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Abstract: Kenaf is a source of fiber and a bioenergy crop that is considered to be a third world
crop. Recently, a new kenaf cultivar, "Jangdae," was developed by gamma irradiation. It exhibited
distinguishable characteristics such as higher biomass, higher seed yield, and earlier flowering than
the wild type. We sequenced and analyzed the transcriptome of apical leaf and stem using Pacific
Biosciences single-molecule long-read isoform sequencing platform. De novo assembly yielded 26,822
full-length transcripts with a total length of 59 Mbp. Sequence similarity against protein sequence
allowed the functional annotation of 11,370 unigenes. Among them, 10,100 unigenes were assigned
gene ontology terms, the majority of which were associated with the metabolic and cellular process.
The Kyoto encyclopedia of genes and genomes (KEGG) analysis mapped 8875 of the annotated
unigenes to 149 metabolic pathways. We also identified the majority of putative genes involved in
cellulose and lignin-biosynthesis. We further evaluated the expression pattern in eight gene families
involved in lignin-biosynthesis at different growth stages. In this study, appropriate biotechnological
approaches using the information obtained for these putative genes will help to modify the desirable
content traits in mutants. The transcriptome data can be used as a reference dataset and provide a
resource for molecular genetic studies in kenaf.
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1. Introduction

Kenaf (Hibiscus cannabinus L.) is an annual, warm season, C3 fiber crop of family Malvaceae native
to Africa and Asia. Kenaf has been cultivated since ancient times (4000 years ago) and traditionally was
used to make ropes, canvases, and sacks [1,2]. Furthermore, the global demand for fibrous material
and the worldwide shortage of trees have shifted the focus to nonwood crops such as kenaf as a source
of natural and biodegradable fibers [3]. Kenaf also has a gained attention as a bioenergy crop. Within a
short time period (6 months), kenaf can grow taller than southern pine trees to heights of 2–4 m,
which contributes to its high biomass yield [4]. Kenaf has a high photosynthesis rate and high ability
to absorb atmospheric CO2, thereby benefiting the ecosystem [5]. It is probably the most important
fiber plant after cotton and jute, yet it is still considered as a third world crop. This is partly because of
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the lack of genomic information and genetic tools for kenaf, which has restricted breeding programs to
accelerate genetic improvements in this plant.

Kenaf cultivars can be divided into three maturation groups based on flowering time: early,
mid-late, and late maturing. Early-maturing cultivars produce less biomass but have high seed
yield; late maturing cultivars produce more biomass but with the risk of seed shattering and reduced
seed quality; and mid-late cultivars balance high biomass production with good seed quality and
quantity [6,7]. Recently, a mid-late cultivar, “Jangdae”, was developed by mutation breeding using
gamma irradiation [8]. Compared with early and late maturing cultivars, Jangdae exhibited the
desirable characteristics of high biomass and high seed yield, making it an attractive model plant
for animal feed and industrial materials. However, there is still scope to improve the fiber quality
of Jangdae, which is not significantly different from that of other cultivars. An understanding of
the mechanism of Jangdae fiber development would be valuable for further genetic engineering and
molecular breeding of this cultivar.

Transcriptome analysis based on next-generation sequencing (NGS) is used to achieve a
dynamic range of gene expression levels and provide a broad understanding of transcriptional and
post-transcriptional gene regulation [9] in fiber crops such as cotton [10,11], jute [12], and kenaf [13–15].
Although the short reads generated by NGS are a powerful resource, they do not span the full length
of most transcripts, making it challenging to annotate and characterize genes, especially isoforms,
and to perform de novo assemblies [16]. The single-molecule real-time (SMRT) sequencing technology
developed by Pacific Bioscience (PacBio) can produce long length reads for transcriptome data.
SMRT sequencing together with isoform sequencing (Iso-Seq) is used to generate and characterize
long read transcripts with a low error rate [17]. Unlike other NGS techniques that require a PCR
amplification step before sequencing, SMRT techniques omit the amplification step, thus preventing
PCR bias errors. Long length reads also facilitate de novo assembly, which is difficult using short
length reads where repeat elements, structural errors, incomplete assembly, and base error can lead to
unreliable gene annotation. Long read length reads can deliver complex de novo genome assemblies
with fully or partially closed gaps [17,18]. The PacBio SMRT iso-seq technology was used effectively
for transcriptome data analysis in major crops, including maize [19], wheat [20] and sorghum [21].

In this study, we aimed to improve the accuracy of genetic prediction in the Jangdae cultivar,
using the SMRT iso-seq protocol to generate full-length or partially assembled transcripts followed
by de novo assembly and characterization. Our objectives were: (1) to characterize and functionally
annotate full-length transcripts with a broad survey of genes associated with various biological process;
and (2) to identify fiber-related genes involved in cellulose and lignin biosynthesis, and further check
the expression pattern of few selected genes involved in lignin biosynthesis at different growth stages.

2. Results

2.1. Transcriptome Assembly and Gene Annotation

We sequenced the transcriptome of kenaf and after clustering and polishing obtained
26,822 high-quality full-length consensus transcripts with a total length of 59,000,000 base pairs.
Subsequently, 19,775 nonredundant representative sequences with total length of 43,000,000 base pairs
were filtered using CD-HIT, and a final set of 11,370 unigenes with total length of 16,000,000 base
pairs (Tables 1 and S2) were further processed for gene annotation. BLASTx analysis was performed
against the NCBI nr and UniProt databases and 11,291 (99%) of the unigenes had at least one positive
BLAST hit. Distribution analysis indicated that the sequences of six species had hits with more than
450 transcripts. In particular, 61% of the unigenes shared high homology with three Gossypium species
from family Malvaceae, namely, Gossypium raimondii (28%, 3201 reads), Gossypium hirsutum (22%,
2507 reads), and Gossypium arboreum (21%, 2441 reads), which indicates they are phylogenetically
closely related (Figure 1).
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Table 1. Summary of platforms used establishing gene set in kenaf.

Step Data Platform Number of Sequence

1 High quality consensus sequence RS_IsoSeq 26,822
2 Nonredundant representative sequence CD-HIT 19,775
3 Reference isoforms BLASTCLUST and TransDecoder 15,637
4 Final isoforms transcriptome GMAP and ToFU 12,694
5 Final gene set with representative isoforms TransDecoder 11,370
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UniProt databases.

2.2. Functional Annotation, KEGG Classification, and Isoform Analysis

To analyze the functions of the genes and protein products, we assigned GO terms to the final
set of 11,370 unigenes. In total, 10,100 (88.8%) transcripts were assigned to 61 functional groups
under the three main categories: cellular components (9864, 97.66%), biological process (8647, 85.61%),
and molecular function (8378, 82.95%). Under biological process, “cellular process” and “metabolic
process” were the most represented terms; under molecular function, “binding” and “catalytic activity”
were the most represented; and under cellular component, “cell part” and “cell” were the most
represented (Figure 2 and Table S3).
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Figure 2. Enrichment analysis of the gene ontology terms assigned to the final set of kenaf unigenes.

The unigenes with assigned GO terms were compared against the Kyoto encyclopedia of
genes and genomes (KEGG) database for pathway analysis. In total, 8875 kenaf unigenes were
assigned to 149 KEGG pathways and given 813 EC numbers that were used to represent putatively
identified genes involved in various pathways. The annotated unigenes were grouped into five
major categories (Figure 3A), “metabolism” (8453 unigenes), “organismal system” (264 unigenes),
“environmental information processing” (98 unigenes), “genetic information processing” (59 unigenes),
and “human disease” (1isoform). Under “metabolism,” the highest number of unigenes were mapped
to “carbohydrate metabolism” (1512 unigenes) followed by "nucleotide metabolism” (1311 unigenes),
“amino acid metabolism” (1055 unigenes), “metabolism of cofactors and vitamins” (952 unigenes),
and “lipid metabolism” (812 unigenes) (Figure 3B). Details of the KEGG analysis, including information
for pathways, enzymes in pathways, enzyme annotation, sequences, and categories and subcategories
are provided in Table S4. These annotations will provide a valuable resource for further gene function
and pathway research.
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of the kenaf unigenes in KEGG biological categories. (B) Classification of the kenaf unigenes
under “metabolism”.

We successfully characterized and assigned full-length cDNA with isoform information.
We detected alternative splicing in 1052 transcripts covering 2376 isoforms with 2–11 isoforms
per transcript derived from alternative transcription sites, alternative polyadenylation, or alternative
splicing events (Figure 4). The transcript lengths, including the unigenes, were 378–7466 base pairs.
Our annotation data showed that 281 clusters containing 628 isoforms were involved in different
metabolic pathways.
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2.3. Identification of Major Genes Involved in Cellulose and Lignin Biosynthesis

2.3.1. Cellulose Biosynthesis

Cellulose synthase (CesA) uses UDP-glucose as a direct precursor for cellulose biosynthesis
and is a key enzyme involved in the generation of plant cell wall cellulose. UDP-glucose is
synthesized from glucose by the cytosoluble enzymes hexokinase (HK), phosphoglucomutase (PGM),
and UDP-glucose pyrophosphorylase (UGP). Sucrose synthase, which can synthesize UDP-glucose,
is also considered to be involved in cellulose biosynthesis. We detected candidate genes encoding
these major enzymes among the annotated unigenes (Table 2). Besides these genes, we also detected
genes that encode enzymes that are indirectly (but can be essential) involved in cellulose syntheses,
including sucrose-phosphate synthase (SPS), sucrose-6-phosphatase (SPP), alpha-glucosidase (GAA),
beta-fructofuranosidase (FRUCT), sucrase-isomaltase (SI), and fructokinase (FRK). Based on previous
studies [22,23], a hypothetical pathway was constructed (Figure 5). A total of 109 unigenes coding
12 key enzymes that control the pathway route for cellulose synthesis were identified. Among them,
21 unigenes (most represented) were annotated as encoding CesA subunits.

Table 2. List of candidate genes comprising cellulose biosynthesis pathways found among kenaf unigenes.

Putative Gene Enzyme KEGG Ortholog Enzyme Code Unigenes

HK Hexokinase K00844 EC:2.7.1.1 8
GCK Glucokinase K00845 EC 2.7.1.2 4
PGM Phosphoglucomutase K01835 EC 5.4.2.2 4
UGP UDP-glucose pyrophosphorylase K00963 EC:2.7.7.9 5
CesA Cellulose synthase K10999 EC:2.4.1.12 21
SUS Sucrose synthase K00695 EC:2.4.1.13 9
SPS Sucrose-phosphate synthase K07024 EC 2.4.1.14 5
SPP Sucrose-6-phosphatase EC 3.1.3.24 5
GAA Alpha-glucosidase K01187 EC 3.2.1.20 19

FRUCT Beta-fructofuranosidase K01193 EC 3.2.1.26 11
SI Sucrase-isomaltase K01203 EC 3.2.1.48 11

FRK Fructokinase K00847 EC:2.7.1.4 7
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2.3.2. Lignin Biosynthesis

Lignin is composed of cross-linked polymers derived from phenolic alcohol or monolignols
(sinapyl, coniferyl, and p-coumaryl alcohol). These monolignols are produced in the cytoplasm
and transported to the cell walls where they are polymerized by peroxidase or laccases to
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form lignin. Several genes expressed mainly in xylem parenchyma cells, namely, those encoding
phenylalanine ammonia-lyase, tyrosine ammonia-lyase, cinnamate 4-hydroxylase, 4-coumarate CoA
ligase, cinnamoyl CoA reductase, p-hydroxycinnamoyl CoA shikimate, p-coumarate 3-hydroxylase
(C3H), caffeoyl CoA O-methyltransferase, ferulate 5-hydroxylase (F5H), caffeoyl shikimate esterase
(CSE), caffeic acid O-methyltransferase, and cinnamyl alcohol dehydrogenase (CAD) are involved in
lignin biosynthesis [24]. All the important genes, except C3H, F5H, and CSE, were identified in our
data (Table 3). The currently accepted lignin biosynthetic pathway is illustrated in Figure 6. A total of
78 unigenes coding ten key enzymes that control the pathway route for lignin synthesis were identified
in our transcriptome data. Among them, 41 unigenes (most represented) encoding peroxidase, a key
enzyme, were detected.

Table 3. List of candidate genes comprising lignin biosynthesis pathways found among kenaf unigenes.

Putative Gene Enzyme KEGG Ortholog Enzyme Code Unigenes

PAL Phenylalanine ammonia lyase K10775 EC:4.3.1.24 5
PAL Tyrosine ammonia lyase K13064 EC:4.3.1.25 5
C4H Cinnamate 4-hydroxylase K00487 EC:1.14.13.11 1
4CL 4-coumarate CoA ligase K01904 EC:6.2.1.12 6
CCR Cinnamoyl CoA reductase K09753 EC:1.2.1.44 3
CAD Cinnamyl alcohol dehydrogenase K00083 EC:1.1.1.195 9

HCT Hydroxycinnamoyl CoA shikimate /quinate
phydroxycinnamoyl transferase K13065 EC:2.3.1.133 5

CCoAOMT Caffeoyl CoA O-methyltransferase K00588 EC:2.1.1.104 1
COMT Caffeic acid O-methyltransferase K13066 E2.1.1.68 2
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Figure 6. Hypothetical pathway constructed with kenaf unigenes (highlighted) involved in
lignin biosynthesis.

2.4. Expression Analysis of Lignin Biosynthesis Genes

To validate the transcriptome data, we analyzed the expression of eight genes (and respective
unigenes) involved in lignin synthesis (PAL, C4H, 4CL, CCR, CoAOMT, CAD, HCT, and COMT) using
qPCR (Figure 7).
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2.4.1. General Phenylpropanoid Pathway

PAL is found as a tetramer in vascular plants and plays a key role in regulating the biosynthesis
of phenylpropanoid, including lignin. In our data, we identified five unigenes with sequence length
ranging from 2260 bp to 2451 bp. The results showed that PAL unigenes exhibited different expression
patterns at different growth stages. The expression level at 60 days after seeding (DAS) was much
higher, indicating that PAL plays an important role at a later stage of plant growth. C4H is a
cytochrome P-450 linked monooxygenase and catalyzes the first hydroxylation of cinnamic acid in
the lignin biosynthesis. CoAOMT, on the other hand, plays a role in methylation of both caffeyl-CoA
and 5-hydroxyferuloyl-COA during monolignols biosynthesis. We identified only one unigenes
corresponding to each unigenes with a sequence length of 822 and 1001, respectively. The expression
level for both the unigenes was much higher at 60 DAS compared to 30 DAS.

4CL catalyzes the formation of thioesters of cinnamic acids and plays a regulatory role in the
biosynthesis of various phenolic derivatives. We identified six unigenes with sequence length varying
from 1753 to 2010 bp. No significant differences in expression level between the 30 and 60 DAS stages
were observed except in unigene c57098-f3p8-1807, which showed higher expression at 60 DAS. HCT is
a key metabolic entry point for the synthesis of monomers coniferyl and sinapyl alcohols. We identified
five unigenes with sequence length ranging from 1483 to 1697 bp. We observed a clear trend of high
expression level at 30 DAS stage without one unigenes (c54683_f3p9_1697), indicating the activity of
the gene at an early stage of plant growth for lignin biosynthesis.

2.4.2. Lignin Specific Pathway

CCR catalyzes the reduction of hydroxycinnamoyl-COA thioesters to aldehydes and plays a
key role in the production of monolignols from phenylpropanoid metabolite, the first step for lignin
biosynthesis. We identified five unigenes with sequence length ranging from 1193 bp to 1288 bp.
Two out of three unigenes showed slightly higher expression in 60 DAS. CAD catalyzes the reduction
of hydroxycinnamaldehyde to hydroxyl cinnamyl alcohol dehydrogenase and plays an important role
at the end of monolignols biosynthesis. We identified nine unigenes with sequence lengths varying
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from 1214 to 1857 bp. Similar to 4CL, no significant difference in expression level between the growth
stages were observed. However, unigene c1989_f2p20_1317 exhibited a clear difference in expression
level, which was much higher at 30 DAS stage. COMT catalyzes the methylation of hydroxyl moiety of
monolignols in the S subunit of lignin. We identified five unigenes with a sequence length ranging from
1228 to 1401. Although COMT unigenes exhibited different expression patterns in the growth stage,
a clear trend was not set as two unigenes showed higher expression for 30 DAS and two unigenes for
60 DAS.

Overall, the genes showed relative expression; however, different expression levels were observed
at the various growth stages. Briefly, we could categorize genes into two parts: (a) genes with no
significant difference in expression level between the growth stages (4CL and CAD) and (b) genes
exhibiting significant expression pattern between the growth stages (PAL, C4H, CCR, CoAOMT, HCT,
and COMT). Four out of eight genes, including PAL, C4H, CCoAOMT, and CCR, expressed highly in
the latter part of the growth stage, and only one gene (HCT) exhibited a clear trend of early expression
for lignin biosynthesis.

3. Discussion

To accelerate functional genomics research on the elite mutant cultivar Jangdae, we performed de
novo transcriptome analysis of young leaf tissue employing a PacBio iso-seq technique. Transcriptome
data generated by SMRT iso-seq produces long reads with low error rates because the reads are in
consensus from multiple sequencing passes of circular cDNA in the SMRT cells [17,18]. For nonmodel
crops like kenaf that lack a reference genome, construction of the transcriptome by de novo assembly
using NGS technology is a suitable approach for identifying desirable genes and splicing isoforms [25].
To date, most of the kenaf transcriptome studies were based on short reads generated by NGS
technology, preventing the accurate assembly of full-length transcripts [13–15].

Our transcriptome data included 26,822 high-quality consensus sequences with a total of 59 Mb
length (Table 1). This genome-wide coverage of transcripts with complete open reading frames will act
as a reference for future studies, including the development of molecular markers for marker-assisted
selection for desirable traits in kenaf breeding. The BLAST searches against the protein sequence
databases allowed the successful annotation of 42% (11370) transcripts with high e-values. The number
of BLAST hits is low compared with other crops analyzed using the same sequencing strategy [26,27];
nevertheless, the data were sufficient to extract enough useful information to meet the objectives of our
study. The low number of BLAST hits can be explained by the limited amount of genomic information
available for related species, as well as the different combinations of plant tissues used in previous
transcriptome analysis studies. The results of the BLAST searches revealed a close relationship between
kenaf and Gossypium species (Gossypium raimondii, Gossypium hirsutum, and Gossypium arboreum), in
agreement with previous reported results [28,29].

The GO functional classification annotated 10,100 high-quality unigenes, a substantial proportion
of which are involved a cellular and metabolic processes with predominant binding and catalytic
activity in cells or cellular parts (Figure 2). The annotations provide a foundation to understand genetic
networks in plant growth and development, gene regulation, and stress response for kenaf. Further,
8875 of the GO annotated unigenes were assigned to 149 KEGG pathways (Figure 3). More than 95%
of the transcripts were found to be involved in metabolic processes, confirming the advantage of
full-length transcripts for discovering candidate genes involved in various biosynthesis pathways.
Overall, the results confirm the accuracy of our data and provide a foundation to identify genetic
networks for desirable traits in kenaf.

Kenaf fiber is characterized chemically by cellulose (58%–63%) and lignin (12%–14%), which are
also traits that are important for improving fiber quality [30–32]. However, cellulose content in
kenaf is relatively low compared with other fiber crops such as flax (78%–80%), hemp (75%–80%),
jute (60%–65%), and ramie (70%–75%) [33]. Cellulose is a polymer of β-(1→4)-glucose residues
that form a linear unbranched chain. Cellulose forms the structural component of plant cell walls,
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providing the mechanical support that allows them to stand upright. Lignin, although weaker than
cellulose, provides additional tensile strength and contributes to the dry weight of a plant. Lignin
improves water conductivity properties and also plays an essential role in plant defense against
pathogen attack [34,35]. We examined in detail the enzymes involved in the KEGG starch and sucrose
metabolism pathway (related to cellulose biosynthesis) and KEGG phenylpropanoid pathway (lignin
biosynthesis). Genetic improvement by raising cellulose content using genetic engineering techniques
or mutation breeding will add to the economic value of kenaf. Conversely, high lignin content in fiber
crops has a negative effect on forage quality and is a major technical obstacle for the paper industry
and bioethanol production [36]; thus, kenaf breeding efforts are aimed at developing cultivars with
altered lignin content. We detected most of the genes involved in cellulose (Table 2) and lignin (Table 3)
biosynthesis in our transcriptome data. These genes are likely candidates for genetic manipulation
for improving or altering the content of these compounds in kenaf. Additional to knowing the genes,
the time course of its expression can help to apply modern genomic tools and improve our target
trait. Expression pattern analysis of selected genes for lignin biosynthesis from our data showed a
change of expression at the different growth stages. Studies showed that fiber production in kenaf
peaks at a later stage of plant growth [7,37]. Also, our previous kenaf study reported that lignin
content was accumulated approximately four fold at 60 DAS compared with 30 DAS, and exhibited
the same tendency in gene expression level of lignin biosynthesis [38]. In the present study, four out
of eight isoform genes exhibited a clear trend of high expression at 60 DAS, leading us to suppose
that the lignin amount increased by time and growth of the plant. A direct correlation between lignin
gene expression and time of plant growth was reported in earlier studies and is consistent with our
results [39–41]. Interestingly, the expression pattern of HCT gene in our data showed a reverse trend,
i.e., the gene expressed highly at an earlier growth stage, which is worthy of doing in-depth research.
The identified unique unigenes with high expression at a particular growth stage in our data will
facilitate the dissection of the molecular and genetic basis of lignin biosynthesis. This approach for
applying new genomic technologies will help the discovery of novel genes in mutation breeding and
genomic study.

4. Materials and Methods

4.1. Plant Material and RNA Extraction

The kenaf mutant cultivar “Jangdae” was planted in the experimental field at the Korea Atomic
Energy Research Institute (KAERI, Jeongeup, Korea) in 2018. Young apical stem and leaves were
collected, immediately frozen in liquid nitrogen, and ground into fine powder. Total RNA was extracted
using a Hybrid-RTM kit (GeneAll Biotechnology Co., Seoul, Korea) according to the manufacturer’s
protocol. The total RNA quality was assessed using an Agilent 2100 Biosystem (Agilent Technologies
Inc., Santa Clara, CA, USA). RNA with a concentration of 1–10 µg and RNA integrity number (RIN)
>8.0 was used for sequencing.

4.2. PacBio SMRT Iso-Seq Sequencing and Data Analysis

Using a Clontech SMARTer PCR cDNA synthesis kit (Takara Bio USA; Inc., Mountain View, CA,
USA), cDNA was synthesized from the extracted RNA, followed by size selection (1–6 kb) using
a BluepippinTM system (Sage Science Inc., Beverly, MA, USA). A template library was prepared
using a SMRTbell library kit for sequencing on the PacBio RS II platform (Pacific Biosciences,
Palo Alto, CA, USA) at the National Instrumentation Center for Environmental Management (NICEM),
Seoul National University, South Korea. Raw data were processed following the ToFU (transcript
isoform full-length and unassembled) pipeline (GitHub, Pacific Biosciences of California, Inc., Menlo
Park, CA, USA). Raw reads were characterized into full-length and non-full-length reads based on
primer and poly (A) tail detection. The full-length reads were clustered to predict consensus isoforms,
then reclustered with non-full-length reads using Quiver (included in ToFU pipeline) to generate
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high-quality polished consensus transcripts with an accuracy >99% [42]. Redundant sequences were
removed, and orthologous genes were analyzed by clustering the final consensus transcripts using
CD-HIT-EST in the CD-HIT package (v.4.6) with a threshold value of 0.99 identity (Li Lab at UCSD,
La Jolla, CA, USA). The PacBio-seq raw reads can be accessed at NCBI with the following accession
number: SRR8586247 (Sequence Read Archive number; https://www.ncbi.nlm.nih.gov/sra/).

4.3. Functional Annotation and Classification

For functional annotation the assembled isoforms were searched against the UniProt and NCBI
nonredundant (nr) protein databases using BLASTX with an e-value cutoff of 10−6. GO terms and
KEGG pathway analyses were performed using Blast2GO [43] against the same two databases.
The retrieved GO terms were classified into the three main GO categories, biological process,
cell component, and molecular function. Based on similarity hits against the KEGG database,
unique enzyme commission (EC) numbers were assigned to transcripts that were then mapped to
KEGG biochemical pathways.

4.4. Isoform Grouping

Isoform grouping was carried out using the pipeline-to-isoform system of full-length cDNA
sequences developed as previously reported [42]. The nonredundant high-quality transcripts that
aligned to the longest orthologous consensus reads were used as the reference sequences to identify
alternatively spliced isoforms. This procedure was performed in triplicate followed by reclustering
with amino acid peptide sequences. The resulting isoforms were validated by alignment with the
corresponding consensus transcript sequence using GMAP and by filtering redundant transcripts
using TOFU pipelines.

4.5. Quantitative PCR/Expression Analysis of Lignin Biosynthesis Genes

Unigenes obtained from data analysis were further validated by qRT-PCR. Eight unigenes
involved in lignin biosynthesis were selected for quantitative real-time expression. To evaluate
gene expression, RNA was isolated from apical stem and leaves collected from plant tissue at 30
and 90 DAS. Total RNA was isolated using the Trizol reagent with 2-mercaptoethanol. RNA was
further reverse transcribed, and first-strand cDNA synthesis was performed on 1 µg of total RNA
using the SuperScript III First-Strand Synthesis SuperMix (Invitrogen, Carlsbad, CA, USA). Transcript
analysis was performed through real-time qPCR in the Bio-Rad CFX96 Real-Time PCR System (Bio-Rad,
Hercules, CA, USA) using SYBR Green SuperMix Kit (Bio-Rad, Hercules, CA, USA). Amplification
was carried out through an initial step of 50 ◦C for 2 min, a denaturation step at 94 ◦C for 10 min,
and 40 cycles of denaturation at 94 ◦C for 10 s, and annealing and extension at 60 ◦C for 15 s and 72 ◦C
for 30 s, respectively. Primer pairs (Supplementary Table S1) were designed by using the Primer3
software (http://frodo.wi.mit.edu/primer3/). Expression levels were analyzed with the Eco software
(ver. 3.0.16.0) and normalized versus kenaf ACT7. Relative values of expression were determined
against the maximum value of individual samples at different stages. The reaction was performed in
three replicates for each set of conditions and the data presented as means ± SDs (n = 3).

5. Conclusions

We have characterized the transcriptome of a new kenaf mutant cultivar and broadly surveyed
the genetic network involved in various biological processes. We also identified candidate genes
involved in cellulose and lignin biosynthesis. The application of appropriate biotechnology tools and
approaches will help to reveal information about these genes so that they can be used to modify the
content of kenaf plants with the aim of adding economic value to the cultivar. The data will provide an
additional reference for future functional and comparative genomics, and our results demonstrate the
advantages of SMTR iso-seq data for gene discovery in nonmodel plants.

https://www.ncbi.nlm.nih.gov/sra/
http://frodo.wi.mit.edu/primer3/
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