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Abstract

Background: Cellular activities are governed by the physical and the functional interactions among several proteins
involved in various biological pathways. With the availability of sequenced genomes and high-throughput experimental
data one can identify genome-wide protein-protein interactions using various computational techniques. Comparative
assessments of these techniques in predicting protein interactions have been frequently reported in the literature but not
their ability to elucidate a particular biological pathway.

Methods: Towards the goal of understanding the prediction capabilities of interactions among the specific biological
pathway proteins, we report the analyses of 14 biological pathways of Escherichia coli catalogued in KEGG database using
five protein-protein functional linkage prediction methods. These methods are phylogenetic profiling, gene neighborhood,
co-presence of orthologous genes in the same gene clusters, a mirrortree variant, and expression similarity.

Conclusions: Our results reveal that the prediction of metabolic pathway protein interactions continues to be a challenging
task for all methods which possibly reflect flexible/independent evolutionary histories of these proteins. These methods
have predicted functional associations of proteins involved in amino acids, nucleotide, glycans and vitamins & co-factors
pathways slightly better than the random performance on carbohydrate, lipid and energy metabolism. We also make similar
observations for interactions involved among the environmental information processing proteins. On the contrary, genetic
information processing or specialized processes such as motility related protein-protein linkages that occur in the subset of
organisms are predicted with comparable accuracy. Metabolic pathways are best predicted by using neighborhood of
orthologous genes whereas phyletic pattern is good enough to reconstruct central dogma pathway protein interactions.
We have also shown that the effective use of a particular prediction method depends on the pathway under investigation.
In case one is not focused on specific pathway, gene expression similarity method is the best option.
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Introduction

Proteins are responsible for almost every cellular function of an

organism such as behavior, metabolic activities and other

phenotypic traits. Since proteins never work in isolation,

identifying cellular function is crucial for understanding their role

at system level. The cellular function of a protein is equivalent to

the biological process/pathway in which it participates [1].

Cellular function prediction efforts are accelerated with the

availability of completely sequenced genomes of several organisms

and high-throughput experimental techniques [1,2,3,4,5,6,7].

Although genomes rearrange dynamically in the course of

evolution, it was observed that the functional or regulatory

contexts of the proteins are invariably maintained [8,9,10,11,12].

Hence, it is possible to predict cellular function or context of a

protein based on the analysis of evolutionary aspects shared with

other cellular proteins using genomic sequences [6,13,14]. One

assumption seeks that concerted appearance or disappearance of

proteins in various organisms, which is likely due to the same

functional constraints operational on them [12], is referred as

Phylogenetic Profiling (PP) [15]. Chromosomal proximity of genes

reflects their co-regulation under the same functional constraints

[11,16]. However, prokaryotic genomes are often rearranged

randomly that breaks down genomic neighborhood of genes even

in closely related species [9]. Given a genome, it is possible to

identify such rearranged genes and possible functional linkages

between their products based on the chromosomal proximity of

genes encoding their orthologs in multiple genomes by using two

possible approaches. Gene Neighbor (GN) method which identifies

rearranged genes based on the genomic neighborhood of the
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orthologous genes independent of directionality (gene order) while

Gene Cluster (GC) considers co-directional proximity of ortholo-

gous genes [17,18,19,20,21,22]. There is also another class of

methods, called as mirrortree type method, based on the similarity

of phylogenetic trees of two interacting protein families [23,24,25].

Functional linkage can also be inferred using Expression Similarity

(ES) of genes in various physiological conditions by assuming their

requirement at the same time [26,27].

Reconstruction of biological pathways is possible through

genome-wide physical/functional Protein-Protein Interactions

(PPIs) predicted by these methods. However, only few studies

have addressed the benefits and the limitations of each method to

reconstruct biological pathways [4,28,29,30,31,32]. Notably,

Karimpour-Anis and co-workers showed that the use of gene

fusion, GN, GC and PP method depends on tasks by comparing

pathway, operon reconstruction and various functional aspects

[30]. However, they did not emphasize on the prediction of

independent biological pathways by these methods in sufficient

details. Jothi and coworkers have done exhaustive pathway

prediction analysis but their study was limited to PP method and

focused on the effect of reference genome selection on prediction

accuracy of methods [29].

Considering the independent evolutionary histories of pathways

[29] and the unique features used by these methods [33],

comparative analysis to predict individual biological pathway has

implications for later uses of these approaches. To this end, we

report here comprehensive analyses of these methods in predicting

biological pathways of Escherichia coli K12 MG1655 (E. coli). Our

results identify the best method suited for the prediction of

biological pathway interactions. These results also provide pointers

to the evolutionary and co-regulatory constraints on the proteins.

Results and Discussion

A schematic representation of five PPI prediction methods used

in our analysis and overall approach is given in Figure 1. These

methods are GN, GC, ES, PP and a Tol-mirrortree [25] variant

called Genome distance-Mirrortree (GM) [34]. The description of

each method is given in Text S1 and computational cost in Table

S1. We evaluated 969,528 pairs among 1,393 E. coli proteins for

which pathway memberships were recorded in the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database [35].

This dataset included 53,424 positive pairs among proteins that

share at least one KEGG pathway at 3rd level of KEGG

Orthology (KO) definition. These positive pairs were considered as

functionally linked and constituted our positive gold standard

whereas remaining pairs treated as negatives. Each method

generates numerical values or interaction scores for pairs of

proteins on 0 to 1 scale. Except GN method, the scores generated

towards 1 tend to represent strong evidence of functional linkage

between two proteins whereas 0 represents no functional linkage.

The scores generated by GN were normalized distances (on scale

0–1) between genes encoding two proteins on chromosome of

reference genome. These distances were subtracted from one to

make them interaction (likelihood) scores.

General Observations
True Positives (TP) and False Positives (FP) were recorded at a

series of interaction score thresholds generated for KEGG protein

pairs by each prediction method. TP were the pairs with the

proteins that share at least one KEGG pathway and their scores

are equal to or above threshold. If they do not share KEGG

pathway they were treated as FP. Figure 2 represents the numbers

of FP and TP recorded at series of thresholds scores. Even at high

prediction scores of these methods, around 10 thousand TP were

detected at the cost of more than 100 thousand FP suggesting 9

incorrectly identified pairs for each true prediction (Figure 2 inset).

ES method was the best performer in predicting functional

linkages among proteins reported in the KEGG database. Our

finding is consistent with the previous study in Yeast, where ES

was ranked as the best feature to classify physical, functional and

co-complex PPIs [31]. The second best performer was PP while

GN and GM performed relatively poor. TP and FP predicted by

GN at its score cutoff of 0.98 or above was around 13 and 210

thousands respectively which suggesting high coverage of true

predictions at the cost of higher number of false positives.

The positive examples were further categorized into 14 distinct

pathways or functional categories with 50 or more proteins at 2nd

level of KO definition, such as nucleotide and lipid metabolism

(Table 1). These 14 pathway protein pairs were used as gold

standard to plot performance of prediction methods using

Receiver Operator Characteristics (ROC) curves. Considering

the higher number of FP predicted by these methods, we used

ROC as a fair performance measure over others. Here, ROC

curves represent the extent with which a particular method ranks

individual pathway protein pairs. ROC curves for each pathway

prediction using five methods are summarized as the Area Under

the ROC Curve (AUC) value in Table 2. For ROC analysis, we

considered the protein pair TP, if both the proteins belonged to

the pathway under consideration and all other pathway pairs were

treated as true negatives (Table 1).

Prediction of Metabolic Pathway PPIs
Prediction performance of five methods for detection of

functional linkages among proteins belonging to eight metabolic

pathways is shown in Figure 3. None of the methods was able to

predict linkages among metabolic pathway proteins with high

accuracy. Protein associations responsible for metabolism of

nucleotide, glycans and vitamins & co-factors were predicted with

relatively better accuracy and ROC curves were observed well

above random predictor for GN, PP and GC (to some extent)

methods (Figure 3C, 3E & 3H). Considering the ability of methods

to infer functional relationships between proteins based on

evolutionary trajectories, the performance of each method reveals

specific evolutionary constraints operational on the pathway

protein pairs. GN is performed reasonably well on all these

pathway protein linkages followed by poor but noticeable

performance of PP (except for amino acid metabolism). These

results suggested that proteins belonging to these pathways are

encoded by neighboring genes in reference genomes and show

weak correlation in their phyletic patterns. Performance of GN

also indicated that genes encoding these metabolic proteins tend to

be maintained in chromosomal proximity at least in one reference

genome and thereby possible co-regulatory nature of these genes

(Figure 3). However, the poor performance of ES in predicting

linkages among these proteins was intriguing since it suggested that

they are not co-regulated (Figure 3 & Table 2). We speculated that

it could be due to the alternate transcriptional activity of genes

from the same operons or transcriptional units under different

conditions as observed for Mycoplasma pneumoniae [36]. It has been

observed that 42% transcriptional units of Mycoplasma pneumoniae

show alternate transcript activity [36]. GM method has a potential

to detect physically interacting protein pairs as opposed to the

other methods which predicts functional PPIs. The poor

performance of GM suggested that associations among proteins

involved in various pathways (except nucleotide metabolism) are

likely to be functional (Figure 3). GM is substantially well predicted

nucleotide metabolic protein linkages suggesting that proteins
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involved in this pathway are associated with each other physically

(Figure 3C).

A set of other four pathways responsible for metabolism of

carbohydrate, lipid, energy and non-standard amino acids was

randomly predicted by all methods (Figure 3B, 3D, 3F & 3G). As

shown in Figure 3B, 3D, and 3F, accuracy of PP was worst when it

comes to predict functional linkages among proteins involved in

carbohydrate, lipid and energy metabolism respectively, suggesting

irregular phyletic pattern of these proteins. In case of energy

metabolism, our results are consistent with a previous study based

on the analysis of bacterial and archaeal key enzymes involved in

respiratory and photosynthetic pathways, that the phyletic

distribution of these enzymes is irregular and shows diverse

strategies adopted by prokaryotes for energy conservation [37]. As

opposed to the lower accuracy of PP, functional linkages of

carbohydrate, energy and lipid metabolic proteins were predicted

comparatively well by GC, suggesting strong preference of genes

encoding these proteins being organized as operons during

evolution (Figure 3B, 3D, 3F inset). It is also consistent with

relative performance of ES in predicting carbohydrate and energy

metabolic pathways (Figure 3B & 3F). Nonetheless, predictions of

carbohydrate, energy and lipid pathway protein linkages along

with the metabolism of non-standard amino acids is a challenging

task, since ROC curves of all methods are below random predictor

(Figure 3B, 3D, & 3G).

Overall, our results suggest that GN is the best method to

predict functional linkages among metabolic proteins. However, as

discussed in the previous section (Figure 2), one should treat GN

predictions cautiously due to the likelihood of falsely predicted

associations even though it is outperformed. The outperformance

Figure 1. A schematic representation of the approach. A) Each arrow point towards a particular protein-protein physical/functional interaction
prediction method. Gene Cluster (GC) calculates co-occurrence probability of orthologs of query proteins encoded from same gene clusters in
reference genomes. Gene clusters were defined as a set of unidirectional genes within intergenic distance of 100 nucleotide bases. In given example,
genes encoding orthologs of query proteins C and D co-occur in same cluster in three reference genomes, hence 3/4 is interaction score between
them. Gene Neighbor (GN) method calculates interaction scores for query protein pairs based on the minimum chromosomal distance between their
orthologs encoding genes in any one reference genome irrespective of gene orientation. In given example, minimum distance for proteins C and D
evident in one of the reference genome. Expression Similarity (ES) method correlates expression profiles of protein coding genes in various
conditions. In given plot, two genes show almost similar expression in various conditions and hence are likely to be interacting. Phylogenetic Profiling
(PP) calculates interaction scores based on co-occurrence of proteins in multiple genomes. Phyletic pattern of orthologs of E and D proteins showed
with colored filled circles in rows while, vertical stacking represents an individual reference genome. Black circles represents absence of ortholog
otherwise presence. Genome distance-Mirrortree (GM) method compares distance matrices derived from aligned orthologs of query proteins. Prior to
comparison, we correct these matrices to exclude speciation information using new approach. B) A set of 14 pathways catalogued in KEGG were used
as benchmarking dataset. Protein pairs that co-occur in pathway under consideration (for example, Nucleotide metabolism highlighted with red
color) were treated as positives and all other pathway protein pairs considered as negatives. C) We calculate interaction scores using above
mentioned five methods for positives and negatives of each pathway as shown in table. D) We compare performance accuracy of protein-protein
interaction prediction methods for each KEGG pathway using Receiver Operator Characteristics curves.
doi:10.1371/journal.pone.0054325.g001
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of GN in predicting linkages among metabolic proteins shed lights

on the evolution of pathways. It has been reported in earlier study

that gene duplication events have significantly contributed to the

evolution of metabolic diversity we observe today [38]. Duplica-

tion events often generate new copy of the same gene arranged in-

tandem. The fate of the new gene depends on the selection

pressure imposed on it and can adopt new but related functions in

sub-sequent generations due to the sequence divergence. Our

Figure 2. Predictive power of physical and functional protein-
protein interaction prediction methods. Each point on this plot
represents specific interaction score threshold of prediction methods at
which the true and false positives were counted. Inset on the plot
shows reduction of false positives at higher interaction score cutoffs for
GC, PP, ES and GM prediction methods. The performance of all methods
is near diagonal. Even at highest score cutoff GN predicted more than
13,868 TP and 210,963 FP hence its line is not visible in the inset.
Expression Similarity (ES) is the best performing method. Phylogenetic
Profiling, Gene Neighbor, Gene Cluster and Genome Distance-
Mirrortree are abbreviated as PP, GN, GC and GM respectively.
doi:10.1371/journal.pone.0054325.g002

Table 1. Description of the KEGG benchmark dataset.

KEGG Pathway Proteins Number of Positives Number of Negatives

All pathways 1393 53424 916104

Amino Acid Metabolism 200 4612 41421

Carbohydrate Metabolism 304 8266 37767

Nucleotide Metabolism 112 4993 41040

Lipid Metabolism 70 1262 44771

Metabolism of Cofactors & Vitamins 145 1974 44059

Energy Metabolism 135 3756 42277

Glycan Biosynthesis & Metabolism 54 536 45497

Metabolism of Other Amino Acids 67 1509 44524

Signal Transduction 129 8690 37343

Membrane Transport 253 17437 28596

Cell Motility 51 1962 44071

Replication and Repair 56 1222 44811

Folding, Sorting and Degradation 52 297 45736

Translation 191 2196 43837

E. coli pathways are based on the 2nd level KEGG orthology definition with 50 or more protein components only. Positive pairs are with proteins that share at least one
KEGG pathway at the 3rd level of KEGG orthology definition.
doi:10.1371/journal.pone.0054325.t001

Table 2. Summary of biological pathway prediction
accuracies of physical and functional protein-protein
interaction prediction methods.

KEGG pathway GN GC ES PP GM
Aver-
age

Amino acid metabolism 0.57 0.52 0.49 0.46 0.49 0.51

Carbohydrate metabolism 0.47 0.50 0.46 0.41 0.41 0.45

Nucleotide metabolism 0.59 0.49 0.44 0.52 0.57 0.52

Lipid metabolism 0.50 0.50 0.45 0.44 0.47 0.47

Metabolism of cofactors & vitamins 0.61 0.53 0.50 0.59 0.57 0.56

Energy metabolism 0.52 0.50 0.51 0.47 0.51 0.50

Metabolism of other amino acids 0.53 0.49 0.48 0.42 0.46 0.48

Glycan biosynthesis & metabolism 0.62 0.58 0.59 0.65 0.56 0.60

Translation 0.76 0.60 0.80 0.79 0.79 0.75

Folding, sorting & degradation 0.68 0.51 0.60 0.72 0.72 0.65

Replication & repair 0.59 0.48 0.50 0.71 0.66 0.59

Signal transduction 0.41 0.48 0.42 0.52 0.42 0.45

Membrane transport 0.39 0.47 0.48 0.41 0.46 0.44

Cell motility 0.62 0.55 0.63 0.66 0.52 0.60

Average 0.56 0.51 0.53 0.56 0.54

The performance summary of protein-protein prediction methods measured as
Area Under the ROC Curve (AUC). Pathway prediction accuracies of various
methods differ significantly with Wilcox test p-value ,3.582e–13. These
methods include Gene Neighbor, Gene Cluster, Expression Similarity,
Phylogenetic Profiling and Genome distance-Mirrortree abbreviated as GN, GC,
ES, PP and GM respectively. E. coli pathways are based on the 2nd level KEGG
orthology definition with 50 or more protein components only.
doi:10.1371/journal.pone.0054325.t002
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results points out that the organization of extant metabolic genes is

shaped by duplication events that arranged same gene in-tandem

on the genome during evolution and hence amenable to predicted

by GN with high accuracy.

Prediction of Genetic Information Processing Pathway
PPIs

Central dogma of life related pathways with 50 or more protein

components namely, translation, protein folding, sorting &

degradation and replication & repair pathways are classified

under genetic information processing term in KEGG (Figure 4A,

4B and 4C). Translation pathway PPIs were exceptionally well

predicted by methods other than GC (Figure 4A). PP and ES

methods showed remarkable ROC curves at low FP rate whereas

GM and GN methods for full range of values (Figure 4A). The top

scoring AUC values of 0.80, 0.79 and 0.79 were observed for ES,

PP and GM method respectively. PP and ES methods predicted

more than 50% TP at the cost of less than 10% FP. Similar

percentage of TP was obtained for GM and GN at the cost of

higher FP. These results implied that the predicted associations are

physical, co-inherited and co-regulated which was expected since

these proteins form macromolecular assemblage of ribosome

crucial for synthesis of proteins and are expected to be

constitutively present in the cell associated with each other.

Another housekeeping function performed during the protein

synthesis is proper folding of nascent polypeptide followed by its

transport to respective locations in the cell and degradation, if not

folded properly or when their function is no longer needed. The

best performing methods to predict folding, sorting and degrada-

tion pathways were PP and GM suggesting co-inheritance of the

protein components and their physical association with each other

(Figure 4B). The AUC value of 0.72 was observed for PP and GM

methods. Overall PP, GM and GN methods are best suited for

prediction of protein associations involved in this category

(Table 2). The poor performance was observed for GC, suggesting

that these protein coding genes are not organized as operons,

which was opposed to the performance of GN reflecting

chromosomal proximity of these protein coding genes during

evolution.

Replication and repair pathway protein components are

involved in maintenance of chromosomes. This also includes one

of the indispensable functions, the replication of DNA molecules

during cell division which is common to life forms. The linkages

among these proteins were mainly predicted by PP with AUC

value of 0.71 followed by GM with 0.66. ROC curves are well

separated and above right diagonal suggesting that the predictions

could be achieved with reasonable accuracy (Figure 4C). These

results suggested that these proteins are co-inherited during

evolution and interact physically.

Overall, genetic information processing pathway proteins were

maintained by strong co-inheritance patterns and they are possibly

associated with each other by physical interactions in the cell.

Figure 3. Prediction accuracy of physical and functional protein-protein interactions responsible for metabolism. Each solid colored
line represents Receiver Operator Characteristics (ROC) curve of methods. Gray colored dotted line represents performance of random predictor.
Gene Neighbor, Gene Cluster, Expression Similarity, Phylogenetic Profiling and Genome Distance-Mirrortree are abbreviated as GN, GC, ES, PP and GM
respectively. Each inset on the plot represents performance in the area of high interaction scores generated by prediction methods. Amino acid (A),
Nucleotide (C), Co-factors & vitamins (E) and Glycan (H) pathways are predicted with comparable accuracy. Prediction accuracy of Carbohydrate (B),
Lipid (D), Energy (F) and Non-standard amino acids (G) pathways by all methods is near random predictor. GN outperforms other methods.
doi:10.1371/journal.pone.0054325.g003

Figure 4. Prediction accuracy of physical and functional protein-protein interactions responsible for various biological pathways.
Each solid colored line represents Receiver Operator Characteristics (ROC) curve of prediction methods. Gray colored dotted line represents
performance of random predictor. Gene Neighbor, Gene Cluster, Expression Similarity, Phylogenetic Profiling and Genome Distance-Mirrortree are
abbreviated as GN, GC, ES, PP and GM respectively. Translation (A), Folding, sorting & degradation (B), and Replication & repair (C) are well predicted
by PP and GM. Signal transduction (D) and Membrane Transport (E) pathways are predicted randomly by all PPI prediction methods. GM performed
well as compared to other methods in low false positive region (D & E Inset). PP, ES and GN elegantly predicted interactions among proteins involved
in Cell motility pathway (F).
doi:10.1371/journal.pone.0054325.g004
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Prediction of Environmental Information Processing
Pathway PPIs

Signal transduction and membrane transport pathways were

predicted with poor accuracy (Figure 4D and 4E). The interactions

involved in signal transduction proteins were mainly predicted by

PP method with AUC value of 0.52 (Figure 4D). The second best

performance was observed in the case of GC method with AUC

value of 0.48. Membrane transport protein linkages were also

predicted randomly (Figure 4E). The performance of all methods

was observed well below the random predictor. The best AUC

values of 0.48 and 0.47 were achieved for ES and GC methods

respectively. In the low FPR region, the performance of GM was

slightly better compared to other methods for both pathways

suggesting some of these pathway proteins may form complexes

through physical interactions (Figure 4 Inset D and E).

Overall our results suggested that the prediction of signaling and

membrane transport pathway PPIs is a daunting task for all

methods.

Cellular Processes
Cell motility related proteins are categorized under the term

‘Cellular processes’ in the KEGG database and are sub-divided

into chemotaxis and flagellar assembly pathways. These PPIs were

predicted relatively better by PP and ES methods with AUC

values of 0.66 and 0.63 respectively (Figure 4F). The out-

performance of PP was expected since the proteins responsible

for motility are restricted to motile organisms and show very

strong co-inheritance pattern. The second best performance was

observed for ES suggesting co-expression of these proteins. The

lowest performance with 0.42 AUC was observed for the GM.

Sub-cellular localization of these proteins suggests that many

proteins actually not interacting with each other but associated by

adjacent neighbors into complex [39]. Furthermore, chemotaxis

proteins are involved in signaling more often bound by transient

interaction to induce phosphorylation events which could be the

reasons for poor performance of GM [40].

Conclusions
The comparative assessment of five methods for their ability to

predict protein-protein functional linkages of various biological

pathways showed that every method is prone to erroneous

predictions. The prediction of associations among the metabolic

pathway proteins remains a challenging task for these methods,

possibly due to their flexible/independent evolutionary histories.

The lower performance of PP method has indicated an irregular

phylogenetic distribution of proteins involved in the majority of

metabolic pathways. These metabolic pathways are responsible for

the turnover of carbohydrates, amino acids, lipids and non-

standard amino acids. The PP method delineates the fact that, 1)

the most of the metabolic genes are dispensable due to functional

redundancy and this could be the underlying reason for weak

correlation in their phyletic patterns, 2) Besides, each metabolic

pathway has evolved around few core genes that are well

conserved, whereas majority of other genes are versatile enough

to offer a species/ecological niche specific framework for the

environmental adaptation. Since, the proteins involved in metab-

olism of nucleotides, glycans, vitamins and co-factors are well

conserved, PP and GN methods worked with greater accuracy.

Majority of metabolic pathway protein linkages ranked well by

gene neighborhood based method suggesting that the genes

encoding them are in close proximity to each other on

chromosome in one of the reference genomes. Such organization

of genes involved in the extant metabolic pathways are probably

shaped and arisen due to duplication of the same genes in-tandem.

GN and GC methods could be used as powerful tools to predict

functional linkages among the metabolic proteins. On other hand,

GM method could make reliable predictions as far as nucleotide

metabolic protein-protein linkages are concerned.

As opposed to the above-mentioned lower performance in

predicting metabolic protein linkages, these methods are extremely

good in detecting interactions among proteins that are responsible

for housekeeping processes and other subset of processes such as

cell motility. Functional linkages between proteins that participate

in the central dogma pathway can be predicted with reliable

accuracy by PP, GM and ES methods. Higher prediction

accuracies for these pathways were obvious since participating

proteins form small complexes or molecular machines that are

essential for genetic information processing. However, we suggest

that these proteins not only show strong co-inheritance but also

interact physically being co-expressed. Prediction of information

processing pathways such as signal transduction and membrane

transport remains the challenging task for these methods. None of

the methods could show enhanced accuracy than the random

predictor in detecting associations among these proteins.

Metabolic and information processing pathway predictions with

respect to the central dogma, consistently showed very small AUC

values. These AUC values ranged mostly from 0.5 to 0.6 and can

be rated slightly above random performance, indicating high

proportion of false positive predictions. The acceptable range of

AUC values from these methods have been achieved only for the

central dogma pathways. Therefore, we believe the reported

accuracies in all previous prediction analyses are likely to be the

overestimated and resulted mainly from central dogma pathway

predictions. These facts suggest that majority of methods used in

this study are not enough to predict metabolic and information

processing pathways with enough accuracy. Furthermore, the

genome-scale predictions made by these methods are likely to have

less coverage of protein linkages involved in these pathways.

Furthermore, the careful selection of prediction methods along

with pathway specific sequence features would enhance the

prediction quality.

In concluding remarks, overall AUC values of predictions are

not very convincing for majority of the pathways. There is a

differential tendency of various methods to predict various

biological pathways. Therefore, we suggest that the potential use

of a particular prediction method depends on the pathway under

investigation. In making generalized prediction, ES method is the

best option.

Materials and Methods

Completely sequenced genomes of Bacteria available as on

December 2007 at National Center for Biotechnology Information

(NCBI) were downloaded from ftp://ftp.ncbi.nih.gov/genomes/

Bacteria [41]. A total of 566 prokaryotic species with single

chromosomes were considered for analysis. We selected Escherichia

coli K12 MG1655 (E. coli) as a query/model organism. Orthologs

of E. coli proteins were identified by reciprocal best hit search

performed using NCBI Basic Local Alignment Search Tool

(BLAST) [42] against remaining 565 genomes. The hits with e-

value threshold of 1e-4 or less and bits score greater than 50 were

retained as potential orthologs.

PPI Prediction Methods
Interaction scores for all possible pairs of E. coli proteins were

calculated using five PPI prediction methods which include GN,

GC, ES, PP, and GM methods. In our previous study, we
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benchmarked methods other than ES against six reference genome

sets (Text S1 ) [34]. Given two proteins X and Y of the query

genome, these methods generate interaction score based on

various aspects of their evolution computed through orthologs in a

set of reference genomes. A set with 121 reference genomes

representing single species from various genus and related genera

was performed relatively better when GN, GC and GM methods

were used for predictions [34]. Therefore, we used these genomes

as a reference set to compute GN, GC and GM interaction scores

for gold standard protein pairs (discussed in the next section).

Briefly, GN method computes interaction score for a protein

pair based on the chromosomal distance between genes encoding

their orthologs from any one reference genome in which it is found

minimum [21]. We subtracted each GN score from one to make it

similarity score instead of distance. GC method computes co-

occurrence probability for E. coli protein pair based on the coding

genes of orthologous proteins in the same gene clusters of

reference genomes [21]. The gene clusters defined in all reference

genomes, as a continuous stretches of co-directional genes with

intergenic distance cutoff within 100 nucleotide bases.

GM or Genome distance-Mirrortree method is a variant Tol-

mirrortree [25,34]. For GM, Orthologs of E. coli proteins were

identified in 121 reference genomes. Orthologs of each protein

were used to construct Multiple Sequence Alignments (MSAs)

[43]. MSAs were used to calculate distance matrices for each

protein of E. coli. The dimension of the each protein distance

matrix would be equal to the number of genomes/species in which

orthologs of that protein identified. Suppose, protein ‘X’ is

identified in n species then the dimension of the matrix DX would

be n x n. Each row or column of the matrix corresponds to a

species under consideration. An element of the matrix DX (i,j)

represents the distance calculated by comparing the amino acid

sequences of orthologs of protein X from species i, and j. Similarly,

distance matrix derived for protein ‘Y’ using MSA of its orthologs

from n species. To correlate the distance matrices of protein X and

Y, the distance between the species that were common to both

matrices were retained. All the distance matrices were symmetric,

hence upper or lower half of the matrix can be used for

comparison. Since the distances that correspond to common

species between two matrices were retained, one can use standard

Pearson Correlation Coefficient (PCC) to calculate the extent to

which two distance matrices are similar. The higher PCC value

suggests the correlated amino acid substitutions in the orthologs of

protein X and Y. Hence, it is likely that protein X and Y interact

physically. There are several ways to exclude the speciation

information or background noise due to the relatedness of species

from these matrices [25,44]. In our previous study [34], we have

used novel approach which is similar to Tol-mirrortree to correct

these matrices for speciation bias [25]. For 121 reference genomes,

we first created distance matrix DG which is similar to protein

matrices where each row or column corresponds to a species/

genome under consideration. An element of the matrix DG (i,j)

represents the Genome Distance (GD) based on shared orthologs

between species i and j which was calculated with the following

equation,

GDi,j~1{
nA\B

nAznB{(nA\B)

Where, nA and nB is the total number of proteins present in species

i and j, respectively. nA>B is the number of orthologs shared by

species i and j. The orthologs were obtained for each of the species

using a bi-directional BLAST searches against each other.

Each protein distance matrix was corrected by subtracting its

elements from the corresponding value in the DG matrix (i.e.

distance value of an element (i,j) of protein X was subtracted from

the (i,j) element of matrix DG). Prior to correction, all matrices

were re-scaled due to the different scale of proteins and GD

matrix. For this, we calculated PCC between DG matrix and every

distance matrix of E. coli proteins. The highest PCC value

obtained was 0.54 which was used to divide elements of each

matrix before subtraction. This approach is referred as GD-

Mirrortree (GM) and performed better than tol-mirrortree method

[34].

A set of 448 reference genomes was created by selecting one

genome from a cluster obtained using the genomes that share

more than 90% of E. coli orthologs [34]. This reference set was

used for PP analysis. Phylogenetic profile matrix (P) was created

where each row and column of matrix represent E. coli protein and

reference genome respectively [15,45]. An P(i,j) element of the

matrix represents bit score of alignment between protein i and its

ortholog in reference genome j. Matrix was normalized with

respect to protein and species divergence [21]. The similarity of

phylogenetic profiles was assessed using PCC.

Similarly, the gene expression data for 380 conditions was

downloaded from M3D database [46]. The most varying 300

conditions were used to calculate the expression similarity of E. coli

protein coding gene pairs using PCC.

Performance Measures
To assess the performance of each PPI prediction method with

respect to KEGG pathways, protein pair was considered as

functionally linked or positive if both proteins shared at least one

KEGG pathway, and unrelated otherwise i.e. negative. For

analysis of individual KEGG pathways, however, two proteins

were considered to be functionally linked or positive if they

belonged to the same KEGG pathway, otherwise unrelated or

negative with respect to pathway under consideration [28,29]. For

individual pathway analysis, the gold standard protein pairs share

at least one functional pathway or category.

For a chosen threshold interaction score calculated by PPI

prediction methods, the protein pairs with scores greater than or

equal to the threshold and belong to positive examples are

classified as True Positives (TP) and those with a interaction scores

below the threshold are classified as False Negatives (FN).

Similarly, the protein pairs with interaction scores greater than

or equal to the threshold and belong to negative examples are

classified as False Positives (FP) and those with a score below the

threshold are classified as True Negatives (TN).

These labels were used to assess the performance of PPI

prediction methods in the form of TP to FP ratios. ROC curves

and AUC values were calculated using ROCR package in R

language for statistical programming (http://www.r-project.org/)

[47]. For ROC analysis, True Positive Rate (TPR) and False

Positive Rate (FPR) are as following

TPR~
TP

TPzFN

FPR~1{
TN

TNzFP

ROC curve visually represents the relative trade-offs between

the FPR and the TPR. A correct PPI prediction method would

have a ROC curve above diagonal and its integral the AUC would
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be above 0.5. For 100% correct predictions, this curve is

rectangular and AUC is equal to 1.

Supporting Information

Table S1 Description of the computational cost for
analyses.

(PDF)

Text S1 Benchmarking details of physical and function-
al protein-protein interaction prediction methods.

(PDF)
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