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Editorial on the Research Topic

Integrated Omics for Defining Interactomes

Integration of multiple types of omics data is a powerful strategy to aid the understanding of
the combined influence of complex biological processes at the cellular level. The focus on the
application of multiple omics techniques to the same biological question is rapidly increasing due
to the advent of sophisticated and robust instrumentation, such as Next-Generation Sequencing
and mass spectrometry. In addition, the application of statistical tools and new computational
approaches, such as iOmicsPASS, allow for the integration, analysis, and visualization of the
integrated multi-omics data (Koh et al., 2019). Seminal large-scale multi-omics studies, such as The
Cancer Genome Atlas (TCGA), have paved the way for the application of integrated multi-omics
to other systems, including host-pathogen interactions and the analysis of the pluripotency
regulatory network in stem cells, but still there is a need to explore this approach to reveal the
complex networks in molecular systems biology (Chakravorty et al., 2018). The cross-talk between
multi-omics layers, including transcriptomics, proteomics, and metabolomics, in several biological
systems will ultimately aid in understanding the complexity of heterogeneous interactomes.

In this Research Topic, contributors have addressed the application of multi-omics to
diverse biological problems as well as the methodological challenges. Viral-host protein–protein
interactions have been studied using several experimental methods, including Yeast Two-
Hybrid (Y2H) and Affinity Purification-Mass Spectrometry (AP-MS), followed by comprehensive
description of computational tools for the filtering of false positives and ranking. The experimental
methods were broadly classified into two classes: ex situ, which includes assays that occur outside
the normal physiological conditions [Y2H, GST pull down, and Nucleic Acid-Programmable
Protein Assay (NAPPA)] and in situ, which includes assays that occur inside host cells e.g., AP-MS
and proximity-dependent labeling. Though the in situ assays are more commonly used in studying
viral–host interactions, they do require the expertise for the analysis of mass-spectrometry data.
The advantages and disadvantages of three (ComPASS, SAINT, and MiST) computational tools
and scoring metrics for AP-MS data were described and compared. The advantage of using the
MiST approach, whereby the prey protein abundance, reproducibility, and prey specificity are used,
were discussed in contrast to the other methods. Interpretation of the viral-host protein-protein
interactions may be performed using Viruses.STRING (Cook et al., 2018) and the Gene Ontology.
Researchers should, however, be cautious in interpreting the results; related viruses may undergo
mutations and thus may not be captured in the same interactome when comparing between
different strains of same viral species.

In understanding the disease biology, there are relatively few direct studies of
molecular interactions (e.g., protein–protein interactions) as compared to high numbers
of genome-scale quantitative omics studies using transcriptomics, proteomics, and
metabolomics. These multi-omics studies allow researchers to explore the functional
or indirect interactions between molecules. Hawe et al. describe the statistical basis for
inferring indirect interactions from multi-omics data using conditional dependencies (partial
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correlations) networks, a graphical lasso, and Bayesian models.
The authors highlighted the mixed graphical models (MGM)
for building heterogeneous networks from multi-omics data.
The authors also mentioned GENIE3 (for Gene Network
Inference with Ensemble of trees), a tree-based method used
for constructing homogeneous networks from gene expression
data, and it can also be applied to heterogeneous network
construction. Multi-omics data integration for heterogeneous
interactomes can be done step by step using GWAS-SNPs
association with mRNA expression (eQTLs), protein abundance
(pQTL), and DNA methylations (meQTLs). At present, several
strategies are available for integration of different molecular data,
and inference efforts from these integrated networks may still
be improved.

miRNA-seq studies play an important role in the mechanistic
understanding of post-transcriptional control and identifying
regulatory miRNA-Gene-TF networks. Wang et al. performed an
integrative analysis of miRNA, mRNA, and DNA methylation
in exploring the role of transforming growth factor-beta (TGF-
β1) on kidney glomerular mesangial cells. The authors identified
5,140 significantly differentially expressed (DE) genes in TGF-
β1-treated cells, whereas an integrative analysis of miRNA target
genes and miRNA was reduced to 122 DE-mRNAs and 11DE-
miRNAs. In addition, an integrative analysis of DNA-methylated
genes and DE-mRNA gene sets were used for a pathway analysis
that revealed five major pathways, including epithelial adherens
junction signaling. Their findings using integrative analyses
reduced the list of predictive gene targets. Denkiewicz et al.,
described a method for integrating the miRNA-seq of breast
invasive carcinoma (BRCA) and survival analysis of 231 patients’
clinical data obtained from The Cancer Genome Atlas (TCGA).
The authors identified the top 100 miRNAs and grouped them
in to two classes: four-star miRNAs that are involved in all
four subtypes of breast cancer (Luminal A, Luminal B, HER2-
Enriched, and Basal-Like) and one-star miRNAs that are present
only in a specific subtypes. Machine learning tools achieved an
average accuracy of 95.10% in classifying breast cancer sub-
types using a four-star miRNAs dataset. Furthermore, the authors
reported a combined network of miRNA-Gene-TF, where several
important transcriptional factors were present, such as MYC,
ESR1, BRCA1, and HIF1A. Stumpf and MacArthur describe a
novel principal component analysis-type approach to predict
regulatory network patterns from the time-course single cell
protein expression data of mouse embryonic stem cells. Three
distinct regulatory states for naïve, formative, and early primitive
endoderm were identified.

Integrated biological networks based on multi-omics data
help in understanding the pathogenesis of complex diseases.
Sumathipala et al. describe a method to predict lncRNA-disease
associations using a random walk network diffusion algorithm
and tripartite network consisting of lncRNA–protein, protein–
protein, and protein–disease associations. The proposed method
named as lncRNA ranking by NetwOrk DiffusioN (LION)
was evaluated for prediction of cardiovascular diseases and
cancer and neurological diseases by using experimentally verified
lncRNAs, and it was observed that this method achieved an
overall AUC values of greater than 90%. LION also performed
well in predicting LncRNAs for breast, blood, ovarian, and
bladder cancer. Several of the top 50 predicted lncRNAs using
LION for these specific cancers were found to be experimentally
validated. A main limitation is, however, the bias inherent
in the existing datasets of lncRNA-proteins, protein-protein
interactions and protein-disease associations initially used to
develop the algorithm. Choi et al. show how circulating blood
miRNAs and proteins can be used in network-based integrative
analysis in studying eight obese insulin-resistant (OIR) and
nine lean insulin-sensitive (LIS) individuals. The authors
generated the expression data of miRNAs (MiRXES) and blood
plasma proteins (LC-MS/MS) and reported 374 differentially
expressed circulating miRNAs and 40 plasma proteins, which
were further linked using TargetScan. The authors reported
predictive subnetworks by merging these expression datasets
with two biological networks (TargetScan map and protein–
protein interactions) using iOmicsPASS (Koh et al., 2019) and
finally identified several miRNA-protein pairs with same tissue
of origin, like adipose and liver tissue. This study is unique
since it focused on the profiled plasma secretome of OIR
and LIS subjects; however, the main limitation is the small
sample size.

In summary, in this Research Topic contributors have
provided examples of both the growing number of applications
of integrated multi-omics analyses to diverse biological systems
as well as the rapid methodological innovations that have
been made to develop tools and approaches for integrating the
resulting data.
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