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The therapeutic values of contact with nature have been increasingly recognized.

A growing body of evidence suggests that a unique subcategory of “contemplative

landscapes” is particularly therapeutic. Previous studies predominantly focused on

observational designs in non-clinical populations. It is not known if these effects

can be extrapolated to populations suffering from depression, and experimental

designs need to be utilized to establish causality. We examined the effects of in-situ

passive exposure to three urban spaces on brain activity, namely a Therapeutic

Garden with high Contemplative Landscape scores (TG), Residential Green (RG) and

Busy Downtown (BD), and self-reported momentary mood in adults aged 21–74

(n = 92), including 24 clinically depressed and 68 healthy participants. Portable,

multimodal electroencephalography (EEG) and functional near-infrared spectroscopy

(fNIRS) systems were used to record brain activity, and a Profile of Mood States (POMS)

questionnaire was used to record mood before and after exposure. We tested the

interactions between the site, time and group for the mood, and between site and group

for the neuroelectric oscillations and brain hemodynamics. Self-reported pre- post-mood

was significant only at the TG (p = 0.032) in both groups. The lowest Total Mood

Disturbance (TMD) was reported at TG and the highest in BD (p = 0.026). Results

from fNIRS indicated marginally significant lower oxy-Hb in the frontal region at TG as

compared to BD (p = 0.054) across both groups. The marginally significant effect of

site and group was also observed (p = 0.062), with the Clinical group showing much

lower oxy-Hb at TG than Healthy. The opposite pattern was observed at BD. EEG

results showed differences between Healthy and Clinical groups in the Frontal Alpha

Asymmetry (FAA) pattern across the sites (p = 0.04), with more frontal alpha right in the

Clinical sample and more left lateralization in the Healthy sample at TG. Temporal Beta

Asymmetry (TBA) analyses suggested that patients displayed lower bottom-up attention

than Healthy participants across all sites (p = 0.039). The results suggest that both
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healthy and depressed adults benefitted from exposure to TG, with possibly different

pathways of mood improvement. Visiting therapeutic nature with contemplative features

may provide valuable support for the treatment of depression in clinical populations and

a self-care intervention in non-clinical populations.

Keywords: depression, nature, brain activity, therapy, urban green space, therapeutic garden, major depressive

disorder, contemplative landscape

INTRODUCTION

There is a growing body of evidence supporting the broad
spectrum of mental health benefits associated with exposure
to specific natural environments (1, 2). In environmental
psychology and landscape architecture research, these
environments have been called salutogenic (3), contemplative
(4), tranquil (5), restorative (6), sensory (7), and therapeutic (8),
among other names. Despite this semiotic abundance, they are all
designed to induce a positive health response through soothing
contact with nature and are thus considered “therapeutic.”
Landscape architecture research, however, pointed out specific
physical attributes which may amplify the therapeutic effect of
these spaces. These attributes have been grouped into seven
key categories (Landscape Layers, Landform, Vegetation, Color
and Light, Compatibility, Archetypal Elements, and Character
of Peace and Silence) and incorporated into an expert-based
tool for the visual assessment of urban green space, called a
Contemplative Landscape Model (CLM) (9). Research findings
showed that visiting therapeutic gardens (for simplicity, this
term will be used to refer to therapeutic green spaces) can
improve mood (10), regulate emotions (11), reduce stress (12),
reduce body inflammation (13), and improve quality of life (14).
Research also shows that the therapeutic garden scenes with high
CLM scores could be superior in delivering health benefits than
standard green space (15). This further suggests that exposure
to therapeutic gardens with certain contemplative features can
support the treatment of depressive disorders, the most common
mental illness worldwide. Between 1990 and 2017, incidents
of depression worldwide increased by 50% (16). This figure is
expected to grow significantly due to the COVID-19 pandemic
(17, 18). Additionally, it has been established that city living
increases the risk of developing depression (19, 20). Given the
limitations of treatment accessibility and a growing number
of people suffering from depression, testing new self-care
interventions, such as visiting therapeutic gardens, appears
to be a feasible and justified approach to support traditional
treatment methods.

There have been many observational and epidemiological
studies that allude to the therapeutic effects of gardens on mental
health, though advanced experimental designs with robust
methods of measurement are required to establish causality and
unravel mechanistic pathways.Methodological and technological
advancements in brain imaging allow for running in-situ
experiments with a high level of ecological validity, during the
actual exposure to sites of interest, as opposed to observational
or self-reported outcomes, or more traditional laboratory-based
experiments. This is thanks to non-invasive, portable, and reliable

devices such as functional near-infrared spectroscopy (fNIRS)
and electroencephalography (EEG). They offer a signal quality
while recording in the field that is comparable with that of a
fully-controlled lab environment (21–23). This is an emerging
field of research that offers an opportunity to identify the specific
pathways between therapeutic effects of nature on mental health
and individual differences in brain pattern activity in the general
and clinical populations.

In our preliminary study we found a pattern of brain activity
suggestive of positive emotions and relaxation during passive
exposure to the Therapeutic Garden among 24 healthy adults
(15). Our findings stimulated further research on a larger sample,
including the comparison of brain activity between healthy and
depressed adults. Our aimwas to build on the earlier findings and
explore the effects of exposure to three different sites (two green
spaces, but with different landscape quality, and one control—
a busy urban environment with no greenery) on self-reported
and direct measures of mood, and to examine whether healthy
participants differed in their response from the participants with
depression. For direct measures of mood, we used EEG and
fNIRS. We expected that the difference in the alpha oscillations
between the sites would follow the preliminary study findings.
In addition, we added beta power band and fNIRS analyses to
explore the attention patterns and hemodynamic response in
these spaces, respectively. We further expected to see significant
differences in neuro-electrical and hemodynamic signatures of
the beneficial effect of passive exposure to therapeutic nature
between the Clinical group of depressed individuals and the
Healthy group. We hypothesized that passive exposure to
therapeutic gardens can significantly improve the mood of all
visitors: healthy adults as well as those suffering from the mood
disorders, such as depressive disorder. Furthermore, we expected
that this effect would not be observed in green spaces where
physical characteristics of the landscape design are different.

MATERIALS AND METHODS

Participants
We recruited 92 right-handed adults aged between 21 and 75
years old, 52 of which were females. Healthy participants (n= 68,
37 female) were recruited through word of mouth. The Clinical
group (n = 24, 15 female) consisted of 17 patients diagnosed
and treated for depressive disorder, who were recruited at
the National University Hospital’s Department of Psychological
Medicine. Seven participants initially recruited for the Healthy
group, who reported previous treatment for depression and
clinically concerning moderate or severe depression, were
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subsequently reclassified to the Clinical group by the expert
psychiatrist, even though at the time of recruitment they were
not patients of the clinic. All participants were reimbursed for
their time.

Site Selection
To test the hypothesis, three locations with different composition
of natural and built elements were selected in the highly
urbanized city-state of Singapore: (1) a Therapeutic Garden (TG),
(2) a residential green public space designed without special
therapeutic considerations (RG), and (3) an urban space with
negligible greenery in a Busy Downtown area (BD). At each of
the three locations, three distinct points of view were selected
to represent different vistas typical to that location. Selected
views were blindly coded by four landscape architecture experts
according to the Contemplative Landscape Model (CLM), and
an average score was computed for each site, in line with the
recommended practice (9). Landscapes with higher CLM score
have more contemplative landscape characteristics aggregated
within the view and aremore likely to induce the positive changes
in mood and stress reduction. The CLM scores range from one
to six points, and previous research has suggested that a score
of 4.45 points and above can induce positive changes in brain
activity (24).

The first site, TG, is part of a larger park called HortPark.
It is the first specialized garden to offer both an activity area
for inclusive nature-based group programs and a healing space
designed to foster restoration from stress and mental fatigue.
This intimate green space was carefully curated with vegetation
that comprises wide-canopy trees and groupings of plants to
stimulate the senses. Benches are aptly spaced, with views toward
softly fascinating landscapes in the surroundings, facilitating
nature contemplation and relaxation. Calming features, such as
a watermill and chimes, are installed to promote a sense of peace
and wellbeing. TG was assigned a high Contemplative Landscape
Model [CLM (9)] score−4.63 points on the 1–6 point scale.

The second site, RG, is a green roof area of a public
housing residential estate. In Singapore, the majority of the
population lives in public housing commonly called HDB (from
the Housing and Development Board, which is the name of the
government agency in charge of their development). The HDB
estates consist of high-rise and high-density blocks with multiple
common green spaces and facilities accessible to the public. The
experimental site was selected to be at Casa Clementi HDBEstate,
on the recreational green roof over the underground parking
area, consisting of paths among lush greenery, garden shelters
and pergolas, community farm, biking trail, and children’s
playground. This site received overall 2.7 points on the CLM.

The third site was selected to represent the fully urbanized
landscape of a busy downtown area with little to no natural
elements. It is located in the central district near Chinatown
and the busy Mass Rapid Transit interchange station. The views
selected for this site are dominated by crowds of people, streets
with high traffic, and lots of infrastructure. This site was not
assigned a CLM score, as it is not a green space.

Scenes, locations, and walking areas were selected in shaded
areas to avoid excessive sun exposure. To avoid order bias, we

randomized both the order of the location visits and the order
of site exposure within each location. Randomization of the site
and view order was based on the Latin square design (simple
rotation) (25), so that an equal number of participants started
the experiment at each site and each view. The randomization
scheme is presented in Figure 1.

Methods
To measure momentary mood changes we used a paper-
based questionnaire, Profile of Mood States [POMS (26)], one
of the most widely used affective psychometric instruments
in environmental psychology (2). It consists of 40 adjectives
that measure the Total Mood Disturbance (TMD) as well as
subscales of mood states: tension, depression, fatigue, vigor,
confusion, anger, and esteem-related affect. For each adjective
the participant chooses a score on a 0–4 point scale from “Not
at all” to “Extremely,” based on how they feel at the moment.
POMS showed high reliability (Cronbach’s alpha = 0.798) and
good validity scores in the outdoor setting (26).

To measure the brain neuro-electrical activity and
hemodynamics, we used a multimodal setup consisting of
EEG, 16-channel V-amp amplifier (Brain Products GmbH,
Munich, Germany) with dry active electrodes in modified 10/20
system (Figures 2A,B), and two portable NIRS SPORT devices
by NIRx R© (NIRx Medical Technologies, LLC, Berlin, Germany),
with eight sources and eight detectors (Figures 2A,C) each,
combined in tandem mode onto the same stretchable aniCAP
supplied by NIRx R© (Figure 2D), together with EEG, according
to a pre-set prefrontal-occipital montage (Figures 2A,E).

fNIRS is a relatively new brain-imaging technique providing
a non-invasive and robust measurement of the light intensity
changes (wavelengths between 650 and 1,000 nm) caused by
the concentration of oxygenated hemoglobin (oxy-Hb) and
deoxygenated hemoglobin (deoxy-Hb) in the brain vessels
(27). The brain’s neural activity in certain regions triggers an
increase in blood flow and volume in those regions, which
is disproportionately higher than the metabolic demand (28).
Even passive exposure to landscape scenes requires cognitive
resources, which can be reflected on the fNIRS scan. In this study,
we are interested in observing the regional hemodynamics of
the frontal and occipital regions in different sites and groups.
The frontal region is one of the most important neuroanatomical
structures and plays an important role in emotional processing
(29), among other executive functions. The occipital lobe, on the
other hand, is commonly associated with visual processing and
spatial orientation (30, 31).

EEG records the electrical activity from the cortical regions
of interest captured at the scalp, and divides the signal into
several power-bands or brainwaves (32). The two most common
brainwaves to signal the level of cortical alertness are alpha
and beta waves. Alpha brainwaves are of lower frequency
(8–13Hz) and are most prominent during relaxation. Higher
frequency beta waves (14–30Hz) mark attentional processing
and increase during task engagement. The first EEG marker
examined in this study is Frontal Alpha Asymmetry (FAA).
This marker is thought to capture attitudinal and behavioral
tendencies toward a set of stimuli, so called approach-withdrawal
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FIGURE 1 | Selected sites and the order of visits.

FIGURE 2 | Experimental equipment and setup: (A) montage of the multi-modal system with EEG electrodes marked in black, fNIRS sources (S) with red and

detectors (D) with blue; (B) NIRSport optode with a dual-tip; (C) EEG dry active electrode with an adjustable mushroom-head; (D) multi-modal NIRSport/EEG V-amp

systems mounted onto one stretchable anti-cap, before the light-blocking over-cap placement; (E) regions of interest for fNIRS analysis according to Brodmanns Area

(BA): occipital (BA: 17, 18) and frontal (BA: 8, 9, 10, 44, 45, 46); (F) participant with the brain scanning device mounted on her head, during the passive task; (G)

digitization of the probe positions using a 3D-digitizer (Fastscan, Polhemus).

mechanism (33, 34). A relative increase in alpha power in the
right hemisphere (right-sided FAA) has been associated with
a positive approach behavioral tendency and more generally
reduced inhibition of behavioral and emotional responses (35).
Right-hemispheric FAA is observed when the right frontal cortex
has greater alpha power than the left frontal cortex, which
corresponds to reduced activity in the right and larger cortical
resource allocation in the left frontal cortex (36). Conversely,
left-hemispheric FAA is characterized by greater alpha power

and reduced activity in the left frontal cortex as compared to
the right. Notably, previous studies have consistently reported
left-hemispheric FAA in patients diagnosed with depression
(37–41). However, according to a recent meta-analysis, it is not
suitable as a diagnostic measure for major depressive disorder
(35). Nonetheless, some work suggests that FAA is relevant to
depression treatment. A comparison of depressed participants
before and after a 12-week antidepressant treatment highlighted
right-sided FAA as a significant predictor of positive treatment
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outcome, while participants who did not respond to medication
showed greater left-sided FAA analysis than participants who did
(42). Furthermore, FAA has been shown to be a useful target for
neurofeedback used as treatment for depression (43, 44).

The second EEG marker identified as relevant to this study
is Temporal Beta Asymmetry (TBA). Right-hemispheric TBA
corresponds to more beta power in the right temporal lobe.
The temporal region of the right hemisphere is, among other
functions, responsible for visual attention (45), interpreting
visual information and memory of pictures, visual scenes, and
familiar faces (46). Previous studies associated TBA with bottom-
up, stimuli driven attention directed at the salient stimuli (47).
This bottom-up type of attention is triggered by external stimuli
and is opposite to goal-oriented attention. The latter is typical
to task-related processing, which, when performed for too long,
leads to mental fatigue (48). Bottom-up attention is the central
concept of the Attention Restoration Theory (ART), according
to which contact with the natural environment leads to the
restoration of depleted attentional capacities and to recovery
from mental fatigue. In previous studies TBA brain pattern was
conceptually linked to “fascination” (24), a key component of a
restorative environment according to ART (49, 50).

Experimental Protocol
The experiment was conducted in the tropical city-state of
Singapore, with neither distinct seasonal nor vegetation changes
throughout the year. Data was collected between March 2019
and September 2020, during the morning or late afternoon
hours of the working week. Participants were blinded to the
hypothesis. Experimental sessions were scheduled individually
to view at least three scenes within one site. On average, there
were 9.1 days between the scheduled sessions (SD = 7.6). After
arriving to the scheduled location, participants completed the
informed consent and socio-demographic questionnaire, and
then POMS before the exposure to each site. Afterwards, they
were seated on a chair facing the pre-selected scene and the
multimodal EEG-fNIRS brain-scanning apparatus was installed
on their head (Figure 2D). Participants were then instructed to
put on the white glasses to block the view and then to relax,
while the equipment was calibrated and the raw signal recording
was initiated. For the EEG recording, the electrode impedance
was kept under 100 kΩ throughout the experiment, which is
considered an acceptable value for dry electrode systems (51).
Signal was recorded at 500Hz. Cortical hemodynamics were
measured with two wavelengths of near-infrared light (760 and
850 nm) and the sampling rate was set at 3.47 Hz.

After 1min recording of the resting state with the white,
view-blocking glasses on, the participants were asked to remove
the glasses and passively watch the landscape in front of them
for another 1min. Once this was completed, the 1min resting
state with glasses on and 1min scene watching was repeated a
second time for the same scene. This process was repeated for
all three scenes in each location. After the recording for all three
scenes was over, the participant completed the post-measurement
POMS questionnaire.

Each session lasted from 30 to 45min depending on the speed
of participant’s relocation between scenes and smoothness of

the machine calibration. Participants were allowed to consume
water between individual scans, but not food. Environmental
variables [temperature (◦C), humidity (%Rh), brightness (Lux),
and noise (dBA)] were recorded with a 4-in-1 Environment
Meter (CEM, DT-8820) at each scene for each participant to
control for confounding variables. The experimental setup is
illustrated in Figure 2F.

Data Processing
POMS scores were calculated by summing the numerical ratings
for items contributing to the subscale. The TMD score was
calculated by summing up the totals for the negative subscales
and then subtracting the totals for the positive subscale, and the
constant of 100 was added to the result in order to eliminate
the negative values {TMD = [(Ten+Ang+Fat+Dep+Con)–
(Era+Fat)]+100}. Air pollution data, more specifically the 24 h
Pollutant Standards Index (24 h-PSI) scores, were derived
retrospectively from the online resources available at the National
Environment Agency website (haze.gov.sg). The brain recordings
were processed according to specific steps presented below.

EEG Data Processing
The EEG raw data was processed offline in Brain Analyzer 2
software (Brain Products GmbH, Munich, Germany). The signal
was filtered with a 50Hz notch filter, a low-pass at 40Hz and
a high-pass at 0.5Hz (all were zero phase shift Butterworth
filters, order 2). Channels were referenced to an average reference
of 16 electrodes and visually inspected for noisy or missing
channels. Topographic interpolation of noisy or lost channels
was performed where necessary. Ocular artifacts (eye blinks
and eye movement) were captured by Independent Component
Analysis (ICA) and removed from the data. The signal was
epoch time-locked to the onset of the viewing period (1–60 s),
and resting baseline data split into matching 59 s long epochs.
Each epoch was then split into 1 s equal segments, and noisy
segments were removed using an artifact rejection tool. All
data underwent Fast Fourier Transformation and were output
as power density (µV2/Hz). Power density values were then
averaged over each condition and alpha (8–13Hz) and beta
(14–30Hz) bands were extracted. Before further processing all
data was baseline-corrected (viewing period–resting baseline)
(52, 53).

To compute the FAA values the alpha power on the left frontal
lobe (LF, sum of AFp1, AFF5h, F7) and on the right frontal lobe
(RF, sum of AFp2, AFF6h, F8) was inserted into the standard
equation: (RF–LF)/(RF+LF) (54, 55). Positive FAA values are
indicative of greater alpha power on the right frontal lobe as
compared to left and negative of greater alpha power on the left
frontal lobe compared to the right.

To compute the TBA values, beta power on the left temporal
lobe (LT, sum of FT7 and T7) and on the right temporal lobe
(RT, sum of FT8 and T8) was inserted into the equation (RT-
LT)/(RT+LT). Positive TBA values are indicative of greater beta
power on the right temporal lobe as compared to the left.
Conversely, the negative TBA values indicate more beta power
on the left temporal lobe than on the right.
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fNIRS Data Processing
Signals reflecting the oxygenated hemoglobin (oxy-Hb) and
deoxygenated hemoglobin (deoxy-Hb) concentration changes
were calculated in units of millimolar-millimeter (mM-mm)
using Homer 3 software (56). We analyzed changes in oxy-Hb
signal because of its higher sensitivity to changes in cerebral
blood flow than that of deoxy-Hb and total-Hb signals (57–
59), its higher signal-to-noise ratio (58), and its higher retest
reliability (60). We performed all preprocessing procedures with
Matlab 2007b.

Positional data of sources and detectors were obtained for two
non-participants of fNIRS measurement (′1 male, ′1 female, both
age 24) using a 3D digitizer supplied by NIRx R© (Figure 2G).
For spatial profiling of fNIRS data, we adopted the probabilistic
registration method (61–63), to register the data to the Montreal
Neurological Institute’s (MNI) (Montreal, QC, Canada) standard
brain space. Themacro-anatomical labeling was based on Rorden
and Brett (64).We divided the brain region following Brodmanns
Area (BA) into 2 regions: the occipital area (BA: 17, 18) and the
frontal area (BA: 8, 9, 10, 44, 45, 46) as shown in Figure 2E.

Oxy-Hb signals of all channels were corrected for motion
artifacts using CBSI method (65). Moving average methods were
applied to remove short-term physiological noises in the analyzed
data (moving average window: 10 s). The baseline of the task
block following was determined by the mean of the last 10 s
of the baseline block. From the preprocessed time series data,
we computed the oxy-Hb values by calculating the inter-trial
mean of the oxy-Hb signals for all the target periods in each site
(10–60 s).

Statistical Analyses
Initial group comparisons were conducted using t-tests and χ2 to
identify the potential covariates for the main analyses. Participant
age and highest attained education level were identified as
the potential confounders and included as covariates in the
main analyses. In addition, participant ethnic background was
also included as a covariate. Although ethnicity was equally
distributed between the groups, there was a trend for the
participants with non-Chinese ethnic background to have slightly
higher BDI scores (1 = 4, t = 1.88, p = 0.072) so ethnicity
was also included as a covariate in the main analyses. We looked
at multiple potential environmental covariates including noise,
temperature, humidity, brightness, and total mood disturbance
(the average of the individual environmental confounders), as
well as individual situational confounders (alcohol intake in the
last 24 h, sleep quality and duration, medication). As these factors
were not linked to the outcomes and were not more prevalent
in either group, and to preserve the degrees of freedom and
maximize the power in the analyses, they were not included as
covariates in the analyses.

Linear mixed models (LMM) were fitted to examine the
differences between the Healthy and Clinical samples in the
self-reported mood disturbance (TMD), frontal and occipital
hemodynamics (oxy-Hb), FAA, and TBA across the three
exposure sites. LMM was deemed most appropriate due to large
individual variations in the intercepts. All models tested the
main effects of group and site, as well as the interaction between

group∗site. Restricted maximum likelihood estimation was used
to fit the models, with identity matrix covariance structure
(selected based on the AIC criterion). Random intercepts and
slopes were fitted to account for the individual differences in the
outcome variables. For the TMD analysis, we explored the main
differences between the sites, main differences in change over
time (before and after viewing), and group differences between
the Healthy and Clinical samples. In addition, we looked at the
interaction between the site and time to examine whether both
samples showed improvement or worsening of TMD from before
to after the viewing depending on the site, and a 3-way interaction
between time∗site∗group to test whether these changes over time
across the sites differed between the samples. Due to signal
quality issues, data from 78 participants (55 Healthy and 23
Clinical) were included in the fNIRS analysis. All analyses were
computed in IBM SPSS v.26.

RESULTS

Descriptive Findings
Sample characteristics are described in Table 1. Participants with
depression were younger (t = 2.76, p = 0.007) and had lower
education level (χ2 = 5.45, p = 0.02). Gender distribution (χ2

= 0.18, p= 0.67) and ethnicity distribution (χ2 = 0, p= 1.0) did
not differ across the groups. As was expected, the Clinical sample
had higher BDI scores (t = 7.21, p < 0.001), were more likely to
have a medical record (χ2 = 48.7, p < 0.001), and more likely to
be medicated (χ2 = 52.9, p < 0.001).

Profile of Mood States
Total Mood Disturbance
There was a significant main effect of site with the highest
recorded TMD in the BD (M = 99.1, SE = 1.64), the lowest in
the TG site (M = 91.6, SE = 1.64), and in-between recorded in
the RG site [M = 92.3, SE = 1.64; F(2, 391.3) = 28.7, p < 0.001].
The Clinical sample had significantly higher TMD (M = 97.9,
SE = 2.64) compared to the Healthy sample [M = 90.8, SE =

1.62; F(1, 75.7) = 5.13, p = 0.026]. Importantly, the change in
TMD from before to after site exposure varied across the sites
[F(2, 390.9) = 3.47, p = 0.32]. Only in the TG the TMD decreased
(i.e., mood improved by 2%) after site exposure (Figure 3). In
the BD, the TMD increased (mood worsened by ∼7%) after site
exposure, while in the RG there was no difference from before
to after Both the Clinical and the Healthy sample showed similar
improvements in TMD after viewing the TG [F(5,391.0) = 0.99,
p= 0.42].

Negative Emotions: Tension, Anger, Fatigue,

Depression, and Confusion (TAFDC)
There was a significant main effect of site with the highest
negative emotions score in BD [M = 14.472, SE = 1.39;
F(2, 415) = 20.90, p < 0.001]. There was also main effect of
group [F(1, 80) = 4.351, p = 0.04], with significantly higher
scores in Clinical (M = 14.09, SE = 2.29) than in the
Healthy group (M = 8.41, SE = 1.36). There was also a
significant interaction between site and time [F(2, 415) = 3.45,
p = 0.03] suggesting that both groups responded similarly
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TABLE 1 | Recruited sample characteristics within both Clinical and Healthy groups.

Variable Clinical

(n = 24)

Healthy

(n = 68)

Overall sample

(n = 92)

Age Age range 21–54* 21–74 21–74

Mean (Std. dev.) 31 (9.59) 38.79 (17.01) 36.62 (15.77)

Gender Male 9 (38%) 28 (41%) 37 (40%)

Female 15 (62%) 40 (59%) 55 (60%)

Mental health record No psychiatric history 0 (0%)*** 68 (100%) 68 (73%)

Depressive disorder 24 (100%) 0 (0%) 24 (27%)

Comorbidities (anxiety, dysthymia, personality disorder) 7 (29%) 0 (0%) 7 (7.8%)

Medication Not medicated 11 (45%)*** 68 (100%) 79 (86%)

Medicateda 13 (55%) 0 (0%) 13 (14%)

BDI-II score Minimal (0–13pt.) 6 (25%)*** 62 (91%) 68 (74%)

Mild (14–19pt.) 3 (12.5%) 6 (9%) 9 (9.5%)

Moderate (20–28pt.) 6 (25%) 0 (0%) 6 (7%)

Severe (29–63pt.) 9 (37.5%) 0 (0%) 9 (9.5%)

Total score (Std. dev.) 23.4 (10.93) 6.38 (4.5) 10.8 (10.1)

Vision Normal 9 (38%) 28 (41%) 37 (42%)

Corrected to normal 15 (62%) 40 (59%) 55 (60%)

Education Below tertiary 11 (45%)* 16 (24%) 27 (29%)

Tertiary 13 (55%) 52 (76%) 65 (71%)

Ethnicity Chinese 17 (70%) 44 (65%) 61 (66%)

Non-Chinese 7 (30%) 24 (35%) 31 (34%)

aAnti-depressant medication: Desvenlafaxine 50mg, Escitalopram 10mg, Fluoxetine (40mg×2, 20mg×1), Fluvoxamine 150mg, Mirtazapine (15mg×3, 30mg×1), Paroxetine 50mg,

Sertraline 50mg, Venlafaxine 150 mg.

*Denotes significantly different between the two groups at 0.05 level.

***Denotes significantly different between the groups at 0.01 level.

to changes over time across the sites (see Figure 3). Clinical
group had the highest negative emotion scores in BD site (M
= 18.35, SE = 2.66), significantly higher than the Healthy
(M = 21.20, SE = 1.59). Over time the negative emotions
decreased significantly in both groups, particularly in the TG
(by 22%).

Positive Emotions: Esteem-Related Affect and

Vigor (EV)
There was a significant effect of time [F(1, 391.83) = 10.47,
p < 0.001] and site [F(2, 392.12) = 22.02, p < 0.001],
suggesting that EV was marginally higher before the
viewing (M = 17.29, SE = 0.94) compared to after (M =

16.24, SE = 0.94). EV were the highest in TG (17.82, SE
= 0.96) and the lowest in BD (M = 15.17, SE = 0.96).
The groups did not differ in EV [F(1, 76.27) = 0.69, p =

0.41]. No significant interactions were found between
group, site and time [F(5,391.95) = 0.507, p = 0.771],
suggesting that Clinical and Healthy groups did not show
changes in positive emotions across the sites as a result of
landscape viewing.

fNIRS Results
There was no effect of site observed [F(2, 134) = 2.063, p =

0.13, Figure 4A]. Pairwise comparisons revealed that oxy-Hb
across all participants was lower at TG (M = −0.57, SE =

0.43) as compared to BD (M = 0.45, SE = 0.33), and the

difference barely missed statistical significance (p = 0.054,
Figure 4A). Clinical and Healthy samples did not generally
differ in the frontal oxy-Hb [F(1, 63) = 0.58, p = 0.45]. There
was a marginally significant interaction between the group
and the site [F(2, 134) = 2.84, p = 0.06], suggesting that the
Clinical and Healthy groups showed a trend toward different
patterns of oxy-Hb depending on the site they were at. At
TG, the Healthy sample had higher oxy-Hb (M = 0.34, SE
= 0.47) as compared to the Clinical sample (M = −1.49,
SE = 0.72), and the reverse pattern was observed in the BD,
where the Clinical sample had a higher oxy-Hb value (M
= 0.65, SE = 0.56) than the Healthy sample (M = 0.24,
SE = 0.37, Figure 4B). We also examined oxy-Hb in the
Occipital area; however, there were no differences in oxy-
Hb across the sites [F(2, 247.98) = 0.40, p = 0.67], and no
differences in the activation between the Healthy and the Clinical
samples were observed [F(1, 11.49) = 0.82, p = 0.38]. There was
also no interaction between the group and site [F(2, 247.98) =

0.72, 0.49].

EEG Results
Frontal Alpha Asymmetry
The Healthy and Clinical samples did not differ in FAA values
overall [F(1, 233) = 0.29, p = 0.59]. There was also non-
significant difference in FAA between the sites [F(2, 233) =

0.89, p = 0.41]. However, there was a significant interaction
between the groups and sites [F(2, 233) = 3.27, p = 0.040]
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FIGURE 3 | Profile of Mood States scores (±SE) grouped by subscales: negative (TAFDC) and positive (EV) and Total Mood Disturbance (TMD) before and after the

exposure to three sites: TG, Therapeutic Garden; RG, Residential Green; BD, Busy Downtown.

suggesting that the Healthy and the Clinical samples had
different patterns of FAA across the sites. Figure 5 shows
mean FAA representing left- and right-sided asymmetry across
the sites among the Healthy and the Clinical sample. In
the TG the Clinical sample had right-sided FAA while
the Healthy sample had left-sided FAA. This pattern was
reversed in the BD, where the Clinical sample had left-
sided while the Healthy sample had right-sided FAA, though
the Confidence Intervals (C.I.) were overlapping. In the

RG both samples showed similar patterns of right-sided
FAA activation.

Temporal Beta Asymmetry
TBA did not differ between the sites [F(2, 156) = 0.44], though
the Healthy sample in general had a higher right-sided TBA
compared to the Clinical sample [F(1, 75) = 4.41, p= 0.039]. This
was observed irrespective of the viewing site [F(2, 156) = 0.24,
p = 0.79] suggesting that decreased TBA may be inherent to
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FIGURE 4 | Frontal brain hemodynamics ±SE at different sites (TG, Therapeutic Garden; RG, Residential Green; BD, Busy Downtown); (A) differences in levels of

oxy-Hb between sites across all participants, (B) differences in levels of oxy-Hb between sites and groups. All values multiplied by 10,000 to ease depiction and

interpretation.

FIGURE 5 | Frontal Alpha Asymmetry (FAA) index ±SE, in Clinical and Healthy

samples at three sites: TG, Therapeutic Garden; RG, Residential Green; BD,

Busy Downtown. FAA index [(R-L)/(R+L)] was derived from baseline-corrected

power density values from the left (AFp1+AFF6h+F7) and right

(AFp2+AFF6h+F8) frontal lobes.

depression (Figure 6). The Healthy sample demonstrated right-
sided TBA across all sites, while the Clinical sample only had
left-sided TBA in the BD.

DISCUSSION

The aim of our study was to investigate the impact of a
therapeutic garden on mental health, comparing it with exposure
to other green and non-green urban spaces. Our second aim
was to compare individual differences in the response of healthy
and clinical populations suffering from depressive disorder. We
expected to observe changes between the groups and between

FIGURE 6 | Temporal Beta Asymmetry (TBA) index ±SE in Clinical and

Healthy samples at three sites: TG, Therapeutic Garden; RG, Residential

Green; BD, Busy Downtown. TBA index [(R-L)/(R+L)] was derived from

baseline-corrected power density values from the left (FT7+T7) and right

(FT8+T8) temporal lobes.

the exposure sites in terms of the brain activity marked with
EEG and fNIRS signals as well as between the self-reported
mood before and after the exposure. In the study design we
used a multimodal brain imaging device measuring two different
physiological phenomena EEG for brain electrical reactivity and
fNIRS for levels of blood oxidation. Noteworthy, activation
patternsmust be interpreted with caution and supplementedwith
othermeasurements. For example, EEG low alpha activity pattern
in one study can be associated with relaxation and creative
ideation (66) while in another with boredom and mental fatigue
(67, 68). An attempt to conceive meaningful interpretations of
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the results from two modalities is challenging in a system as
complex as the human brain, but bringing us closer to interpret
phenomena, specific to only one modality (69).

Findings From POMS
According to the results from the self-reported mood assessment
POMS, exposure to the Therapeutic Garden improved mood
(2% drop in the TMD). This effect occurred in both Healthy
and Clinical groups, and only at TG and not at the other sites.
Residential green did not have any significant effect on mood
change, further confirming the hypothesis that not all types
of green space exposure have the same therapeutic potential,
or in other words, not all green space is the same. What is
more, in Busy Downtown the self-reported mood significantly
worsened (TMD increased by 7%) from before to after the
exposure, suggesting that about 40-minute-long exposure to the
busy downtown was a cause of greater mood disturbance in
all participants. When looking at the grouped mood states only
the negative subscale (TAFDC) showed a site∗time interaction,
with lowest negative emotions at TG and highest at BD site
and the largest drop in negative emotions at TG. There were
no significant findings in the positive mood subscales (Esteem-
related affect and Vigor, EV). Overall, TG exposure significantly
improved the general mood of participants in both groups, by
reducing the negative affect, indicating its potential universal use
as a self-care method.

Previous studies found similar reduction in mood disturbance
after a 2-h forest walk in female students (70). Also, after a 30-
min urban park exposure the TMD was found to decrease in
a study conducted in the UK (71) and in Malaysia (72) among
healthy adults. Our findings about TG are then not surprising
when considering the healthy populations. However, there was
no previous research on depressed people, and according to
our findings the Clinical group responded in a similar way
as the healthy group. In addition, like in previous studies, we
observed increased mood disturbance in both groups in the
urban environment, with the Clinical group having a significantly
larger jump in negative mood (TAFDC) at that site as compared
to a Healthy group. Notably, these negative mood scores were
highest in the BD even before the experiment (Figure 3).
This suggests that the mood was already disturbed before the
experimental protocol has started, perhaps from the moment
participants were present at this type of space. At RG, the mood
decline or improvement was not observed, even though it is also
a green space. Residential areas can be then considered a baseline,
the environment from which the mood states can improve or
decrease as the individual moves around the urban space along
the day. These findings suggest that therapeutic gardens can
offset the negative effects of living in the proximity of busy
cosmopolitan areas, even in highly populated cities.

Findings From fNIRS
Considering the outcomes of the brain scanning, we first
assessed the regional activity of the frontal and occipital cortex,
measured with the levels of oxygenated hemoglobin in the
brain vessels. We did not observe a significant effect of site
in the frontal lobes (p = 0.13), but we observed very close

to significant difference in oxy-HB between the TG and BD
(p = 0.054) across all participants. Similar patterns were
described in previous fNIRS studies comparing brain response
to urban vs. natural scenes. They found that the natural views
triggered lower levels of oxy-Hb concentration and increased
oxy-Hb when viewing urban busy scenes in the healthy adult
population and associated the lower oxy-Hb with restorative
effect (11, 73) and reduced rumination (74). It has been shown
that scenes of nature require less cognitive resources and less
strenuous attention (75, 76) when compared to busy urban
scenes abundant with elements of infrastructure, cars, buildings,
and crowds, and our findings seem to support this general
premise. When it comes to the differences between the groups,
results indicated the marginally significant effect of site∗group
(p = 0.06), showing the trend of patterns of brain oxidation
in Clinical being different to those observed in the Healthy
group. At TG the Clinical sample had much lower frontal oxy-
Hb compared to the Healthy sample, and the opposite pattern
was observed in the BD. According to the systematic review,
oxy-Hb concentration in the frontal cortex of depressed patients
are usually significantly lower than in the healthy controls (29).
Notably, previous studies with patients with depressive disorder
were conducted only in the laboratory setting so it is not known
how their brain reacted to different environments. Results of
our experiment indicated that patients had more oxy-Hb in the
Busy Downtown and lesser in the Therapeutic Garden. fNIRS
findings together with the POMS results can then suggest that
TG environment induced lowest levels of oxy-Hb in frontal
cortex associated with the improved mood, but the effect was
stronger for the patients who could also experience reduced
rumination. Highest oxy-Hb was observed in patients in the BD,
which seem to be associated with increased mood disturbance
(Figure 4).

Findings From EEG
FAA. Regarding FAA findings, we did not observe significant
difference between the experimental groups and sites considered
in isolation. However, the site had a moderating effect on
differences in FAA between the healthy and depressed group.
The most contrasting difference was observed at the TG. There,
we observed right-sided FAA in Clinical group, and left-sided
in the Healthy group, suggesting that this environment induces
significantly different affective reactivity in Healthy as compared
to Clinical group (Figure 5).

Previous research suggests that greater left-hemispheric FAA
was found in depressed patients, and we observed that pattern in
the Clinical group at the BD location, but not in TG. Previous
research also suggests that FAA training and neurofeedback
aimed at inducing right-sided FAA in depressed patients has
large therapeutic value in depression treatment, as a stimulation
of the positive approach-related motivation (43). Furthermore,
a comparison of depressed participants before and after a 12-
week antidepressant treatment highlighted right-sided FAA as
a significant predictor of positive treatment outcome, while
participants who did not respond to medication showed greater
left-sided FAA analysis than participants who did (42). The right-
sided shift in FAA we observed in depressive participants at
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the TG site suggests that passive exposure to TG induced in
our Clinical group a therapeutic pattern aligned with efficacious
treatment and a general positive indicator of depression
treatment outcome.

Interestingly, the mean FAA of Healthy individuals was
left-sided during the TG exposure. While according to the
“traditional” interpretation of FAA this could indicate a
behavioral inhibition during the scene observation (35), the
POMS findings showed that participants experienced mood
improvement after spending time at TG. This indicates that
FAA and mood measures may capture somewhat distinct
mechanisms. This could also be an effect of high variability
in FAA data in Healthy participants, unlike in the case of
the case with the POMS measures. While mood improved
consistently at the TG, behavioral tendencies captured by
the FAA were highly variable. A similar dissociation between
mood measures and FAA response was observed in the busy
downtown environment. Here again, depressed participants
showed consistent FAA and POMS indexes, while Healthy
participants showed the opposite, a similarly higher variability
was observed in their FAA responses. In this environment
Healthy participants displayed more approach-related attitude,
which suggests that Healthy individuals may be triggered to
engage and interact with the social elements in the busy urban
space. This may imply people adopt an approach-related attitude
toward social interactions in public spaces. In comparison,
the peaceful and quiet environment in the TG had lesser
trigger for the group to adopt an approach behavior related to
social interactions. There are large interindividual differences
in the degree to which the environment affects behavioral
tendencies in Healthy people, where personal preferences may be
at play.

TBA. Temporal Beta Asymmetry is an index of how
attention is deployed to stimuli. Of special interest here is
the fact it can capture attentional patterns linked to the
restoration of attention that can be induced by certain types
of natural environments. Findings from the TBA analysis
show that the Clinical group experienced significantly less of
the pattern associated with attention restoration than their
Healthy counterparts, regardless of the location (Figure 6).
Moreover, in BD the attention restoration as indexed by
TBA was significantly lower in the Clinical than in the
Healthy group, suggesting that depressed individuals may have
experienced extra mental fatigue from prolonged exposure
to busy urban environments. Enhanced attention-restoration
pattern was observed in the Healthy group at TG; however,
the difference between TG and other sites was not significant.
This may be related to specificity and duration of exposure
as previous studies with self-reported measures of attention
restoration, called Restorative Outcome Scale (ROS) (77),
found effect on attention restoration after 30min to 2 h
of walking in the park or forest (78, 79), and not after
passive exposure (80). Here we used passive exposure of short
duration which might have been insufficient to induce the
expected patterns.

In summary, the findings of this study provided neuro-
psychophysiological evidence of benefits from passive

exposure to the Therapeutic Garden for the mental health
of individuals with clinically concerning depressive disorders.
It further demonstrated that both depressed and non-depressed
individuals can benefit from TG exposure, albeit through
slightly different pathways. Notably, depressed individuals
appeared to benefit consistently from TG exposure. In
healthy people, other factors such as presence of social
elements might be playing a role in the degree of engagement.
Regardless of behavioral tendencies indexed by the frontal
asymmetry, the passive exposure to the Therapeutic Garden
improved mood in both groups. Moreover, the findings
further confirmed that different designs of green spaces
(measurable with visual quality assessment tools such as
Contemplative Landscape Model) can induce different
psychophysiological responses. The study contributed to
advancing the knowledge in the field of environmental
neuroscience through developing and testing in-situ experiment
protocols with the use of multimodal EEG and fNIRS brain
imaging tools and was an attempt to bridge the findings from the
two techniques together.

One limitation of the study is an unbalanced sample.
Even though the imbalance was relatively small (27–74%),
ideally, there should be equal number of clinical and healthy
participants, but the statistics modeling employed mixed effect
models which are suited to imbalance datasets (81). Reflective
of scientific studies in general, the sample of this study had
higher educational attainment than the general population,
which limits generalizability of the findings. Also, data collection
in the naturalistic setting increases the risk of some unmeasured
confounding factors which would be difficult to control for
outside of the lab setting. Nonetheless, we controlled for
various environmental confounders. fNIRS results must be
interpreted with caution as they are highly variable, due
to differences caused by the melatonin concentration in the
skin (82) and a number of missing data due to low quality
of signal. Finally, in this experiment only the momentary
changes in mood and brain activity were examined, and
only longitudinal data would allow us to determine how
long the beneficial effects we observed here can be sustained
over time.

CONCLUSIONS

Urban public space of everyday exposure can be seen quite
differently by depressed people. Visiting therapeutic nature can
constitute an effective and affordable supplement to depression
treatment for patients as well as function as a self-care
intervention for the healthy population to maintain their mental
health. The provision of easily accessible therapeutic gardens
to city residents can then be an important strategy for mental
health promotion at the city scale and has a potential to offset
the negative influence of the busy urban environments on
mental health. Future research should focus on replicating the
study in various locations and populations, as well as on the
assessment of long-term mental health outcomes of exposure to
different environments.
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