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Abstract: Glucagon like peptide 1 (GLP-1) is an incretin hormone produced by the gut and brain,
and is currently being used as a therapeutic drug for type 2 diabetes and obesity, suggesting that
it regulates abnormal appetite patterns, and ameliorates impaired glucose metabolism. Many re-
searchers have demonstrated that GLP-1 agonists and GLP-1 receptor agonists exert neuroprotective
effects against brain damage. Palmitic acid (PA) is a saturated fatty acid, and increases the risk of
neuroinflammation, lipotoxicity, impaired glucose metabolism, and cognitive decline. In this study,
we investigated whether or not Exentin-4 (Ex-4; GLP-1 agonist) inhibits higher production of reactive
oxygen species (ROS) in an SH-SY5Y neuronal cell line under PA-induced apoptosis conditions.
Moreover, pre-treatment with Ex-4 in SH-SY5Y neuronal cells prevents neural apoptosis and mito-
chondrial dysfunction through several cellular signal pathways. In addition, insulin sensitivity in
neurons is improved by Ex-4 treatment under PA-induced insulin resistance. Additionally, our imag-
ing data showed that neuronal morphology is improved by EX-4 treatment, in spite of PA-induced
neuronal damage. Furthermore, we identified that Ex-4 inhibits neuronal damage and enhanced
neural complexity, such as neurite length, secondary branches, and number of neurites from soma in
PA-treated SH-SY5Y. We observed that Ex-4 significantly increases neural complexity, dendritic spine
morphogenesis, and development in PA treated primary cortical neurons. Hence, we suggest that
GLP-1 administration may be a crucial therapeutic solution for improving neuropathology in the
obese brain.

Keywords: exendin-4 (Ex-4); glucagon like petide-1 (GLP-1); neuronal structure; obesity; palmitic
acid (PA)

1. Introduction

Metabolic syndrome is a major global health issue, and is gradually increasing in
prevalence worldwide, at all ages [1]. Obesity is one of these metabolic syndromes, and
is rapidly growing in incidence; obesity is accompanied by dyslipidemia, hypertension,
diabetes, and cognitive dysfunction [2]. Epidemiological studies have presented a strong
relationship between obesity and memory loss in humans [3,4]. Hyperglycemia in obesity
causes vascular damage, brain atrophy, and impaired neurogenesis in the brain [5]. It has
also been shown to increase the risk of Alzheimer’s disease (AD) by promoting severe
neuroinflammation, insulin resistance, synaptic dysfunction, and impairments in cerebral
vasculature [6]. Moreover, obese patients showed brain insulin resistance, increased neu-
roinflammation response, and excessive saturated fatty acids, such as palmitate, both in
circulation and the cerebrospinal fluid [7,8].

The consumption of high-fat diets with saturated fatty acids, such as palmitic acid
(PA), leads to an increase in weight, and triggers metabolic impairment, such as insulin
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resistance [9,10]. High PA levels can trigger endoplasmic reticulum (ER) stress, cell death,
and impaired differentiation in neurons [11,12]. PA-induced neuronal cell damage induces
an AD-like pathological pattern in primary cortical neurons (PCNs) [13]; a decrease of
proliferation in neural progenitor cells [14] and neural cell apoptosis [15]. Furthermore,
recent studies have reported that a high accumulation of PA in neurons caused by a high-fat
diet induces brain insulin resistance and impaired long-term potentiation; and this leads
to memory dysfunction [16] and an increased production of amyloid-beta in neuronal
cells [17].

Despite the evidence showing that excessive PA levels in the brain are harmful to
memory function and increase the risk of neurodegenerative diseases, an appropriate
therapy for neuronal protection against PA-induced damage is lacking.

Glucagon like peptide 1 (GLP-1) is an incretin hormone secreted by L cells in the gut,
and by neuronal cells from the tractus solitarius of the brain stem [18]. GLP-1 controls
glucose metabolism and insulin sensitivity [19] by binding to GLP-1 receptors in diverse
brain regions, including the hypothalamus, hippocampus, and cortex [20]. L-cell-derived
GLP-1 may enter the brain through the blood [21]. GLP-1, and exendin-4 (Ex-4) and liraglu-
tide (GLP-1 receptor agonists) inhibit oxidative stress-related neuronal loss, and improve
synaptic plasticity and the neuronal network [22,23]. Considering that the enhancement of
neuronal morphology and the neural network is strongly linked to the progress of neuronal
disorders [24], GLP-1′s effect on neuronal connectivity is important for finding therapies
for neurodegenerative diseases.

In this study, we investigated whether the GLP-1 agonist, Ex-4, improves neuronal
connectivity and neuronal function in neurons under PA-induced oxidative stress. Our data
demonstrates the potential of GLP-1 for the treatment of neuropathology in the obese brain.

2. Materials and Methods
2.1. Drug Treatments and Preparation

Ex-4 was purchased from Tocris Bioscience (Avonmouth, Bristol, UK), and diluted
using sterilized water. PA and all-trans retinoic acid (RA) were purchased from Sigma
Aldrich (St. Louis, MO, USA). RA was diluted using anhydrous dimethyl sulfoxide. PA was
conjugated with bovine serum albumin (PA-BSA) in three steps. First, 1 g of PA powder
was dissolved in 7.8 mL ethanol (99%) (500 mM solution) at 35–40 ◦C, and the solution
was filtered using a 0.2 µm filter. Next, 1.5 g of BSA was diluted in 15 mL of serum-free
media at 37 ◦C, and filtered using a 0.45 µm filter. Finally, we obtained 5 mM of PA-BSA by
mixing the two solutions at a ratio of 100 (BSA solution): 1 (PA solution). Cells were treated
with 10 nM Ex-4 for 2 h before treatment with 50 µM PA. To evaluate insulin signaling in
PA-induced insulin resistance, cells were treated with 20 nM of insulin for 10 min, and
subsequently collected for western blot analysis.

2.2. SH-SY5Y Cell Culture and Differentiation

The human neuroblastoma SH-SY5Y cell line (ATCC, Manassas, VA, USA) was cul-
tured in minimum essential medium (MEM) with 10% fetal bovine serum (FBS), 100 U/mL
penicillin-streptomycin, and 1 mM sodium pyruvate. Cells (4.0 × 104 cells/cm2) were
seeded in cell culture dishes or plates, and were cultured at 37 ◦C with 5% CO2. After 1 day
of seeding, the medium was changed to MEM containing 2% FBS and 100 U/mL penicillin-
streptomycin with 20 µM RA, for differentiation. The medium was replaced every 2 days;
the cells were treated with 10 nM Ex-4 and 50 µM PA-BSA, as appropriate. Differen-
tiation was performed for up to 4 days. The detailed culture schedule is described as
supplementary information (Figure S1A,B).

2.3. Rat Primary Cortical Neuron Culture and Transfection

Rat PCNs were obtained from the cerebral cortices of Sprague-Dawley rat embryos
(Koatech, Pyeongtaek, Korea) on embryonic day 14. The isolated cortices were rapidly col-
lected in 1× Hank’s balanced salt solution, washed three times in a dissection/dissociation
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medium, and were incubated in 0.5% trypsin for 15 min at 37 ◦C. Subsequently, the
cells were washed twice with the dissection/dissociation medium, and were seeded in a
medium comprising MEM with Earle’s balanced salt solution, 0.45% glucose, 10% FBS,
1× GlutaMAX-Q, 1× sodium pyruvate, and 100 U/mL penicillin-streptomycin. Cortices
were separated into single cells, and the cells (1.4 × 104 cells/cm2) were seeded in poly-
L-lysine-coated culture plates. For immunostaining, primary cortical cells were cultured
on cover slips coated with poly-L-lysine, in culture plates. After 1 h the medium was
changed to maintenance medium containing Neurobasal medium, 1× B-27, 1× GlutaMAX-
Q, 100 U/mL penicillin-streptomycin, and 0.5 µM cytosine arabinoside. The maintenance
medium was replaced every 3 days. Neurite complexity analysis, western blotting, and
immunostaining experiments were performed on day 7 in vitro (DIV7), and dendritic spine
analysis was performed on day 21 in vitro (DIV21).

To analyze neurite complexity and the dendritic spines of PCNs, cells were trans-
fected with the pMAX-GFP plasmid (Lonza, Basel, Switzerland) using FuGENE 6 transfec-
tion reagent (Promega, Madison, WI, USA), according to the manufacturer’s instructions.
After 24 h at 37 ◦C, neurite outgrowth and dendritic spines were analyzed in the cells.
The detailed culture schedule is described in Figure S1C,D. All primary culture procedures
were performed in accordance with the Animal Care Guidelines of Chonnam National
University, South Korea.

2.4. Quantitative Real Time Polymerase Chain Reaction (PCR)

Total RNA was extracted using TRIzol reagent (Ambicon, Austin, TX, USA) accord-
ing to the manufacturer instructions, and complementary DNA was reverse-transcribed
from the extracted RNA using RevertAid reverse transcriptase (Thermo Fisher Scientific,
Waltham, MA, USA). The complementary DNA was quantified using a NanoPhotometer
(IMPLEN, Westlake village, CA, USA). Quantitative real time PCR was performed using
10 ng of complementary DNA with the Power SYBR green PCR master mix and the Step
One Plus real time PCR system (Applied Biosystems, Foster City, CA, USA). The expression
level of each gene was normalized to that of Glyceraldehyde 3-phosphate dehydrogenase
(GAPDH). The primer information is described in Figure S1E.

2.5. Western Blot Analyses

Cells were lysed in radioimmunoprecipitation lysis buffer (Translab, Dajeon, Korea)
containing protease inhibitors and phosphatase inhibitors. Protein concentrations were
quantified using a BCA assay kit (Thermo Fisher Scientific) according to the manufacturer’s
instructions. Protein (25 µg) was separated by 8–12% SDS-PAGE, and transferred onto a
methanol-activated Polyvinylidene difluoride membrane (Millipore, Burlington, MA, USA).
Membranes were blocked with 5% skim-milk or 5% BSA in 1× tris-buffered saline-tween
(TBS-T) (10X TBS buffer, 0.1% Tween-20) for 1 h at room temperature (RT). Membranes
were incubated with primary antibodies (1:1000 dilution) in 1× TBS-T containing 5% BSA,
at 4 ◦C overnight. After primary antibody binding, membranes were incubated with
secondary antibodies (horseradish peroxidase (HRP)-labeled mouse anti-rabbit IgG (Santa
Cruz Biotechnology, Dallas, TX, USA) or goat anti-mouse IgG (Santa Cruz Biotechnology);
1:5000 dilution) in 1× TBS-T buffer for 2 h at RT. Membranes were treated with ECL solution
(Thermo Fisher Scientific) and analyzed using Fusion Solo software (Vilber, Marne-la-Vallée,
France). The protein expression level was measured using ImageJ software. All protein
levels were normalized to β-actin levels. Phosphorylated protein levels were normalized to
native form levels, and cleaved protein levels were normalized to full-length protein levels.

The primary antibodies used were as follows: BCL2-associated X, apoptosis reg-
ulator (Bax, #5023), B-cell lymphoma 2 (Bcl-2, #4223), cysteine-aspartic acid protease 3
(Caspase-3, #9662), β-actin, phosphatidylinositol kinase (PI3K)/protein kinase B (AKT,
#4691), p-AKT (Ser473, #9271), phosphorylated glycogen synthase kinase 3 beta (p-GSK-
3β, Ser9, #9323), peroxisome proliferator-activated receptor gamma (PPAR-γ, #2435),
p44/42 MAPK extracellular signal-regulated kinases 1/2 (ERK1/2, #9102), p-ERK1/2
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(Thr202/Tyr204, #4370), cAMP-response element binding protein (CREB, #9104), p-CREB
(Ser133, #9198), and postsynaptic density protein 95 (PSD-95, #3409) (all from Cell sig-
naling, Danvers, MA, USA). Cleaved-Poly (ADP-ribose) polymerase 1 (PARP-1, ab4830),
peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α, ab54481),
and microtubule-associated protein 2 (MAP-2, ab32454) antibodies were purchased from
Abcam (Abcam, Cambridge, UK). Insulin receptor substrate 1 (IRS-1, PA1-1057) and p-IRS-
1 (Tyr612, 44-816G), GSK-3β (sc-9116) and β-tubulin (sc-9935), and synaptophysin (SYP,
MAB368) antibodies were purchased from Invitrogen (Invitrogen, San Diego, CA, USA),
Santa Cruz Biotechnology, and Millipore (Millipore, Burlington, MA, USA), respectively.

2.6. Reactive Oxygen Species (ROS) Assay

SH-SY5Y cells were seeded into 96-well plates, and treated with PA (50 µM) and Ex-4
(10 nM) for 24 h. To estimate intracellular ROS under PA treatment, SH-SY5Y cells were
incubated with 100 µM 2′,7′-Dichlorodihydrofluorescin diacetate for 1 h at RT. Cells were
washed thrice with 1× phosphate-buffered saline (PBS). Fluorescence intensity was mea-
sured using a SpectraMax M2 microplate reader (Molecular Devices, San Jose, CA, USA),
with excitation at 485 nm and emission at 520 nm.

2.7. Transferase dUTP Nick End Labeling (TUNEL) Staining

To measure the distribution of apoptosis in PA-treated SH-SY5Y cells, we used a
DeadEnd Fluorometric terminal deoxynucleotidyl TUNEL system kit (Promega, Madison,
WI, USA), according to the manufacturer’s instructions. Cells were imaged with an Eclipse
Ts2 fluorescent microscope (Nikon, Tokyo, Japan), and TUNEL-positive cells were analyzed
using ImageJ software.

2.8. Immunocytochemistry

SH-SY5Y cells (4 × 104 cells/cm2) and PCNs (1.4 × 104 cells/cm2) were seeded on
coated cover slips in culture plates. Cells were fixed with 2% paraformaldehyde (PFA)
for 10 min at RT. The PFA was discarded, and the cells were washed thrice with 1× PBS.
They were then incubated with primary antibodies in GDB buffer (0.1% Gelatin, 0.3%
Triton X-100, 16 mM sodium phosphate, pH 7.4, 450 mM NaCl) (1:200 dilution) at 4 ◦C
overnight. Subsequently, the cells were washed thrice with 1× PBS, and incubated with
GDB buffer containing the secondary antibodies (1:200 dilution) for 1 h at RT. Cell nuclei
were counterstained using a mounting solution with 4′,6-diamidino-2-phenylindole (DAPI).
Cells were visualized using a Zeiss LSM 710 confocal microscope (Carl Zeiss, Oberkochen,
Germany). Fluorescence intensities were analyzed using ImageJ software.

Primary antibodies were used as the following antibodies: Cleaved-caspase3 (Cell
signaling, #9664), p-IRS1 (Invitrogen, residues surrounding Tyr612, 44-816G), PGC-1α
(Abcam, ab54481), PSD-95 (Cell signaling, #3409). Secondary antibodies used were as
follows: secondary antibodies (horseradish peroxidase (HRP)-labeled mouse anti-rabbit
IgG (Santa Cruz Biotechnology, sc2357).

2.9. Mitochondrial Activity Analyses

To analyze mitochondrial activity, cells were stained with 200 nM MitoTracker Deep
Red FM (Invitrogen, San Diego, CA, USA) for 30 min. Subsequently, the staining solutions
were removed, and the cells were washed with 1× PBS, fixed with 2% PFA for 15 min,
and counterstained using a mounting solution with DAPI. Mitochondrial activity was
imaged using a Zeiss LSM 710 confocal microscope (Carl Zeiss, Oberkochen, Germany),
and analyzed using ImageJ software.

2.10. Neurite Outgrowth and Viability Measurement

SH-SY5Y cells were stained with the neurite outgrowth staining kit (Life Technologies,
Carlsbad, CA, USA) in 2% PFA, according to the manufacturer’s instructions. Differentiated
cells were incubated in staining mixture (1× cell viability indicator and 1× cell membrane
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stain) with 2% PFA for 20 min at 37 ◦C. Subsequently, the staining solution was removed,
and the culture plates were filled with 1× background suppression dye in 1× PBS. Neurite
outgrowth (λex555 nm/λem565 nm) and cell viability (λex495 nm/λem515 nm) were
visualized with an Eclipse Ts2 fluorescent microscope (Nikon, Tokyo, Japan). Fluorescence
intensities were analyzed using ImageJ software.

2.11. Neurite Complexity Analyses and Sholl Analyses

SH-SY5Y cells (4 × 104 cells/cm2) and PCNs (1.4 × 104 cells/cm2) were seeded to
measure neurite complexity (neurite length, number of secondary branches, and neurites
from soma of single neurons), using ImageJ software. All measured data were normalized
to control group data.

For morphological analyses of green fluorescent protein (GFP)-transfected PCNs,
neuronal branches were measured on neuron images. Neurite branching was measured
using the Sholl analysis plugin of ImageJ. We located the soma of the selected neuron on
the start radius, and measured dendrite intersections from 10 to 1070 µm per 10 µm step
size. All samples were sets of segmentation with 3 per radius, and a polynomial fit for
“best fitting degree”.

2.12. Dendritic Spine Analyses

For the dendritic spine analysis, morphological analyses of dendritic spine classifica-
tions were performed on more than 20 neurites per GFP-transfected neurons. The standard
spine shapes were defined as follows: Filopodia (length >2 µm), Long thin (length <2 µm
with spine head <0.6 µm in width), Thin (length <1 µm with spine head <0.6 µm in width),
Stubby (length:width ratio <1), Mushroom (spine head >0.6 µm in width), and Branched
(≥2 spine heads). Imaged dendritic spines were classified according to spine shape per
10 µm, using ImageJ.

2.13. Statistical Analyses

Statistical analyses were performed using Prism 8 (GraphPad Software Inc., San Diego,
CA, USA). The data were expressed as the group mean± standard error of mean. Ordinary
one-way ANOVA with Bonferroni correction and unpaired two-tailed t-tests with Welch’s
correction were used. P-value was decided as n.s > 0.05, * p < 0.05, ** p < 0.01, and
*** p < 0.001.

3. Results
3.1. Ex-4 Suppressed Apoptosis in Neurons under PA-Induced Oxidative Stress

We investigated whether apoptosis response was suppressed by Ex-4 in PA-treated
neurons (Figure 1). The treatment concentrations were decided based on our previous
test (Figure S2), conducted according to the treatment plan (Figure S1A). The PA concen-
tration was selected as 50 µM, which significantly increased the expression change of the
apoptosis-related proteins (Figure S2A). The concentration of Ex-4 was determined as
10 nM, which reduced the expression change of PA-induced apoptosis-related proteins,
and significantly improved neuronal complexity and neuronal differentiation marker gene
expression (Figure S2B–D). We measured the mRNA levels of pro-apoptosis-related and
anti-apoptosis-related genes in SH-SY5Y cells under PA-induced oxidative stress. Our data
showed that the expression of pro-apoptotic genes, such as apoptotic peptidase activating
factor 1 (APAF1) and BCL2-associated agonist of cell death (BAD) were increased, whereas
those of anti-apoptotic genes such as BCL2 like 1 (BCL2L1), myeloid cell leukemia sequence
1 (MCL1), and tumor protein p53 (TP53) were decreased (Figure 1A). Ex-4 treatment inhib-
ited the expression of pro-apoptotic genes including APAF1 and BAD, and increased the
expression of anti-apoptotic genes, such as BCL2L1, MCL1, and TP53 in PA-treated neurons
(Figure 1A).
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Figure 1. Exendin-4 suppresses the neuronal apoptosis under palmitic acid-induced oxidative stress. (A) Comparison
of mRNA expression levels of pro-apoptotic (APAF1 and BAD) and anti-apoptotic genes (BCL2L1, MCL1, and TP53) in
SH-SY5Y cells treated with Vehicle (C or Ctr), Exendin-4 (E or Ex-4), Palmitic acid (P or PA), and both Palmitic acid
and Exendin-4 (PE or PA+Ex-4). The mRNA level of each gene is normalized to GAPDH level. (B) Western blot for the
protein level of neuronal apoptosis signaling in SH-SY5Y cells treated with reagents described in (A). Each protein level
is normalized to β-actin. The cleaved proteins were normalized to each full-length protein. (C) Measurement of ROS
level stained with DCF-DA (100 µM) in SH-SY5Y cells treated with reagents described in (A). (D) Detection of PA-induced
apoptosis by transferase dUTP nick end labeling (TUNEL) assay in SH-SY5Y cells treated with reagents described in A.
Nuclei were counterstained with DAPI (blue), and apoptotic cell stained with TUNEL (green). The percentage of TUNEL
positive cells of each group is normalized to the vehicle (control) group; >100 cells per group were analyzed. Scale bar:
100 µm. (E,F) immunocytochemistry images of cleaved caspase-3 expression in SH-SY5Y and primary cortical neuron (PCN)
neurons at day 7 in vitro (DIV 7) treated with reagents described in A. Nuclei were counterstained with DAPI (blue), and
apoptotic cell stained with cleaved caspase-3 (green), >100 (E) and >50 (F) cells per group were analyzed. Scale bar: 50 µm.
Data information: SH-SY5Y cells were treated with 10 nM of Exendin-4 and 50 µM of palmitic acid per group, according to
the treatment plan (Figure S1B,C). In (A–F), error bars represent S.E.M. from three independent experiments. n.s p > 0.05,
* p < 0.05, ** p < 0.01, *** p < 0.001 (unpaired two-tail t-tests with Welch’s correction).
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To investigate the regulatory role of Ex-4 in the apoptosis signaling, we examined the
levels of apoptosis-related proteins in Ex-4-exposed neurons under PA-induced apoptosis
(Figure 1B). The expression of apoptosis signaling-associated proteins such as Bax/Bcl-2,
cleaved caspase-3 and cleaved PARP-1 was increased in neurons under PA-induced ox-
idative stress. Ex-4 inhibited the expression of apoptosis-related proteins in PA-treated
neurons, while Ex-4-only treatment did not alter the basal level of these proteins in con-
trol neurons.

Additionally, ROS production was elevated in neurons under PA-induced oxidative
stress compared to control (vehicle-treated) neurons (Figure 1C). Ex-4 attenuated the
increased ROS levels in neurons despite the PA-induced oxidative stress, and suppressed
ROS levels in the control group. To investigate the effect of Ex-4 on neurons in apoptotic
cell death response, we performed TUNEL staining (Figure 1D). TUNEL-positive cells
increased in number in PA-treated cultures compared with control cultures. However,
TUNEL-positive cells decreased in number with Ex-4 treatment in PA-induced oxidative
stress conditions. Ex-4 did not affect the number of TUNEL-positive cells in neurons under
normal conditions.

To confirm the expression of apoptotic markers in neurons, we observed the expression
of cleaved-caspase3 by immunocytochemistry (Figure 1E,F). Compared to control cells,
the fluorescence intensity increased both in SH-SY5Y cells and PCNs under PA-induced
oxidative stress conditions. These data indicate that the apoptotic cell death of SH-SY5Y
cells and PCNs under PA-induced oxidative stress was inhibited by Ex-4 treatment.

3.2. Ex-4 Improved Insulin Signaling in Neurons under PA-Induced Oxidative Stress

Insulin binds to insulin receptors such as IRS1, and mainly regulates cell metabolism
and glucose transport through AKT signaling [25]. We investigated whether Ex-4 inhibits
insulin resistance caused by elevated PA concentration in neurons through the AKT sig-
naling, using the treatment plan shown in Figure S1B. The mRNA expression of insulin
signaling-associated genes such as Forkhead Box O1 (FOXO1) and trafficking regulator
of GLUT4 (SLC2A4) was significantly decreased in neurons by PA treatment (Figure 2A).
The expression level of the ribosomal protein S6 kinase B1 (RPS6KB1) was increased in
neurons under PA-induced oxidative stress compared with control cells. However, Ex-4 re-
versed alteration in the mRNA expression of these genes in neurons caused by PA-induced
insulin resistance. The basal levels of FOXO1 and RPS6KB1 were not altered by Ex-4
compared to controls, though SLC2A4 expression was increased by Ex-4 treatment.

To investigate whether Ex-4 regulates insulin signaling in neurons under PA-induced
oxidative stress, we treated neurons with 20 nM insulin for 15 min and analyzed them
by western blotting (Figure 2B). The phosphorylation of IRS-1 was not different among
the groups. The phosphorylation of AKT was downregulated, and that of GSK-3β was
upregulated in neurons under PA-induced insulin resistance. However, this reduced insulin
sensitivity was recovered by Ex-4 treatment. In addition, Ex-4 improved the basal expression
of IRS-1 and GSK-3β phosphorylation in neurons under PA-induced insulin resistance,
compared to the control group. Reduction of FOXO1 mRNA expression under insulin
resistance states leads to the reduction of AKT phosphorylation, followed by abnormal
activation of GSK, which regulates glycogen synthesis [26]. However, Ex-4 suppressed
PA-induced insulin resistance by enhancing the insulin signaling related to insulin response.

We confirmed the expression of insulin receptors in SH-SY5Y cells and PCNs
(Figure 2C,D, respectively). Both cell types showed significantly reduced phosphoryla-
tion of IRS-1 under PA-induced insulin resistance conditions. However, Ex-4 treatment
increased the expression of phosphorylated IRS-1 in neurons under PA-induced insulin
resistance. These data indicate that Ex-4 inhibited insulin resistance, and regulated insulin
signaling in neurons under PA-induced insulin resistance conditions.
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SLC2A4, and RPS6KB1) in SH-SY5Y cells treated with vehicle (C or Ctr), Exendin-4 (E or Ex-4),
palmitic acid (P or PA), and both palmitic acid and Exendin-4 (PE or PA+Ex-4). The mRNA level of
each gene is normalized to GAPDH level. (B) Western blot of insulin signaling through 20 nM insulin
stimulation for 10 min in SH-SY5Y cells treated with reagents described in A. Each protein level
is normalized to β-actin. The pIRS-1, pAKT, and pGSK-3β levels were normalized to IRS-1, AKT,
and GSK-3β of total form. (C,D) immunocytochemistry images of pIRS-1 expression in SH-SY5Y
cells and PCN neurons at DIV 7 treated with reagents described in A. Nuclei were counterstained
with DAPI (blue) and insulin receptor stained with pIRS-1 (green), >100 (E) and >50 (F) cells per
group were analyzed. Scale bar: 50 µm. Data information: SH-SY5Y cells were treated with 10 nM
of Exendin-4 and 50 µM of palmitic acid per group according to the treatment plan (Figure S1B,C).
In (A–D), error bars represent S.E.M. from three independent experiments. n.s p > 0.05, * p < 0.05,
** p < 0.01, *** p < 0.001 (unpaired two-tail t-tests with Welch’s correction).

3.3. Ex-4 Improved Mitochondrial Function in Neurons against PA-Induced Oxidative Stress

PA undergoes fatty acid oxidation in the mitochondria leading to adenosine triphos-
phate (ATP) production [27]. However, excessive PA accumulation in neurons causes
ER stress and mitochondrial dysfunction, such as mitochondrial ROS production [27].
To confirm whether Ex-4 ameliorates the mitochondrial dysfunction caused by PA-induced
oxidative stress, we measured the mRNA expression of genes related with mitochondrial
biogenesis, transcription factors, and energy production-related enzymes (treatment plan,
Figure S1B) (results, Figure 3A). The mRNA expression of genes such as estrogen-related
receptor alpha (ESRRA), transcription factor A, mitochondrial (TFAM), and acyl-coenzyme
A dehydrogenase (ACADM) was significantly downregulated in PA-treated neurons, com-
pared to control cells. However, Ex-4 increased the mRNA expression of these genes in
PA-treated neurons. The basal expression of ESRRA and TFAM was increased by Ex-4
compared with controls, whereas there was no change in the mRNA level of the ACADM
gene in PA-treated neurons. To identify whether or not Ex-4 can improve mitochondrial
biogenesis and metabolism, we measured the expression changes of related proteins by
western blot analysis (Figure 3B). PA downregulated the expression of PGC-1α and PPAR-γ,
which are involved in mitochondrial dysfunction in neurons. Ex-4 improved the expression
of these proteins, compared with control neurons. The basal levels of PGC-1α and PPAR-γ
were increased in normal conditions. Additionally, we measured the mitochondrial density
in PA-treated neurons using the MitoTracker live cell assay (Figure 3C,D). The fluorescence
intensity data showed a reduction of mitochondrial dysfunction in Ex-4 treatment both in
SH-SY5Y cells and PCNs, compared to controls. Moreover, the fluorescence intensity of Ex-
4-treated cells was higher in comparison with control cells. We measured PGC-1α protein
levels in both cell types (Figure 3E,F) by western blotting. Mitochondrial biogenesis-related
protein expression was increased in Ex-4-treated cells despite the PA-induced oxidative
stress, as observed by western blotting, as well as by immunostaining. Ex-4-treated neu-
rons showed increased PGC-1α (fluorescence intensity data) compared to controls. Taken
together, we may conclude that Ex-4 enhances mitochondrial function in neurons under
PA-induced oxidative stress, as well as in neurons under normal conditions.



Antioxidants 2021, 10, 78 10 of 21

Antioxidants 2021, 10, x FOR PEER REVIEW 10 of 21 
 

immunostaining. Ex-4-treated neurons showed increased PGC-1α (fluorescence intensity 
data) compared to controls. Taken together, we may conclude that Ex-4 enhances mito-
chondrial function in neurons under PA-induced oxidative stress, as well as in neurons 
under normal conditions. 

 
Figure 3. Exendin-4 improves the mitochondrial function of neurons against palmitic acid-induced oxidative stress. (A) 
Comparison mRNA expression of mitochondrial biogenesis ESRRA, mitochondrial transcription factor TFAM, and 
ACADM enzyme in SH-SY5Y cells treated with vehicle (C or Ctr), Exendin-4 (E or Ex-4), palmitic acid (P or PA), and both 
palmitic acid and Exendin-4 (PE or PA+Ex-4). The mRNA level of each gene is normalized to GAPDH level. (B) Western 
blot of metabolic process related protein expression in SH-SY5Y cells treated with reagents described in A. Each protein 
level is normalized to β-actin. (C,D) Fluorescent images of mitochondrial membrane potential with specific dye Mito-
tracker (200 nM) in SH-SY5Y cells, and PCN neurons at DIV7 treated with reagents described in A. Nuclei were counter-
stained with DAPI (blue) and active mitochondria stained with MitoTracker deep red (red), >100 (E) and >50 (F) cells per 
group were analyzed. Scale bar: 50 μm. (E,F) immunocytochemistry images of PGC-1α expression in SH-SY5Y cells, and 
PCN neurons at DIV7 treated with reagents described in A. Nuclei were counterstained with DAPI (blue) and insulin 
receptor stained with PGC-1α (green), >100 (E) and >50 (F) cells per group were analyzed. Scale bar: 50 μm. Data infor-
mation: SH-SY5Y cells were treated with 10 nM of Exendin-4 and 50 μM of palmitic acid per group, according to the 
treatment plan (Figure S1B,C). In (A–F), error bars represent S.E.M. from three independent experiments. n.s p > 0.05, * p  
<  0.05, ** p  <  0.01, *** p  <  0.001 (unpaired two-tail t-tests with Welch’s correction). 
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(A) Comparison mRNA expression of mitochondrial biogenesis ESRRA, mitochondrial transcription factor TFAM, and
ACADM enzyme in SH-SY5Y cells treated with vehicle (C or Ctr), Exendin-4 (E or Ex-4), palmitic acid (P or PA), and both
palmitic acid and Exendin-4 (PE or PA+Ex-4). The mRNA level of each gene is normalized to GAPDH level. (B) Western blot
of metabolic process related protein expression in SH-SY5Y cells treated with reagents described in A. Each protein level
is normalized to β-actin. (C,D) Fluorescent images of mitochondrial membrane potential with specific dye Mito-tracker
(200 nM) in SH-SY5Y cells, and PCN neurons at DIV7 treated with reagents described in A. Nuclei were counterstained
with DAPI (blue) and active mitochondria stained with MitoTracker deep red (red), >100 (E) and >50 (F) cells per group
were analyzed. Scale bar: 50 µm. (E,F) immunocytochemistry images of PGC-1α expression in SH-SY5Y cells, and PCN
neurons at DIV7 treated with reagents described in A. Nuclei were counterstained with DAPI (blue) and insulin receptor
stained with PGC-1α (green), >100 (E) and >50 (F) cells per group were analyzed. Scale bar: 50 µm. Data information:
SH-SY5Y cells were treated with 10 nM of Exendin-4 and 50 µM of palmitic acid per group, according to the treatment plan
(Figure S1B,C). In (A–F), error bars represent S.E.M. from three independent experiments. n.s p > 0.05, * p < 0.05, ** p < 0.01,
*** p < 0.001 (unpaired two-tail t-tests with Welch’s correction).

3.4. Ex-4 Improved the Structure and Differentiation in Neurons under PA-Induced Oxidative Stress

We examined whether or not Ex-4 increases gene expression related to neurogenesis-,
axon guidance-, and microtubule-stabilization-associated genes using the treatment plan
shown in Figure S1B. The expression of RNA binding fox-1 homolog 3 (RBFOX), tubulin
beta 3 III (TUBB3), and MAP2 was upregulated in neurons under normal conditions by Ex-4
treatment (Figure 4A). However, the expression of TUBB3 and MAP2 was downregulated
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in PA-treated neurons. Ex-4 treatment significantly inhibited PA-induced neuronal damage,
and increased the expression of matured neuronal markers such as RBFOX3, MAP2, and
TUBB3. We investigated the expression of neurite growth-related proteins in PA-treated
neurons (Figure 4B). The phosphorylation and expression of these proteins were decreased
with PA treatment, compared to controls. However, Ex-4 enhanced the reduced phosphory-
lation and protein level of these genes in neurons caused by PA treatment. The basal levels
of ERK1/2 phosphorylation and PSD-95 expression were increased in neurons by Ex-4
treatment compared to controls. Taken together, Ex-4 regulates the expression of mRNA
and protein related to neurite outgrowth through ERK/CREB signaling. Furthermore,
we investigated whether Ex-4 improves neuronal structure in neurons under PA-induced
oxidative stress conditions, using SH-SY5Y differentiated with RA. Compared to controls,
the neurite complexity of PA-treated neurons was significantly reduced, based on neurite
length and the number of neurites and secondary branches (Figure 4C). However, com-
pared to the treatment using PA alone, PA+Ex-4 treatment resulted in longer neurite length.
Furthermore, Ex-4 enhanced neurite outgrowth and the number of neurite branches com-
pared to neurons under normal conditions. In undifferentiated cells without RA treatment,
PA reduced neurite length and the number of secondary branches, compared to controls
(Figure S3C). However, Ex-4 improved all neurite parameters and neurite outgrowth pa-
rameters in PA-treated neurons (Figure S3B), compared to controls (Figure S3A). Neuronal
connectivity was weakened in PA-treated neurons (white pointed areas (Figure S3A,B).
However, neuronal connections were rescued by Ex-4 treatment in spite of PA-induced
oxidative stress. We measured the structure and process changes in PA-treated neurons
(Figure 4D). Cell viability and PA-reduced neurite shrinkage were reduced in PA-treated
neurons compared to controls. However, Ex-4 restored viability and shrinkage of neurons
under PA-induced oxidative stress.

We evaluated the expression of PSD-95 in SH-SY5Y cells and PCNs under PA-induced
oxidative stress (Figure 4E,F), and observed lower PSD-95 expression (immunofluorescence)
compared to control cells. Ex-4 reversed the reduction in fluorescence intensity in PA-
treated neurons. Ex-4 enhanced the basal level of PSD-95 intensity in neurons under normal
conditions. These data show that Ex-4 ameliorated neuronal complexity and regulated
neurite-related protein expression in PA-treated neurons.
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oxidative stress. (A) Comparison mRNA expression of gene-related with neural differentiation (RBFOX3, TUBB3, and
MAP2) in SH-SY5Y cells treated with vehicle (C or Ctr), Exendin-4 (E or Ex-4), palmitic acid (P or PA), and both palmitic
acid and Exendin-4 (PE or PA+Ex-4). The mRNA level of each gene is normalized to GAPDH level. (B) Western blot of
neural differentiation signaling was promoted by Ex-4 treatment in SH-SY5Y cells treated with reagents described in A.
Each protein level is normalized to β-actin. The phosphorylation of pERK 1/2 and pCREB is normalized to ERK 1/2 and
CREB total form, respectively. (C) Fluorescent images of RA-induced differentiated SH-SY5Y cells treated with reagents
described in A. Scale bar: 100 µm. Neurite complexity (neurite length, number of secondary branches, and neurite from
soma) was analyzed from >150 cells per group. The white point indicates PA-induced damaged neurite site and recovered
neurite of Ex-4 treated group. (D) Fluorescent images of cell viability (green) and neurite shrinkage (red) in RA-induced
differentiated SH-SY5Y cells treated with reagents described in A. Scale bar: 10 µm. (E,F) immunocytochemistry images
of PSD-95 expression in SH-SY5Y cells and PCN neurons on day 21 in vitro (DIV21) treated with reagents described in A.
Nuclei were counterstained with DAPI (blue) and insulin receptor stained with PSD-95 (green), >100 (E) and >50 (F) cells
per group were analyzed. Scale bar: 50 µm. Data information: SH-SY5Y cells were treated with 10 nM of Exendin-4 and 50 µM
of palmitic acid per group according to the treatment plan (Figure S1B,D) In (A–F), error bars represent S.E.M. from three
independent experiments. n.s p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001 (unpaired two-tail t-tests with Welch’s correction).
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3.5. Ex-4 Improved Synaptic Plasticity in Neurons under PA-Induced Oxidative Stress

We examined the effect of Ex-4 on synaptic plasticity in PCNs. The expression of
PSD-95 and synaptophysin proteins related to synapse formation was decreased in neurons
by PA treatment (Figure 5A) (treatment plan, Figure S1C,D). However, Ex-4 restored the
PSD-95 and synaptophysin protein levels in PA-treated neurons, and increased the basal
levels of these genes in neurons in normal conditions. Figure 5B shows a brief scheme of
neurite complexity and dendritic spine morphology analysis (Figure 5B). Neurite lengths,
numbers of neurites from soma, and secondary branches significantly decreased in PA-
treated neurons (Figure 5C). Ex-4 treatment resulted in an increase in neurite length and
the number of secondary branches in PA-treated neurons, as well as in control neurons.
Neuritic complexity (as per Sholl analysis) was considerably decreased in PA-treated PCNs
compared to control PCNs. We found that Ex-4 enhanced the neural complexity in PA-
treated neurons, as well as in control neurons. We confirmed that Ex-4 contributes to a
morphological change in the dendritic spines involved in neurite complexity in PCNs
(Figure 5D). PA-treated neurons significantly decreased the number of dendritic spines,
and showed long and short thin, stubby, and branch shaped spines compared to control
neurons. However, PA+Ex-4 treatment group neurons showed an increased number
of dendritic spines, filopodia, long and short thin, stubby, and branch shaped spines
compared to PA-treated group. In addition, Ex-4 increased the number of dendritic spines,
and changed spine forms to mushroom, and branch shaped spines compared to control
group. Ex-4 could boost the new formation of spines and spine maturation in neurons
under PA-induced neuronal damages. Therefore, our results showed Ex-4 accelerates
the synaptic plasticity, neurite complexity, and spine maturation both under normal and
neuronal damaged conditions.
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Figure 5. Exendin-4 improved the synaptic plasticity under palmitic acid-induced oxidative stress. (A) Western blot of
synaptic plasticity-related protein in PCN at DIV21 treated with vehicle (C or Ctr), Exendin-4 (E or Ex-4), palmitic acid (P or
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Neurite length, number of neurites from soma, and Sholl analysis analyzed from >150 cells per group. (D) Fluorescent
images for dendritic spine morphology of pMax-GFP-transfected PCN neurons at DIV21 treated with reagents described
in A. Scale bars: 50 µm (GFP transfected neuron) and 10 µm (dendrite spine morphology). Dendritic spine morphology,
such as filopodia, long thin and short thin, stubby, mushroom and branched morphology were analyzed from >100 cells
per group. Data information: SH-SY5Y cells were treated with 10 nM of Exendin-4 and 50 µM of palmitic acid per group
according to the treatment plan (Figure S1C,D). In (A–D), error bars represent S.E.M. from three independent experiments.
n.s p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001 (unpaired two-tail t-tests with Welch’s correction).

4. Discussion

In this study, we investigated how Ex-4, a GLP-1 agonist, contributes to neuronal
function in PA-induced obesity-mimicking conditions. Four significant findings from the
present study are given below.

First, our results showed that Ex-4 attenuated neuronal cell death in in-vitro PA-
induced oxidative stress conditions, given that PA induces oxidative stress (ROS generation)
and promotes cell death signaling in neurons [28]. Ex-4 reduced the mRNA levels of pro-
apoptotic factors, such as APAF1 [29] and BAD [30], and induced the mRNA levels of anti-
apoptotic genes, including BCL2 [31] and MCL1 [31], under PA-induced oxidative stress.

The elevation of BCL-2 protein and MCL1 mRNA level by Ex-4 treatment under PA-
induced oxidative stress condition shows that Ex-4 inhibits the intrinsic mitochondrial cell
death pathway in SH-SY5Y cells and PCNs. Additionally, our data showed a decrease
in the protein levels of the pro-apoptotic factor, BAX, cleaved caspase-3, and cleaved
PARP-1, signifying a reduction of apoptotic signaling by Ex-4 in neurons. The reduction of
cleaved PARP-1 implies decreased DNA chain breakdown and damage [32] in Ex-4-treated
neurons. Reduced TUNEL-positive cells also imply the inhibition of DNA cleavage in
neurons [33] by Ex-4; decreased cleaved caspase-3 levels also signify decreased caspase-3-
dependent apoptosis in neurons [34] treated with Ex-4. ROS derived mitochondria [35]
are involved in cellular metabolism [36], regulation of neuronal polarization, neuronal
differentiation, neuronal apoptotic signal activation, neurite outgrowth, and synaptic
plasticity [37,38]. Consequently, the reduction of ROS in PA-treated neurons by Ex-4 may
indicate the inhibition of pro-apoptotic signaling, initiation of neurite outgrowth, and
repair of synaptic plasticity.

Second, we found that Ex-4 improved insulin sensitivity in PA-treated neurons. Insulin
binds to the insulin receptor and promotes the phosphorylation of IRS in the brain [39].
The degradation of IRS in neurons induces insulin resistance in the brain [40]. Recent
studies have demonstrated that abnormal serine phosphorylation of IRS-1 is commonly
observed in the brain of AD patients [41], and the reduced expression of IRS-1 results in
insulin resistance in the brain [42]. Based on these results, Ex-4 may promote increased IRS-
1 expression and improve insulin resistance in the obese brain. Our data showed that Ex-4
could increase the mRNA level of FOXO1 and SLC2A4 in neurons, in spite of PA-induced
oxidative stress. FOXO1 is commonly expressed in brain hippocampal formations (such as
the dentate gyrus and ventral hippocampus, and the striatum), especially in areas related
to memory function [43]. It has been reported to regulate insulin action in neurons [44], and
may be involved in obesity-induced memory loss [45]. Additionally, RPS6KB1 has been
known to control glucose metabolism and insulin resistance in neurons [46]. Furthermore,
insulin could inhibit tau phosphorylation in neurons by controlling the activity of GSK-3β
through AKT signaling [47]. Insulin resistance results in the abnormal activation of GSK-3β,
and subsequently an increase of tau phosphorylation, leading to neuronal dysfunction in
the brain [48]. Based on these findings, it can be concluded that Ex-4 promotes insulin
sensitivity in neurons under obese conditions by attenuating the activation of GSK-3β and
AKT signaling, suggesting that PA-induced oxidative stress condition leads to AKT/NF-
κB signaling activation [17]. Thus, Ex-4 improves insulin sensitivity in neurons under
obesity-induced hyperlipidemia conditions. Although we did not perform memory-related
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behavioral tests, we expect that Ex-4 will improve cognitive function by promoting insulin
sensitivity in the obese brain.

Third, we found that Ex-4 ameliorates mitochondrial function in neurons under PA-
induced oxidative stress. While mitochondria are the main sources of ATP in neurons,
they are also sources of ROS in stress conditions, and contribute to neuropathological
signaling [49,50].

Mitochondrial biogenesis involves PGC-1α [51] and the activation of the expression
of TFAM as a co-factor [52]. PGC-1α is linked to the activation of the CREB and FOXO
transcription factors in the mitochondria [53]. It upregulates the expression of transcription
factors such as the ESRRA [54], several antioxidant enzymes [55], and mammalian homolog
of tribble 3 (TRB-3) nuclear genes [56]. Our results showed that Ex-4 treatment increased
PGC-1α activity, mitochondrial density [57], and the activation of transcription factors,
such as ESRRA and TFAM, in neurons under PA-induced oxidative stress.

We also observed that Ex-4 boosts expression of PPAR-γ in neurons under PA-induced
oxidative stress. PPAR-γ is expressed in several brain regions such as the hippocampus
dentate gyrus and cortex [58], and its activation exerts neuroprotective effects against
neurotoxicity [59]. Moreover, the activation of PPAR-γ accelerates mitochondrial biogen-
esis and inhibits neuronal loss against damage condition [58]. Accordingly, we assume
that Ex-4 improves mitochondrial function by promoting mitochondrial biogenesis and
mitochondrial density in the obese brain.

Fourth, we observed that Ex-4 ameliorated neuronal connectivity and synaptic plastic-
ity in PA-induced oxidative stress. Increased RBFOX3, TUBB3, and MAP2 expression with
Ex-4 treatment, in spite of PA-induced oxidative stress, was found in the study. RBFOX3
has been reported to promote neurogenesis and strengthen synaptic plasticity [60]. TUBB3
(neuronal tubulin protein) is involved in axon growth cones, increases neurite length,
and contributes to the recovery of neuronal function and connectivity [61]. MAP-2 is a
major neuronal cytoskeleton protein promoting microtubule stabilization during neuronal
differentiation and development [62]. These findings suggest that Ex-4 promotes stable
neuronal connectivity and boosts neuronal differentiation in the obese brain.

Our findings imply that Ex-4 enhances synaptic plasticity by regulating synaptic
density proteins in the obese brain, suggesting that synaptophysin and PSD-95 proteins
are related to neuronal differentiation, synapse maturation, and neuronal function [63].

In our study, we found that Ex-4 activated ERK and CREB phosphorylation in neurons
under PA-induced oxidative stress.

The activation of ERK phosphorylation results in the improvement of long-term po-
tentiation and the enhancement of memory function [64], while the activation of ERK and
CREB phosphorylation promotes neurite growth [65]. It has been reported that liraglutide
(GLP-1 receptor agonist) induces the activation of ERK phosphorylation [66]. Considering
these points, Ex-4 boosts neurite growth and ameliorates memory function in the obese
brain. We also found that Ex-4 boosts dendritic spine maturation, as well as neurite elonga-
tion, in neurons under PA-induced oxidative stress. Dendritic spine maturation implies
neuronal maturation and stable synaptic plasticity [67]. The dendrite morphology and type
of neurite processes reflect the stability of neuronal connectivity and neurite elongation
and axon outgrowth [68]. Additionally, proper neurite branching and appropriate reor-
ganization of axonal microtubules results in the formation of stable neuronal circuits [69].
Poor neurite branching morphogenesis and impairment of axonal elongation, related to
cytoskeletal reorganization [70], leads to neurodegenerative and neuropsychiatric diseases,
accompanied by cognitive decline and impaired sensory perception [71]. Several proteins
such as actin [72] and FOXO [73] contribute directly to neuronal morphogenesis, dendritic
branching, and stable neuronal connectivity remodeling [74]. In addition, dendritic spine
morphology contributes to the memory function by affecting synaptic plasticity [75,76].
Several studies have mentioned that the morphology and number of dendritic spines
influences memory processes and behavior patterns [77,78]. Our data showed that Ex-4
strengthens the spine head of PCNs, promotes a mushroom-shaped spine morphology
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(considered as the mature form of the spine [79]), and induces an increase in spine numbers
in neurons under PA-induced oxidative stress.

5. Conclusions

In conclusion, we elucidated the role of Ex-4 in neurons under PA-induced obesity
conditions. Although previous studies reported that Ex-4 has neuroprotective effects and
promotes neurite growth [80,81], its role in the obese brain remains unclear.

Thus, we propose that Ex-4 may be a therapeutic solution to cure neuropathology in
patients with obesity.
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GLP-1 glucagon like peptide 1
PA palmitic acid
AD Alzheimer’s disease
ER endoplasmic reticulum
PCNs primary cortical neurons
Ex-4 exendin-4
APAF1 apoptotic peptidase activating factor 1
BAD BCL2-associated agonist of cell death
BCL2L1 BCL2 like 1
MCL1 myeloid cell leukemia sequence 1
TP53 tumor protein p53
FOXO1 Forkhead Box O1
RPS6KB1 ribosomal protein S6 kinase B1
IRS-1 Insulin receptor substrate 1
Bax BCL2-associated X apoptosis regulator
Bcl-2 B-cell lymphoma 2
Caspase-3 cysteine-aspartic acid protease 3
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AKT phosphatidylinositol kinase (PI3K)/protein kinase B
GSK-3β glycogen synthase kinase 3 beta
PPAR-γ peroxisome proliferator-activated receptor gamma
ERK1/2 p44/42 MAPK extracellular signal-regulated kinases 1/2
CREB cAMP-response element binding protein
PSD-95 postsynaptic density protein 95
PARP-1 Cleaved-Poly [ADP-ribose] polymerase 1
PGC-1α peroxisome proliferator-activated receptor gamma coactivator 1-alpha
MAP-2 microtubule-associated protein 2, ROS, reactive oxygen species
GFP green fluorescent protein
ATP adenosine triphosphate
ESRRA estrogen-related receptor alpha
TFAM transcription factor A, mitochondrial
ACADM acyl-coenzyme A dehydrogenase
RBFOX RNA binding fox-1 homolog 3
TUBB3 tubulin beta 3 III
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