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-is study aimed to investigate the relationship between kinesin-like family 6 (KIF6) polymorphisms and hypertension in a
northeast Chinese cohort. In this study, two single nucleotide polymorphisms of KIF6 (rs20456 and rs6930913) and their
haplotype were analyzed in 382 hypertension patients and 378 controls with SHEsis analysis platform, and the gene-envi-
ronmental interactions were evaluated with logistic regression analysis. After adjusting for confounding factors, significantly
lower risk of hypertension was observed in participants with genotype TC (0.416 (CI 0.299–0.578), p< 0.001) and CC (0.577
(0.389–0.857), p � 0.007) of rs20456 compared with TT. For rs6930913, allele T (0.522 (0.386–0.704), p< 0.001), genotype TT
(0.325 (0.205–0.515), p< 0.001), and genotype CT (0.513 (0.379–0.693), p< 0.001) were significantly associated with lower risk of
hypertension than allele C and CC genotype, respectively. Gene-environment analyses confirmed the significant influence on
hypertension by the interactions between genotypes distribution in rs20456 (CT: p � 0.036, TT: p � 0.022) and smoking status.
No interactions were found between smoking and rs6930913, except those with dominant or recessive genetic models (both
Ps � 0.006). -ere were no interactions between KIF6 and overweight (all Ps > 0.05). Haplotype analyses showed that CC
(p � 0.005) and TC (p � 0.001) of rs20456 and rs6930913 were significantly associated with a statistically increased risk of
hypertension. -e false-positive report probability (FPRP) analysis was used to verify significant findings. In conclusions, KIF6
might affect the susceptibility of hypertension. -e allele C (rs20456) and allele T (rs690913) were inclined to protect individuals
from hypertension both in genotype and haplotype analyses.

1. Introduction

Hypertension is a major risk factor for cardiovascular and
cerebrovascular diseases, such as coronary heart disease
(CHD), stroke, heart failure (HF), and chronic kidney
disease. Essential hypertension (EH), accounting for 90–95%
of the total hypertension cases [1], is a polygenic disease.
Genetic alterations, environmental factors, and gene-envi-
ronmental interactions are supposed to have a key role in the
etiology of EH [2].

Previously, we carried out a SNP discovery by Affymetrix
Genome-Wide Human SNP Array 6.0 with pooled genomic
DNA samples from 740 hypertensive patients and 361
normal controls (unpublished data), which revealed a sig-
nificant association between kinesin-like family 6 (KIF6) and
hypertension. KIF6 is a member of kinesins superfamily
involved in the intracellular transport of protein complexes,
membrane organelles, and messenger ribonucleic acid along
microtubules [3]. KIF6 protein is ubiquitously expressed in
the coronary arteries and vascular cells [4]. Many case-
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control studies have shown that the KIF6 gene is associated
with CHD’s risk [5, 6]. However, it remains unknown
whether KIF6 is associated with hypertension or not. In this
study, two tag SNPs (rs20456 (c.2180 + 130T>C) and
rs6930913 (c.1427–798C>T)) of KIF6 with minor allele
frequency ≥0.1 were selected to investigate the relationships
between KIF6 and hypertension in a northeast Chinese Han
cohort.

2. Materials and Methods

2.1. Study Population. A cross-sectional survey of 29,970
participants who were ≥35 years old was conducted by well-
trained local doctors from 2004 to 2006 in the rural areas of
Fuxin city in China. -e survey and blood pressure (BP)
measuring methods have been previously described in detail
[7, 8]. Demographic data, including smoking and drinking
status, body mass index (BMI), and antihypertensive
medications, were recorded. Smoking status was defined as
smoking cigarettes ≥1 piece a day for at least one year;
overweight status was defined as BMI ≥25 kg/m2; hyper-
tension was defined as average systolic blood pressure
(SBP)≥ 140mmHg and/or an average diastolic blood
pressure (DBP)≥ 90mmHg and/or self-reported current
treatment for hypertension with antihypertensive medica-
tion [9].

-e inclusion criteria for the hypertensive group were as
follows: (1) age ≥45 years and ≤75 years, and (2) SBP
≥160mmHg and/or DBP ≥90mmHg or a history of stage 2
hypertension [9]. -e inclusion criteria for control partic-
ipants were as follows: (1) SBP <140mmHg and DBP
<90mmHg, (2) no history or family history of hypertension,
and (3) as old as possible. Individual with any of the fol-
lowing, secondary hypertension, pregnancy, severe renal or
liver dysfunction, and cancer, was excluded. In qualified
cases, 382 hypertensive patients and 378 normotensive
controls were selected for further genotyping.

-e study was approved by the Ethics Committee of
China Medical University. Written informed consent was
obtained from each participant.

2.2. Biochemical Test and DNA Extraction. A series of tests
including a standard lipid panel, fasting blood sugar (FBS),
serum ions (potassium, sodium, and chlorine), liver, and
kidney assays were conducted with separated serum of
peripheral blood in the Clinical Laboratory of General
Hospital of the Fuxin Mining Bureau. Genomic DNA was
extracted with TIANamp Blood DNA kits (Tiangen Bio-
chemical Technology, Beijing, China) from EDTA anti-
coagulated peripheral blood and stored at −80°C until use.
-e concentration and OD260/280 of DNA, measured by
Nanodrop 2000 (-ermo, American), were used to ensure
the quality of DNA.

2.3. Genotyping of rs20456 and rs6930913. -e SNPs of KIF6
for the Han Chinese population in Beijing, China (CHB),
were downloaded from the International Genome Sample
Resource (https://www.internationalgenome.org/). Two

SNPs (rs20456 (c.2180 + 130T>C) and rs6930913
(c.1427–798C>T)) were selected by Haploview 4.2 (https://
www.broadinstitute.org/haploview/haploview), with the
criteria of r2≥ 0.8 and minor allele frequency (MAF)≥ 0.1.
-e primers were designed by Primer Premier 5.0 (Premier,
Canada). -e polymerase chain reaction (PCR)-high reso-
lution melting (HRM) curve analyses with LightCycler 480
(Roche) was applied to genotype SNPs in 2010. Detailed
procedures of PCR and HRM are given in Table 1.

2.4. Statistical Analysis. -e t-test or chi-square test was
applied to assess continuous variables or categorical vari-
ables of baseline characteristics, respectively. -e distribu-
tion of genotypes was tested for the Hardy–Weinberg
equilibrium (HWE) with a chi-square test. Logistic regres-
sion analysis was used to explore the relationships between
SNPs genotypes and hypertension and the influences of
smoking or overweight status. Linkage disequilibrium (D′
and r2) between rs20456 and rs6930913 and haplotype
frequencies were computed on the SHEsis statistical analysis
platform. Odds ratios (OR) and 95% confidence intervals
(CI) were calculated for all genotypes under different genetic
models. -e false-positive report probability (FPRP) was
used to evaluate noteworthy associations of significant ob-
servations with the method described [10–12]. A prior
probability of 0.1 was adopted to detect an OR of 1.5 for
protective effects, and a threshold of 0.2 was considered as a
noteworthy FPRP value. Statistical software package SPSS
21.0 (SPSS Inc., Chicago, IL, USA) and SHEsis platform
(http://analysis.bio-x.cn/myanalysis.php) were used for
statistical analyses.

3. Results

3.1. Baseline Characteristics. -e baseline data for all par-
ticipants are given in Table 2. -e fraction of male partic-
ipants and those of mean age were found significantly higher
in the hypertensive group (both Ps < 0.001). -e cases had a
significantly higher BP and a higher serum level of low-
density lipoprotein cholesterol (LDL–C), creatinine (Cr),
sodium (Na+), as well as a higher BMI (all Ps < 0.001). -ere
were no significant differences between cases and controls
for smoking habit, FBS, triglyceride, or potassium levels (all
Ps > 0.05). After adjusting for gender and age (<65 y and
≥65 y), smoking habit became significantly different in two
groups (p< 0.001).

3.2.�eRelationship between SNPs inKIF6 andHypertension.
Distributions of genotypes for rs20456 and rs6930913 were
in equilibrium by HWE analysis (Table 3). Genotype dis-
tributions of rs20456 and rs6930913 in cases and controls
and their associations with hypertension are given in Table 3.
Gender, age (<65 y or≥ 65 y), BMI (overweight or not),
LDL-C, and Cr (<88.4mmol/l or≥ 88.4mmol/l) were con-
sidered as adjusting factors. Compared with genotype TT,
CC, or TC in rs20456 was statistically related with lower
susceptibility to hypertension (all Ps < 0.05) after adjusting
for variates. In the dominant genetic model, the risk of
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Table 1: PCR profiles (primers, amplicon size, and Tm) of rs20456 and rs6930913 in KIF6.

SNP Primers (5′ to 3′) Amplicon size (bp) Tm (°C)

rs20456 F: CCTGTGGCTCTCATGTCTCTTG 113 56R: GCACTCCAACCAACTTGAAAGC

rs6930913 F: TTCATTCTGTGTTCACGATGC 150 58R: GAGCCTTCTCTAGCGATGC
SNP, single nucleotide polymorphism.

Table 2: General characteristics of all individuals.

Characteristics Cases (n� 382) Controls (n� 378) P value P∗ value
Gender (male/female) 220/162 168/210 0.001
Age (years) 58.67± 8.62 62.43± 4.88 <0.0001
SBP (mmHg) 179.69± 19.21 120.54± 10.42 <0.0001
DBP (mmHg) 108.74± 9.00 74.85± 6.81 <0.0001
Smoking (%) 184 (48.2%) 206 (54.5%) 0.082 <0.0001
Having 184 206
Never 198 172

BMI (kg/m2) 25.08± 3.44 22.60± 3.55 <0.0001 <0.0001
LDL-C (mmol/l) 3.31± 2.12 2.85± 0.74 <0.0001 <0.0001
TG (mmol/l) 1.64± 1.66 1.67± 1.14 0.809
Cr (µmol/l) 86.72± 13.68 52.30± 11.19 <0.0001 <0.0001
FBG (mmol/l) 5.63± 1.77 5.73± 1.59 0.432
Na+ (mmol/l) 143.54± 2.22 142.45± 2.42 <0.0001 <0.0001
K+ (mmol/l) 4.27± 0.51 4.23± 0.35 0.254
BMI, body mass index; Cr, serum creatinine; DBP, diastolic blood pressure; FBG, fasting plasma glucose; K+, potassium; LDL-C, low-density lipoprotein
cholesterol; Na+, sodium; SBP, systolic blood pressure; TG, triglyceride; smoking (having), current or past smoking; smoking (never), never smoked.
Statistically significant differences (p< 0.05) are marked in bold. ∗Adjusting for gender and age.

Table 3: Association of KIF6 gene polymorphisms with hypertension susceptibility.

rs no. Allele or genotype Cases (n� 382) Controls
(n� 378) Or (95% CI) P value Or (95% CI)∗ P value∗

rs20456 T 410 (53.7%) 382 (50.5%) Ref Ref

HWE� 0.96

C 354 (46.3%) 374 (49.5%) 0.939
(0.850–1.039) 0.221 0.731

(0.552–0.967) 0.028

TT 118 (30.9%) 88 (23.3%) Ref Ref

TC 174 (45.5%) 206 (54.5%) 0.630
(0.495–0.802) <0.0001 0.416

(0.299–0.578) <0.0001

CC 90 (23.6%) 84 (22.2%) 0.799
(0.600–1.065) 0.125 0.577

(0.389–0.857) 0.007

Dominant (CC+CT vs.
TT)

0.679
(0.540–0.853) 0.001 0.460

(0.338–0.625) <0.0001

Recessive (CC vs.
CT+TT)

1.473
(1.173–1.850) 0.001 1.009

(0.721–1.412) 0.960

rs6930913 C 538 (70.4%) 420 (55.5%) Ref Ref

HWE� 0.34

T 226 (29.6%) 336 (44.5%) 0.733
(0.664–0.809) <0.0001 0.522

(0.386–0.704) <0.0001

CC 184 (48.6%) 124 (32.8%) Ref Ref

CT 170 (44.9%) 172 (45.5%) 0.666
(0.488–0.909) 0.010 0.513

(0.379–0.693) <0.0001

TT 28 (6.5%) 82 (21.7%) 0.230
(0.142–0.374) <0.0001 0.325

(0.205–0.515) <0.0001

Dominant (TT+CT vs.
CC)

0.525
(0.392–0.705) <0.0001 0.460

(0.346–0.610) <0.0001

Recessive (TT vs.
CT+CC)

0.286
(0.181–0.450) <0.0001 0.454

(0.293–0.704) <0.0001

∗Adjusting for gender, age (<65 year, ≥ 65 year), body mass index (normal, overweight), serum level of low-density lipoprotein cholesterol, and creatinine
(<88.4mmol/l, ≥ 88.4mmol/l). Statistically significant differences (p< 0.025) are marked in bold. SNP, single nucleotide polymorphism; HWE, Har-
dy–Weinberg equilibrium.
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hypertension was statistically reduced too (p< 0.001). Allele
T of rs6930913 significantly decreased the risk of hyper-
tension, compared to the wild allele C (p< 0.001). Geno-
types CT and TT of rs6930913 were significantly associated
with a lower risk of hypertension, compared with genotype
CC (both Ps < 0.01). Whether in the dominant or recessive
genetic model of rs6930913, susceptibility to hypertension
was significantly reduced (both Ps < 0.01). After adjusting
for confounding factors, the differences still existed for
rs6930913.

3.3. Gene-Environmental Interactions. -e interactions of
SNPs and smoking or overweight status on the risk of hy-
pertension revealed that smoking significantly increased the
susceptibility to hypertension for participants with rs20456
TT (p � 0.022) after adjusting for covariates (Table 4). For
rs6930913, significantly higher susceptibility to hypertension
was found for smokers under the dominant or recessive
genetic model (both Ps � 0.006) of rs6930913_T (probably
protective). -ere were no interactions between overweight
status and rs20456 or rs6930913 in relation to the risk of
hypertension.

3.4. Linkage Disequilibrium Test and Haplotype Analysis.
-e linkage disequilibrium coefficients (D′ and r2) were
calculated for rs20456 and rs6930913. -e D′ and r2 were
0.76 and 0.34, respectively, which indicated a tight linkage
between the two SNPs. Haplotypes of rs20456 and rs6930913
were constructed based on the linkage of the two SNPs
(Table 5). -e results showed that CT (p< 0.001) and TT
(p � 0.012) of rs20456 and rs6930913 were significantly
associated with a lower risk of hypertension. Meanwhile, CC
(p � 0.003) and TC (p � 0.001) of rs20456 and rs6930913
had reverse function on hypertension.

3.5. FPRP and Power Analysis. -e FPRP was used to in-
vestigate the false-positive probability of preceding signifi-
cant associations (p< 0.05) detected in this present study.
-e FPRP values for these remarkable results at different
levels of prior probability and statistical power are given in
Table 6. -e results of the FPRP analysis confirmed the
noteworthy associations of KIF6 rs20456 and rs6930913
polymorphism and hypertension susceptibility at the prior
probability level of 0.25 (FPRP< 0.200). At the prior
probability of 0.1, all the statistically significant findings were
noteworthy except for the comparison of different alleles of
rs20456 (C vs. T).

4. Discussion

-is study explored significant relationships of two SNPs
(rs20456 and rs6930913) in KIF6 with hypertension in a
northeast Chinese Han cohort. -e mean age of control
participants was significantly higher than that of hyper-
tensives due to the inclusion criteria. Because of gender
difference in cardiovascular diseases distribution [13, 14],
higher proportion of female was found for the control group

in the present study. After adjusting for demographic
baseline data (including gender and age), significantly lower
risk of hypertension was observed in patients with genotype
TC or CC of rs20456. Allele T and genotype CT or TT of
rs6930913 were also significantly associated with a lower risk
of hypertension after adjustment. Haplotypes CT and TT in
rs20456 and rs6930913 were strongly associated with de-
creased risk of hypertension. -e relationship between SNPs
(rs20456 and rs6930913) of KIF6 and hypertension was
modified by smoking status under some genetic models. In
addition, the FPRP test suggested a truly significant rela-
tionship between KIF6 rs20456 and rs6930913 polymor-
phisms and hypertension susceptibility in the northern
Chinese Han population.

-e exact mechanisms of KIF6 in the cardiovascular
system remain unclear. KIF6 gene (NM_145027, locus-
6p21.2) spans over 23 exons and encodes kinesin, which
mediates the intracellular transport of organelles, protein
complexes, and messenger ribonucleic acids [15]. KIF6
protein has been detected in a variety of tissues, including
coronary arteries and other vascular tissues [16]. KIF6
polymorphisms have been reported to be associated with
epicardial coronary endothelial dysfunction, interrupting
intracellular transport in endothelial cells to develop CHD
and different statin treatment outcomes [5, 17–22].
According to a recent study, KIF6 has a specific role for
endothelial cells ciliogenesis in vertebrates [23]. Endothelial
dysfunction is also closely related to hypertension and
atherosclerotic coronary and cerebral artery disease [24–27].
Improvement of endothelial function was reported to reduce
blood pressure in spontaneously hypertensive rats [28, 29].
Studies of sex differences on endothelial function are con-
flicting [30]. Age-related endothelial dysfunction [31–33],
artery stiffness [34, 35], and low-grade inflammation [36]
have been reported close relationships with cardiovascular
diseases. It is unknown whether the age and gender-related
differences of endothelial dysfunction relate to kinesins.
Different age, gender, and blood pressure might also be the
various phenotypes coming from the same genetic tree of
KIF6 and other genes. -is study investigated close rela-
tionship between KIF6 and hypertension after adjusting for
demographic characteristics, which might provide one ge-
netic mechanism for hypertension.

Hypertension is a multifactorial genetic disorder mod-
ified by environmental and epigenetic factors [37]. -is
study’s gene-environmental analysis showed that the asso-
ciations between SNPs (rs20456 and rs6930913) in KIF6 and
hypertension could be partly modified by smoking. As a
result, for patients with smoke susceptivity genotypes,
stopping smoking may contribute to their health. Interac-
tions between kinesin and smoking need to be further
investigated.

Hypertension has been the most common condition in
developed countries, and its costs and social burden are in-
creasing rapidly [38, 39]. -e etiology of hypertension is
complicated. It is important to know the genetic bases and
gene-environmental interactions for prevention and treatment
of hypertension. As far as we know, this is the first report on the
relationship between KIF6 and hypertension. -ere are several
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limitations to this study. First, more SNPs or other genetic
marks should be analyzed to ensure the relationship between
KIF6 and hypertension. Second, a larger number of samples are
needed to investigate the relationship. Finally, future studies

should also include other races due to genetic heterogeneity
among different human species. In all, additional investigations
are warranted to elucidate the pathophysiological functions of
KIF6 in hypertension.

Table 6: Results of false-positive report probability analysis for the risk associations of rs20456 and rs6930913 polymorphisms to
hypertension.

Genotype and variables Or (95% CI) P valuea Statistical powerb
Prior probability

0.25 0.1 0.01 0.001 0.0001
rs20456 T>C
C vs. T 0.731 (0.552–0.967) 0.028 0.741 0.102∗ 0.255 0.790 0.974 1.000
TC vs. TT 0.416 (0.299–0.578) <0.0001 0.002 0.000∗ 0.001∗ 0.007∗ 0.065∗ 0.411
CC vs. TT 0.577 (0.389–0.857) 0.006 0.237 0.075∗ 0.196∗ 0.729 0.964 0.996
CC/CT vs. TT 0.460 (0.338–0.625) <0.0001 0.009 0.000∗ 0.001∗ 0.008∗ 0.072∗ 0.437

rs6930913 C>T
T vs. C 0.522 (0.386–0.704) <0.0001 0.054 0.001∗ 0.003∗ 0.036∗ 0.273 0.790
CT vs. CC 0.513 (0.379–0.693) <0.0001 0.044 0.001∗ 0.003∗ 0.030∗ 0.237 0.756
TT vs. CC 0.325 (0.205–0.515) <0.0001 0.001 0.005∗ 0.014∗ 0.132∗ 0.606 0.939
TT/CT vs. CC 0.460 (0.346–0.610) <0.0001 0.005 <0.0001∗ <0.0001∗ 0.001∗ 0.014∗ 0.122∗
TT vs. CT/CC 0.454 (0.293–0.704) 0.001 0.043 0.028∗ 0.080∗ 0.491 0.907 0.990

Haplotype rs20456–rs6930913
CC 1.402 (1.120–1.756) 0.003 0.722 0.013∗ 0.039∗ 0.309 0.819 0.978
CT 0.535 (0.405–0.682) <0.0001 0.038 <0.0001∗ <0.0001∗ 0.001∗ 0.012∗ 0.105∗
TC 1.449 (1.154–1.764) 0.001 0.635 0.001∗ 0.003∗ 0.033∗ 0.257 0.776
TT 0.695 (0.543–0.927) 0.013 0.611 0.061∗ 0.164∗ 0.683 0.956 0.995

CI, confidence interval; OR, odds ratio. aChi-square test was used to calculate the genotype frequency distributions. bStatistical power was calculated using the
number of observations in each subgroup and the corresponding ORs and p values in this table. ∗-e level of false-positive report probability threshold was set
at 0.2, and noteworthy findings are marked in bold.

Table 4: Gene-environmental interactions on the risk of hypertension.

Smoking BMI (kg/m2)
Ever/never P∗ ≥25/<25 P∗

rs20456
CC — — — —
TC 11.941 (1.181–120.777) 0.036 0.160 (0.017–1.537) 0.112
TT 20.234 (1.537–266.334) 0.022 0.081 (0.006–1.152) 0.064
Dominant (TT +CT/CC) 6.895 (1.014–46.862) 0.048 0.151 (0.021–1.075) 0.059
Recessive (TT/CT+CC) 3.773 (0.592–24.032) 0.160 0.493 (0.081–2.998) 0.443

rs6930913
CC — — — —
CT 0.112 (0.012–1.014) 0.051 0.812 (0.112–5.878) 0.836
TT 10.303 (0.854–124.331) 0.066 7.846 (0.690–89.207) 0.097
Dominant (TT +CT/CC) 16.290 (2.193–120.980) 0.006 1.367 (0.235–7.946) 0.728
Recessive (TT/CT+CC) 16.500 (2.218–122.725) 0.006 6.608 (0.987–44.234) 0.052

∗Adjusting for gender, age, low-density lipoprotein cholesterol, and creatinine. BMI, body mass index. Statistically significant differences (p< 0.025) are
marked in bold.

Table 5: Haplotypes of KIF6 gene in cases and controls.

Haplotype rs20456-rs6930913 Cases Controls Or (95% CI) P
CC 242 (31.7%) 188 (24.9%) 1.402 (1.120–1.756) 0.003
CT 112 (14.7%) 186 (24.6%) 0.535 (0.405–0.682) <0.0001
TC 296 (38.7%) 232 (30.7%) 1.449 (1.154–1.764) 0.001
TT 114 (14.9%) 150 (19.8%) 0.695 (0.543–0.927) 0.012
Statistically significant differences (p< 0.025) are marked in bold.
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5. Conclusion

-e present study has identified a close relationship between
KIF6 SNPs (rs6930913 and rs20456) and hypertension,
modified by smoking status. Considering the genotype and
haplotype analyses, the allele C in rs20456 and allele T of
rs690913 were inclined to protect individuals from
hypertension.
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