0.3 based on our initial explorations and
some empirical experience from previously published
work [16]. However, it is important to assess the sensi-
tivity of algorithm performance to critical parameters so
that over-fitting and inappropriate comparisons are
avoided. We assessed the accuracy of TL-BSLA when
varying ffc values over a factor of 2 (from 0.2 to 0.4, see
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Fig. 3). For example, for the Child system with 100 sam-
ples, we found that the variation induced by different ffc
values (the maximum difference for average TPR induced
by different ffc is less than 10 %) was smaller than the
variation induced by different datasets (e.g. the TPR
across 10 datasets can vary by over 20 %). This ffc-
induced variation became even smaller as the sample
size increased (Additional file 1: Figure S2). Under the
constraint of small sample sizes, the variation induced by
even substantial changes of ffc was thus not substantial.
In fact, 0.3 was not even necessarily the optimum value
of ffc (see Fig. 3), but we used it successfully for four di-
verse datasets (in terms of both size and topology) being
studied here. We also performed a similar parameter sen-
sitivity analysis for SCA to confirm that the results in
Fig. 2 were not due to poorly chosen defaults. This ana-
lysis is presented in Additional file 1: Figure S3, showing
that the performance of SCA was not highly sensitive to
its parameters and that changing parameter selections
did not allow SCA to perform as well on the Child sys-
tem as the TL-BSLA.

Generalization of the strategy by selecting a root

While one of the primary goals of our algorithm is to
generate networks that explain some single important
phenotype from a dataset (and thus used as the root
node), in some cases there may not be an obvious choice
for that root node. Existing training sets for classification
problems typically do not include associated regulatory
networks, and thus there is no way to assess the accur-
acy of networks we would predict for those training sets.
Instead, we needed to use training sets designed for
assessing network learning, which meant that there
would not necessarily be obvious roots for the networks.
Accordingly, we devised a strategy to identify a reasonable
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Fig. 3 Sensitivity analysis of ffc shows less significant impact than random variability. The Child network was analyzed with 100 samples, 10 times
each for ffc parameter values ranging from 0.2 to 0.4. The variability induced by changing ffc (range of TPR and FPR across all parameter values) is
smaller than the variability from different random datasets being used for structure learning (error bars for any given ffc value). This suggests that
there is a broad optimum of ffc values and that the value used in this work is a reasonable one (and perhaps not even optimal). TPR: true
positive rate; FPR: false positive rate. Error bars represent one standard deviation
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root node based on a statistical treatment of the specific
dataset being analyzed. Our root selection procedure,
RootSelection (see detailed descriptions in Methods),
resamples from the existing dataset and uses dataset per-
mutations to identify a reasonable, statistically meaningful
root for learning a tree-like Bayesian network. The root is
identified as the node that has the most significant mutual
information with the true features relative to a set of ran-
domly permuted features.

We used the Child and Alarm networks (as represen-
tatives of tree-like and non-tree-like underlying net-
works) to assess the performance of our dataset-specific,
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unbiased root selection approach. For each example, we
considered the impact of varying the number of observa-
tions (samples) for the features from 50 (a reasonable
value for many “omics” approaches) to 500. For each
number of observations, we used 10 different randomly
generated training datasets. The selected roots for each
example are summarized in Fig. 4.

The root selection approach performed quite robustly
in the tree-like networks. For the Child system (as
shown in Fig. 4a), node 2 was consistently returned as
the root for all sample sizes. Even for small sample sizes
(e.g., 50), node 2 was selected as the root most of time.

Example

Network 50 100 150
2: 90% 2: 80% 2: 90%
7: 10% 5: 10% 5: 10%
14 10% 7: 10%
23: 20% 35: 40% 24: 40%
35: 20% 26: 20% 35: 30%
{5,18,25,27,30, {11,18,24,30}: {12;26,30}:
31} 10% 10% 10%

Root Frequency, by Number of Samples

Fig. 4 The tree-like Bayesian Structure Learning Algorithm can select a root for structure learning in tree-like or non-tree-like networks. Roots were
selected automatically for two representative networks across a range of sample size limitations: a the tree-like Child network and b the non-tree-
like Alarm network. Any node ever selected as a root has a red outline, where increasing line width indicates increasing frequency of selection as a
root. Nodes never selected as a root have blue outlines of fixed width. ¢ A quantitative summary of the root nodes selected, as a function of sample
size. Selection from a tree-like structure is straightforward and consistent; from a non-tree-like structure there is increased variability, but reasonable
roots (excluding directionality) are typically chosen. Feature 24 was used as the root for previous Alarm network learning work. It is worth noting that
selection of a better root could improve the TL-BSLA's TPR and PPV even further

200 300 400 500
2: 100% 2: 100%  2: 100% 2: 100%
24: 40% 24: 40%  24: 70% 24: 70%
30: 20% 35: 30%  {26,30,35}: 10% 35: 30%
{7,11,26,35}:  {12,30,31}

10% :10%
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While node 1 is actually the real root, node 2 is obviously
a reasonable second option for root selection based on the
topology of the network. There was little sensitivity of se-
lected root to sample size, which is particularly valuable
for applications to small sample datasets.

For the Alarm system, there was not such a strong
consistency of root selection, though the results were
still fairly insensitive to sample size. For different train-
ing datasets with the same number of samples, different
root nodes were often selected; as shown in Fig. 4b, the
roots selected most often across all sample sizes were
nodes 24, 35, 30 and 26. Only for a sample size of 50
was the selection of root nodes particularly variable.
Since the network topology of the Alarm system is not
tree-like, there is no single “correct” root that character-
izes the entire network, and each of these seems on ini-
tial inspection to be a potentially reasonable selection,
especially if directionality of edges is ignored. To recover
the structure of the whole system, multiple trees with
different roots could be combined together in some
form (as discussed above). While that is an interesting
future direction, here we focus on finding a single strong
sub-network with constrained sample size to demon-
strate the potential for using classifier-based algorithms
to learn network structure.

Data reduction for omics-scale datasets

For high-throughput and “omics”-scale studies, such as
transcriptomics and metabolomics, datasets typically
contain relatively few samples but thousands of features.
In general, this can make it harder to identify the (likely
few) features that are relevant to determining the pheno-
type or structure of the system because the desired sig-
nal may be buried in multivariate noise. For small
sample sizes, a further problem is that supervised identi-
fication of the important features can often lead to over-
fitting, where some linear combination of features can
explain even random results or classifications. Moreover,
increasing the number of features also increases the
computational cost for essentially all types of data ana-
lysis. In order to make our structure learning method
useful for such datasets, we developed an additional
screening step (consistent with the approaches used
within the TL-BSLA) to exclude features likely irrelevant
to the selected root. This method was not used in the
above assessments, and is considered as a useful addition
to the algorithm proposed in Table 1.

Specifically, for each feature in the dataset (f), it is in-
cluded in the network if it satisfies S; > threshold, where
S; is as used in the RootSelection subroutine and is de-
fined in Equation (2). S; represents the significance of
the mutual information between f; and the root, given
the specific distribution of data in f. In this work we
used a threshold value of 2.6, based on statistical
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arguments, previous literature [28], and empirical ex-
ploration. The S value is essentially a z-score on the mu-
tual information of a feature with the root based on a
background of permuted data for that feature; thus, a
threshold of 2.6 on a zero-mean, unit-variance normal dis-
tribution corresponds to a one-tailed significance of 0.005,
where a significance lower than the typical 0.05 threshold
was selected to limit false positives due to multiple hy-
pothesis testing. Changes in threshold change how conser-
vative the feature inclusion is, and thus affect the true
positive and false negative rates; variation of threshold was
not explored due to its statistical interpretation.

We tested the performance of this screening step by
adding 10-fold manually-created noisy features to the set
of real features in the example datasets. These noisy fea-
tures were generated via permutation of the observations
within each real feature. Using the Child system as a rep-
resentative example (see summarized results in Table 4),
with node 2 as the root, we found that over 50 % of the
real features were included as significant features when
the sample size was 50. In contrast, only 2.5 % of the noisy
features were selected as significant. As the sample size in-
creased, the percentage of real features selected for inclu-
sion gradually increased to over 80 %, indicating that most
of the real (or relevant features) had been correctly se-
lected. Interestingly, the percentage of noisy features
remained at approximately 3 % even with an order of
magnitude more samples. This again supports the idea
that our overall structure learning approach is effective for
the case of complex model systems with limited numbers
of samples. Results for the synthetic-tree and Alarm sys-
tems (see summarized results in Additional file 1: Table S1
and Additional file 1: Table S2) were similar to those of
the Child system, indicating that our proposed screening
step can generally exclude noisy features that are irrele-
vant to the root across different types of underlying
network structures. Thus, once the root is determined
(whether through a priori knowledge or a statistical ap-
proach as described above), we can focus on the features
most relevant to the root with a concomitant reduction in
computational complexity.

Application of TL-BSLA to analyze transcriptomic data

To apply this approach to the analysis of real systems
biology data, we used results from a recently-completed
experimental challenge of five rhesus monkeys (Macaca
mulatta) with the malaria parasite Plasmodium cyno-
molgi. Transcriptional profiles were measured from bone
marrow aspirate samples that were taken seven times
over the course of three months after infection. We used
these transcriptional profiles as the basis for the con-
struction of a Bayesian network. We used the recently
described axes of common variation across large-scale
population human cohorts [21] to provide a more focused
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Table 4 Features in the child network selected for model inclusion using a dimensional-reduction screening procedure, with node 2

(selected automatically) as the root

Sample size Indices of features identified as significant Fraction of real features selected Fraction of noisy features selected

50 Real features: 3,4,5,6,7,89,12,14,15,20 58 % 25 %
Noisy features: 96,113,119,174,175

100 Real features: 1,4,5,6,7,89,11,12,14,15,20 63 % 05 %
Noisy features: 161

150 Real features: 3,4,56,7,89,11,12,14,15,20 63 % 2 %
Noisy features: 70,79,116,208

200 Real features: 3,4,5,6,7,89,11,12,14,15,20 63 % 1%
Noisy features: 75,94

300 Real features: 3,4,56,7,8,9,10,11,12,14,15,20 68 % 35%
Noisy features: 121,126,198,205,207,209,211

400 Real features: 1,3,4,5,6,7,89,10,11,12,14,15,20 74 % 2.5 %
Noisy features: 31,55,94,113,195

500 Real features: 1,3,4,5,6,7,89,10,11,12,13,14,15,19,20 84 % 35%

Noisy features: 22,122,152,157,166,192,218

analysis on transcripts likely to be informative in describ-
ing the animals’ response.

Figure 5a shows a representative inferred network
from the data, demonstrating the flexible nature of the
networks that can be inferred using TL-BSLA: depend-
ency relationships several levels deep are identified. We
began with a simplified analysis using previously defined
“blood informative transcripts” from previous work as
best describing uncorrelated Axes of variation in whole
blood transcriptional profiling of healthy subjects [21].
There are seven main Axes most strongly observed in
both human and macaque samples (based on previous
work; Axes 8 and 9 are weaker and are typically only ob-
served in much larger datasets); we compiled together
the ten blood informative transcripts for each of these
Axes for input to the TL-BSLA. The genes in the net-
work were selected using the dimensional reduction
scheme described above, yielding a network of manage-
able size for visual and biological interpretation. The
root was automatically selected from the data, using the
approach described in the Methods. There were two
main branches in the tree: one branch almost exclusively
consisting of Axis 3 transcripts, and one that is a com-
bination of multiple transcripts from Axes 2, 4, and 7.
While this network indicated potentially interesting rela-
tionships between the Axes, it also suggested that deeper
exploration by including more genes from each Axis
would help to better distinguish potential relationships
from noise. We thus rebuilt the network from the same
root instead using the top 25 genes from each Axis. This
deeper analysis of the Axes made the relationships
within the tree even more evident (Fig. 5b): Axes 2 and
7 have a significant interaction with Axis 3, which is the

root of the tree. Each of these three Axes has a branch
almost exclusively consisting of only members of that
Axis, suggesting a coherent, significant relationship with
the level of the root gene.

Discussion

Network structure learning is a useful tool to help identify
unknown regulatory or causal relationships between vari-
ables (features) in a system. With the rise of systems-scale
“omics” data over the past two decades, structure learning
methods have been applied with increasing frequency to
biological systems for the discovery of new modules, path-
ways, and regulation. However, in many cases the number
of samples available in “omics”-scale studies is small, par-
ticularly in the case of complex model systems (such as
non-human primates). In addition, while these techniques
often include measurements for many variables or features
(genes, metabolites, etc.), often only a small fraction of
them are directly relevant to the phenomenon being stud-
ied. Secondary or indirect effects may make many more
genes appear to be highly correlated with each other and
with a phenomenon of interest, and these indirect effects
hinder the identification of the real regulatory relationships
in complex systems.

A tree-like network inference approach based on classifier
learning algorithms

To address the issues associated with network learning in
complex model systems, we hypothesized that Bayesian
network-based classifiers that have been proven to be ef-
fective with few samples and with many features may, within
their networks, have the potential to capture important
regulatory structure in addition to their classification
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Fig. 5 Tree-like Bayesian networks learned from transcriptional data of a malaria challenge experiment in Macaca mulatta. Networks were learned
using blood informative transcripts [21] to focus on potential Axes of variation in the transcriptional data. a Using the ten blood informative
transcripts as originally published, two branches emerge that best describe the root (selected automatically and which is from Axis 3), consisting
of other genes from Axis 3 and a combination of multiple genes from Axes 2, 4, and 7. b Using the top 25 genes from each Axis to build a
network based on the same root, the relationship between the Axes becomes even more evident, as both Axis 2 and Axis 7 contribute the
dominant genes in parallel branches of the tree, suggesting significant but distinct mutual information with their parent and ultimately with the
root. These relationships were not evident using standard multivariate and clustering analyses, and were not expected a priori based on previous
descriptions of the axes of variation and the fact that the gene lists were derived from whole blood, not bone marrow aspirate, transcriptional
profiling analyses

J

prediction. Accordingly, we created a new structure removing limitations on network topology (though still
learning method, the tree-like Bayesian structure learning  within the constraints of a tree-like network). We chose to
algorithm (TL-BSLA), which refined a previously demon-  focus on Bayesian network structures because they typic-
strated effective tree-like Bayesian network classifier by  ally provide a more succinct representation of regulatory
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interactions than correlation-based networks, and because
the relationships between features are highly suggestive of
direct interaction or regulation, each of which are valuable
properties for driving validation experiments or mathem-
atical modeling efforts.

Iterative structure arrangement steps enable learning of
network connections

In the TL-BSLA, we improved upon the previous classifier-
based approach in a number of ways. We refined the ar-
rangement of nodes within branches to more accurately
reflect the relationships between those nodes as opposed
to just their (conditional) mutual information with the
root node. This entailed developing a strategy to itera-
tively select nodes for inclusion in a branch and to ar-
range their topology in a manner reflective of likely
interactions based on mutual information and condi-
tional mutual information.

Using four different networks as examples, we supported
our hypothesis on the utility of network-based classifiers for
learning regulatory structure via the effectiveness of the
proposed TL-BSLA to infer reasonable regulatory networks
for a variety of different underlying topologies. For the sys-
tems with tree-like structures (e.g, synthetic-tree and
Child), even with a limited number of samples (50 or 100
samples), the algorithm could recover most of the correct
connections with a lower false positive rate than a com-
monly used structure learning algorithm, SCA.

While it may not be surprising that an algorithm de-
signed to learn trees can perform fairly well for under-
lying networks that do in fact resemble trees, we posit
that it is still surprising that it performs substantially
better than an existing, widely-used structure learning
approach like SCA. The underlying networks are sparse
and are ultimately rather simplified Bayesian networks;
one would expect such networks to actually be fairly
easy to infer for an algorithm like SCA. It is certainly
possible that the constraints of being a tree-like struc-
ture contribute to the ability of TL-BSLA to infer accur-
ate networks with fewer samples. Nonetheless, given
that TL-BSLA can find more true positives with fewer
false positives without any external information about
the true root of the system, this suggests its potential
wider utility, particularly for fairly simple networks.

In networks without a tree-like structure (i.e. Alarm and
Asia), the algorithm was still able to recover a substantial
portion of the original network. More importantly, we
found that the false positive rate of TL-BSLA was much
lower than SCA, which itself typically has a low false posi-
tive rate [24]. This yielded a better positive predictive
value for TL-BSLA, which makes it a more effective strat-
egy for learning networks of relationships in biological
datasets under the constraint of small sample size.
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Addition of other functionalities enables broader
applicability of the algorithm

We addressed the inclusion of nodes via a feature selec-
tion step in the algorithm. The previous classifier ex-
cluded features based on a user-defined parameter that
eliminated a fixed fraction of the features based on mu-
tual information with the root. While this certainly
makes sense for learning a classifier (only those features
most directly related to the root node should be in-
cluded), having a user parameter that so significantly
affects the members and structure of a network is un-
desirable for network learning. We used statistical ap-
proaches to identify the features with statistically
significant mutual information with the root, which re-
tains most of the relevant features with fairly low inclu-
sion of irrelevant features. As shown in Table 4, this
screening step shows good performance in separating
relevant and non-relevant (noisy) features.

We also addressed the issue of root selection to at-
tempt to generalize the algorithm to network learning
without a target phenotype to be predicted. We used
mutual information-based statistical approaches to iden-
tify the best candidates for roots, with robust selection
in the case of underlying tree-like structures and reason-
able selection (though variable with different datasets)
for underlying structures that are not tree-like.

Application to a malaria transcriptomics dataset provides
leads on biological insight

We then applied this approach to a transcriptional dataset
of bone marrow aspirates from a group of five M. mulatta
infected with the simian malaria parasite P. cynomolgi. Fo-
cusing on genes representing common Axes of transcrip-
tional variation, we applied all aspects of our network
inference approach: selection of significant features based
on mutual information relative to resampled and per-
muted data, identification of a root node based on the sig-
nificance of the mutual information between the root and
the rest of the features, and then learning of tree-like net-
work structure. The algorithm automatically constructed
a network that was deeper than it was wide (suggesting
somewhat pathway-like behavior), although multiple inde-
pendent branches within the network were learned.

An initial network defined by the top ten most inform-
ative transcripts from each Axis suggested a possible re-
lationship between four of the Axes; including more
genes in the analysis, it was clear that three of the Axes
(2, 3, and 7) had a significant relationship. Each of them
dominated a different branch in the network, showing
that they had significant relationships to the root gene
(which is in Axis 3), but that the relationships for each
Axis to the root gene were different (since their separ-
ation into different branches was based on unique con-
ditional mutual information).
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The Axes of variation represent sets of genes that are
positively co-regulated in peripheral blood data sets in
humans, where each Axis tends to capture an aspect of
blood and immune system biology. Notably here, Axis 3
is enriched for B-cell signaling, Axis 2 for erythropoiesis,
and Axis 7 for interferon signaling. These Axes are not
strongly evident in the bone marrow since the major
blood cell types have not yet differentiated, but the tree-
like Bayesian network nevertheless recovers nascent re-
lationships. It is particularly notable that Axis 3 falls out
as a separate branch, since there is no sign in these
graphs of Axis 1, which largely captures T-cell signaling,
nor of Axis 5, which is closely related to neutrophil ac-
tivity and inflammation. We would thus argue that our
algorithm is capable of capturing the earliest stages of
cellular differentiation during leukopoiesis when seeded
with genes that are markers for the mature cell types.

This finding is particularly noteworthy for a number of
reasons. First, the Axes of variation as originally derived
had fairly low covariation with each other, with a few ex-
ceptions. However, none of those exceptions were ob-
served here, and relationships between Axes 2, 3, and 7
were not previously observed. Second, the Axes were de-
rived from whole blood transcriptional profiling, so there
was not an expectation that the same variation should
be seen in bone marrow aspirate transcriptional profil-
ing. Their observability in bone marrow aspirates sup-
ports broader utility of this approach to transcriptional
analysis. Finally, and most importantly, the relationship
structure between Axes 2, 3, and 7 was not identified
from standard clustering and statistical analysis of the
transcriptional data (analyses not shown). Based on
standard multivariate analyses there was not an obvious
relationship between these Axes; only through the con-
sideration of conditional mutual information and a net-
work of interactions between genes were we able to
identify robust relationships between Axes. Thus, the
Bayesian, tree-like network analysis contributed uniquely
to understanding and interpretation of the data.

Thus, by identifying the likely expression relationships
in our experiments of these genes revolving around
related themes (B-cell signaling, erythropoiesis, and
interferon-mediated response), the network-based ana-
lysis has contributed to interpretation of the data and ul-
timately to directing future efforts in our studies of the
host-pathogen interaction in malaria using non-human
primate models.

Limitations and caveats

The requirement for our learned structure to be tree-
like is an inherent limitation to our approach, as bio-
logical networks are not necessarily tree-like. There
could be significant cross-talk or combinatorial regula-
tion on a given node in a true biological network.
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However, the networks learned by TL-BSLA are a rea-
sonable approximation even to underlying networks that
are not strongly tree-like. Moreover, multiple trees in-
ferred starting from different roots could potentially be
pieced together to provide a more complex network rep-
resentative of multiple subnetworks but that is not tree-
like. (This would also mitigate the lower true positive
rate of TL-BSLA in non-tree-like networks, with its
higher positive predictive value supporting the potential
of this approach.) If nothing else, the tree-like network
approach would serve as an excellent starting point for a
search-and-score heuristic structure learning algorithm
and would help to identify which subset of nodes should
be included in such a search.

For our comparator algorithm we used SCA, chosen
since it is a well-known and widely-used structural learn-
ing algorithm with better avoidance of false positives than
many other Bayesian structure learning algorithms (an im-
portant aspect of our structure learning goals). Countless
other algorithms could have been used as comparators;
nonetheless, the commonality to many of those algo-
rithms is their inability to robustly learn networks under
the constraint of small sample size. In this sense, SCA is a
reasonable representative of existing algorithms, and TL-
BSLA stands on its own as learning networks effectively
under this constraint. Moreover, an important goal of our
work was to validate the hypothesis that methods devel-
oped for classifier learning could have significant potential
for learning network structure, which we have demon-
strated here even if there are other Bayesian learning algo-
rithms that perform slightly better than SCA.

The idea that classifier learning could have significant
potential for identifying network structure has been
hinted at previously; in fact, one of the algorithms that
the previous BN-TL classifier compared itself to expli-
citly notes the potential for identifying valid relation-
ships between features (in their case, specifically for
mass spectrometry data) [18]. However, this algorithm
also restricted itself to a very flat topology making it dif-
ficult to find deeper, more complex regulatory relation-
ships as is enabled by the TL-BSLA.

We also note that our approach did not exploit the tem-
poral aspect of the samples in constructing the network.
This information could potentially enable improved struc-
ture learning, whether by exploiting the relationship of
consecutive samples or by enabling connections between
variables that represent regulatory loops as is possible
using dynamic Bayesian networks [29-31]. However, ro-
bustly learning dynamic Bayesian networks requires even
more samples than learning general Bayesian networks,
which is counter to the goal of the TL-BSLA.

Finally, we note that for the transcriptional data, since
feature selection and root selection are based on permu-
tations and resampling, replicate runs can yield slightly
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different results. Multiple runs were performed for the
networks in Fig. 5, with the ones presented being highly
representative of all of the runs; differences between runs
were in the inclusion of a few different genes and resulting
slight changes in topology at the bottom of a tree (though
the topology at the top of a tree is highly conserved).

Conclusions

Taking together the novel aspects of our tree-like struc-
ture learning algorithm with the validation on transcrip-
tional data from a malaria challenge experiment in a non-
human primate macaque model system, we have shown
that Bayesian network-based classifiers can be the basis
for meaningful inference of regulatory network structure.
The algorithm we designed for this task, TL-BSLA, is an
effective and useful algorithm for structure learning in sys-
tems biology data under the constraint of small sample
size and is better than an existing, widely-used structural
inference algorithm. We have demonstrated its efficacy
for systems exactly meeting its tree-like assumptions, for
systems that only slightly deviate from tree-like assump-
tions, and for systems that deviate substantially from tree-
like assumptions. By including data-specific assessment of
the significance of mutual information, we have enabled
the identification of a reasonable root for an arbitrary
dataset, as well as the identification and elimination of
spurious features. We believe this approach has particu-
larly significant promise for the integration of different
types of datasets, where some molecular-level explan-
ation (e.g., gene expression) is desired that explains some
observed phenotype (e.g., clinical parameter) that can
serve as the root of the tree-like structure. This repre-
sents a promising addition to the set of tools for prob-
abilistic graphical model and Bayesian structure learning,
filling a need for high-confidence analysis of complex
systems with few samples and many variables.

Availability and requirements

Project name: Tree-like Bayesian Structure Learning
Algorithm
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Operation system: Platform independent
Programming language: MATLAB

Other requirements: developed on MATLAB R2011a;
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License: FreeBSD

Restrictions for non-academic use: None.

Additional file

Additional file 1: Supplementary Figures, Tables, and
Methods. (DOCX 993 kb)

Page 17 of 18

Abbreviations

BN-TL: Tree-like Bayesian network classifier; FPR: False positive rate; PPV: Positive
predictive value; SCA: Sparse candidate algorithm; TL-BSLA: Tree-like Bayesian
structure learning algorithm; TPR: True positive rate.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

WY conceived of the study, implemented the structure learning algorithm,
designed and carried out the computational experiments, and helped draft
the manuscript. SG processed the transcriptional data, helped analyze the
learned transcriptional network, and helped draft the manuscript. MRG and
AM designed and supervised the animal experiments providing the samples
for the transcriptional dataset. MPS conceived of the study, participated in its
design and coordination, and drafted the manuscript. All authors revised the
manuscript, and read and approved the final manuscript.

Acknowledgements

The authors thank all of the members of MaHPIC for their contributions to
the project that helped enable the generation of the dataset used in this
work. The authors in particular thank Gregory Gibson for his suggestions,
support with the transcriptional analysis, and feedback on the manuscript.
They also thank Megan Cole for critical review of and suggestions for the
manuscript. The authors thank Zachary Johnson and the Yerkes Genomics
Core for performing the sequencing for the transcriptional data, and Aleksey
Zimin and Rob Norgren for providing annotated M. mulatta genome
sequence for the transcriptional data. This project has been funded in whole
or in part with federal funds from the National Institute of Allergy and
Infectious Diseases; National Institutes of Health, Department of Health and
Human Services [Contract No. HHSN272201200031C].

Author details

'Key Laboratory for Biomedical Engineering of Education Ministry,
Department of Biomedical Engineering, Zhejiang University, Hangzhou, P. R.
China. *School of Chemical & Biomolecular Engineering, Georgia Institute of
Technology, 311 Ferst Drive NW, Atlanta, GA 30332-0100, USA. 3School of
Biology, Georgia Institute of Technology, Atlanta, GA, USA. “Division of
Infectious Diseases, Emory Vaccine Center, Yerkes National Primate Research
Center, Emory University School of Medicine, Emory University, Atlanta, GA,
USA.

Received: 30 April 2015 Accepted: 6 August 2015
Published online: 28 August 2015

References

1. Barrenas F, Palermo RE, Agricola B, Agy MB, Aicher L, Carter V, et al. Deep
transcriptional sequencing of mucosal challenge compartment from rhesus
macaques acutely infected with simian immunodeficiency virus implicates
loss of cell adhesion preceding immune activation. J Virol. 2014;88:7962-72.

2. Peng X, Thierry-Mieg J, Thierry-Mieg D, Nishida A, Pipes L, Bozinoski M, et al.
Tissue-specific transcriptome sequencing analysis expands the non-human
primate reference transcriptome resource (NHPRTR). Nucleic Acids Res.
2015/43:D737-42.

3. Salinas JL, Kissinger JC, Jones DP, Galinski MR. Metabolomics in the fight
against malaria. Mem Inst Oswaldo Cruz. 2014;109:589-97.

4. Joyner C, Barnwell JW, Galinski MR. No more monkeying around: primate
malaria model systems are key to understanding Plasmodium vivax liver-
stage biology, hypnozoites, and relapses. Front Microbiol. 2015;6:145.

5. Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R. Gene regulatory
network inference: data integration in dynamic models-a review.
Biosystems. 2009,96:86-103.

6. Styczynski MP, Stephanopoulos G. Overview of computational methods for the
inference of gene regulatory networks. Comput Chem Eng. 2005,29:519-34.

7. Zuk O, Margel S, Domany E. On the Number of Samples Needed to Learn
the Correct Structure of a Bayesian Network. in Proceedings of the Twenty-
Second Conference on Uncertainty in Artificial Intelligence (UAI2006)
(Cambridge, MA, USA).

8. Yin W, Kissinger JC, Moreno A, Galinski MR, Styczynski MP. From genome-scale
data to models of infectious disease: a Bayesian network-based strategy to


http://styczynski.chbe.gatech.edu/TL-BSLA
http://styczynski.chbe.gatech.edu/TL-BSLA
http://www.biomedcentral.com/content/supplementary/s12918-015-0194-7-s1.docx

Yin et al. BMC Systems Biology (2015) 9:49

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

drive model development. Math Biosci. 2015 in press. doi:10.1016/
jmbs.2015.06.006

Young WC, Raftery AE, Yeung KY. Fast Bayesian inference for gene
regulatory networks using ScanBMA. BMC Syst Biol. 2014;8:47.

Friedman N, Linial M, Nachman |, Pe'er D. Using Bayesian networks to
analyze expression data. J Comput Biol. 2000;7:601-20.

Tsamardinos I, Brown LE, Aliferis CF. The max-min hill-climbing Bayesian
network structure learning algorithm. Mach Learn. 2006;65:31-78.
Chickering DM, Heckerman D, Meek C. Large-sample learning of Bayesian
networks is NP-hard. J Mach Learn Res. 2004;5:1287-330.

Kotsiantis SB, Zaharakis ID, Pintelas PE. Machine learning: a review of
classification and combining techniques. Artif Intell Rev. 2006;26:159-90.
Carvalho AM, Oliveira AL, Sagot MF. Efficient learning of Bayesian network
classifiers - An extension to the TAN classifier. Ai 2007: Advances in Artificial
Intelligence, Proceedings. 2007;4830: 16-25.

Friedman N, Geiger D, Goldszmidt M. Bayesian network classifiers. Mach
Learn. 1997,29:131-63.

Lin X, Ma P, Li X, Jiang J, Xiao N, Yang F. A learning method of Bayesian
network structure. In: Fuzzy Systems and Knowledge Discovery (FSKD), 9th
International Conference on 666-70. Sichuan, China: IEEE; 2012.

Cooper GF, Herskovits E. A Bayesian Method for the Induction of
Probabilistic Networks from Data. Mach Learn. 1992,9:309-47.

Kuschner KW, Malyarenko DI, Cooke WE, Cazares LH, Semmes OJ, Tracy ER.
A Bayesian network approach to feature selection in mass spectrometry
data. BMC Bioinformatics. 2010;11:177.

Moreno A, Cabrera-Mora M, Garcia A, Orkin J, Strobert E, Barnwell JW, et al.
Plasmodium coatneyi in rhesus macaques replicates the multisystemic
dysfunction of severe malaria in humans. Infect Immun. 2013,81:1889-904.
Lee KJ, Yin W, Arafat D, Tang Y, Uppal K, Tran V, et al. Comparative
transcriptomics and metabolomics in a rhesus macaque drug administration
study. Front Cell Dev Biol. 2014;2:54.

Preininger M, Arafat D, Kim J, Nath AP, Idaghdour Y, Brigham KL, et al.
Blood-informative transcripts define nine common axes of peripheral blood
gene expression. PLoS Genet. 2013;9:21003362.

Friedman N, Nachman |, Peer D. Learning Bayesian network structure from
massive datasets: The “sparse candidate” algorithm. Uncertainty in Artificial
Intelligence, Proceedings; 1999. 206-15.

Aliferis CF, Tsamardinos |, Statnikov AR, Brown LE. Causal explorer: A causal
probabilistic network learning toolkit for biomedical discovery Metmbs'03:
Proceedings of the International Conference on Mathematics and Engineering
Techniques in Medicine and Biological Sciences; 2003. 371-6.

Abu-Hakmeh KA. Assessing the use of voting methods to improve Bayesian
network structure learning. Georgia Institute of Technology: Georgia; 2012.
Spirtes P, Glymour C, Meek C. Causation, Prediction, and Search. New York:
Springer; 1993.

Cheng J, Greiner R, Kelly J, Bell D, Liu WR. Learning Bayesian networks from
data: An information-theory based approach. Artif Intell. 2002;137:43-90.

Li J, Lenferink AE, Deng Y, Collins C, Cui Q, Purisima EO, et al. Identification
of high-quality cancer prognostic markers and metastasis network modules.
Nat Commun. 2010;1:34.

Steuer R, Kurths J, Daub CO, Weise J, Selbig J. The mutual information:
detecting and evaluating dependencies between variables. Bioinformatics.
2002;18 Suppl 2:5231-40.

Boyen X, Friedman N, Koller D. Discovering the hidden structure of complex
dynamic systems Uncertainty in Artificial Intelligence, Proceedings; 1999. 91-100.
Ghahramani Z. Learning dynamic Bayesian networks. Adaptive Processing of

Page 18 of 18

Sequences and Data Structures. 1998;1387:168-97.

Husmeier D. Sensitivity and specificity of inferring genetic regulatory
interactions from microarray experiments with dynamic Bayesian networks.
Bioinformatics. 2003;19:2271-82.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVied Central



http://dx.doi.org/10.1016/j.mbs.2015.06.006
http://dx.doi.org/10.1016/j.mbs.2015.06.006

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Background and problem specification
	Previous tree-like Bayesian Network (BN-TL) classifier
	Computational algorithm
	Literature and synthetic datasets
	Experimental data
	Ethics statement
	Malaria challenge experimental methods
	Experimental data processing
	Comparator algorithm

	Results
	A classifier-inspired algorithm can effectively learn tree-like network structures
	A tree-like algorithm can also perform well on non-tree-like underlying structures
	Network learning performance is not sensitive to the choice of ffc
	Generalization of the strategy by selecting a root
	Data reduction for omics-scale datasets
	Application of TL-BSLA to analyze transcriptomic data

	Discussion
	A tree-like network inference approach based on classifier learning algorithms
	Iterative structure arrangement steps enable learning of network connections
	Addition of other functionalities enables broader applicability of the algorithm
	Application to a malaria transcriptomics dataset provides leads on biological insight
	Limitations and caveats

	Conclusions
	Availability and requirements

	Additional file
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References



