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Abstract

Branched‐chain amino acids (BCAA: leucine, isoleucine and valine) are essential

amino acids implicated in glucose metabolism and maintenance of correct brain

function. Elevated BCAA levels can promote an inflammatory response in periph-

eral blood mononuclear cells. However, there are no studies analysing the direct

effects of BCAA on endothelial cells (ECs) and its possible modulation of vascular

function. In vitro and ex vivo studies were performed in human ECs and aorta

from male C57BL/6J mice, respectively. In ECs, BCAA (6 mmol/L) increased eNOS

expression, reactive oxygen species production by mitochondria and NADPH oxi-

dases, peroxynitrite formation and nitrotyrosine expression. Moreover, BCAA

induced pro‐inflammatory responses through the transcription factor NF‐κB that

resulted in the release of intracellular adhesion molecule‐1 and E‐selectin confer-

ring endothelial activation and adhesion capacity to inflammatory cells. Pharmaco-

logical inhibition of mTORC1 intracellular signalling pathway decreased BCAA‐
induced pro‐oxidant and pro‐inflammatory effects in ECs. In isolated murine aorta,

BCAA elicited vasoconstrictor responses, particularly in pre‐contracted vessels and

after NO synthase blockade, and triggered endothelial dysfunction, effects that

were inhibited by different antioxidants, further demonstrating the potential of

BCAA to induce oxidative stress with functional impact. In summary, we demon-

strate that elevated BCAA levels generate inflammation and oxidative stress in

ECs, thereby facilitating inflammatory cells adhesion and endothelial dysfunction.

This might contribute to the increased cardiovascular risk observed in patients

with elevated BCAA blood levels.
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1 | INTRODUCTION

Branched‐chain amino acids (BCAA: leucine, isoleucine and

valine) are essential amino acids which are important compo-

nents of proteins in human skeletal muscles.1 BCAA also modu-

late glucose metabolism2 and contribute to the maintenance of

correct brain function.3 Therefore, BCAA are used as supple-

ments in states of malnutrition to prevent muscular cachexia in

critical and oncological patients.4 In addition, these amino acids

are commonly used at high doses as nutritional supplements to

potentially improve mental and physical performance and with

the purpose of muscle building.5,6 However, there are not solid

performed studies about the potential toxicity of excessive or

chronic BCAA supplementation.

Increased BCAA plasma concentrations have been found in

several pathological conditions such as Maple syrup urine dis-

ease (MSUD)7 and type 2 diabetes (T2DM) and obesity.8-10

Importantly, highly elevated BCAA blood concentrations in

MSUD patients are responsible for neurological damage,11 and

in T2DM and obesity, elevated BCAA blood concentrations are

associated with insulin resistance10,12 and were suggested as

important predictors of future diabetes and positively associ-

ated with enhanced cardiovascular risk.13,14 In fact, some

authors proposed BCAA as biomarkers for vascular complica-

tions such as subclinical atherosclerosis or coronary artery dis-

ease.15 However, the mechanisms involved are rather poorly

understood.

Chronic low‐grade inflammation16,17 and oxidative stress18,19

are major pathophysiological mechanisms involved in T2DM, obe-

sity and atherosclerosis leading to insulin resistance, endothelial

dysfunction and micro‐ and macro‐vascular complications.

Increased reactive oxygen species (ROS) generation induces

endothelial dysfunction by impairing the bioactivity of endothelial

NO and promotes leucocyte adhesion, inflammation, thrombosis

and smooth muscle cell proliferation—all processes that exacer-

bate atherosclerosis. NADPH oxidase and mitochondria are key

sources of vascular oxidative stress involved in endothelial dys-

function in several cardiovascular pathologies.20,21 We recently

demonstrated that in cultured human peripheral blood mononu-

clear cells (PBMC), high BCAA concentration promotes oxidative

stress from NADPH oxidase and mitochondria, the release of

pro‐inflammatory cytokines mediated by the activation of the

nuclear transcription factor‐κB (NF‐κB) and the migration of

PBMC via the activation of the mammalian target of rapamycin

(mTORC1) axis.22 However, whether this also occurs in endothe-

lial cells (ECs), and whether it might contribute to endothelial

dysfunction, is unknown.

In this study, we hypothesized that BCAA‐derived ROS and

inflammation might be important contributors of abnormal vascular

function. Therefore, we evaluated the direct effects of high BCAA

levels on ECs and aorta and the possible mechanisms involved in such

effects with particular emphasis on ROS generation and inflammation.

2 | MATERIALS AND METHODS

2.1 | Cell culture

Human vascular ECs were isolated from the macroscopically

healthy part of intact saphenous veins harvested from patients

undergoing high ligation of varicose veins as described.23 The

veins were rinsed with PBS 1×, opened longitudinally to expose

the endothelium and put it in direct contact with enzyme solution

containing 1 mg/mL of collagenase type I (Gibco) for 30 minutes

at 37°C in a humidified atmosphere of CO2 (5%). After the diges-

tion step, the upper face of endothelium was scraped to detach

the ECs. Then, cells were centrifuged and seeded on gelatin 0.5%

coated 6‐well dishes and maintained in DMEM‐F12 medium sup-

plemented with FBS (20%), endothelial cells growth factor (ECGF,

30 μg/mL) and heparin (0.1 mg/mL) all from Sigma‐Aldrich (Sigma

Chemical Co., St. Louis, MO, USA) in a 37°C, 5% CO2 humidified

incubator. After 5‐7 days in DMEM‐F12, several cell colonies grew

and were selected with human CD31 antibody bound to Dyn-

abeads (Invitrogen, Life Technologies, Carlsbad, CA, USA). Cell cul-

tures were used between passages 2 and 5. ECs were stimulated

with BCAA (0.2‐12 mmol/L or 6 mmol/L) for 1 hour in the pres-

ence or absence of different inhibitors (see Section 3) added

30 minutes before stimulation. Control cells were not exposed to

stimuli or inhibitors.

2.2 | Western blot

Whole cell lysates were harvested in lysis buffer containing:

25 mmol/L Tris‐HCl pH 7.5, 150 mmol/L NaCl, 0.1% (v/v) sodium

dodecyl sulphate (SDS), 1% Nonidet‐P40 (NP‐40), a protease inhi-

bitor cocktail (Roche Applied Science, Barcelona, Spain) and a mix

of phosphatase inhibitors (1 mmol/L orthovanadate, 20 mmol/L β‐
glycerophosphate, 10 mmol/L NaF from Sigma‐Aldrich). Protein

content was determined with BCA protein assay reagent (Pierce,

Rockford, IL, USA), using bovine serum albumin (BSA, Sigma‐
Aldrich., (Sigma Chemical Co., St. Louis, MO, USA) as standard.

Lysates (30‐50 μg per lane) were separated by 10% SDS‐PAGE,
transferred to nitrocellulose membranes (Bio‐Rad Laboratories,

Hercules, CA, USA), and incubated overnight with monoclonal pri-

mary antibodies against p‐mTOR (Ser2448), mTOR, p‐Akt (Thr

308), p‐AMPK (Thr172), p‐p65 (Ser536) (all 1/500; Cell Signalling,

Boston, MA, USA), eNOS (1/500, BD Transduction Laboratories)

and GAPDH (1/1000; Merck‐Millipore, Corporation, Billerica, MA,

USA)). Appropriate HRP‐labelled anti‐mouse (1/5000, DAKO

Cytomation) or anti‐rabbit (1/5000, Santa Cruz Biotechnology, Inc.,

Santa Cruz, CA, USA) secondary antibodies were subsequently

used for 1 hour at room temperature. The signal was detected

using Luminata Forte (Merck‐Millipore Corporation, Billerica, MA,

USA) with an ImageQuant LAS 4000 gel documentation system

(GE Healthcare, Little Chalfont, UK) and normalized to GAPDH

and expressed as fold increase over control.
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2.3 | RNA analysis

Cells were harvested in TRIzol (Life Technologies Inc., Gaithersburg,

MD, USA) to obtain total RNA, which was reverse transcribed using a

high capacity cDNA RT kit (Applied Biosystems CA, USA). Quantita-

tive PCR (qPCR) was performed in 7500 Fast ABI System (Life

Technologies Inc., Carlsbad, CA, USA) using commercial human

Taqman assays (Thermo Fisher Scientific, Waltham, MA USA):

ICAM‐1: Hs00164932_m1; E‐Selectin: Hs00174057_m1; NOX‐1:
Hs00246589_m1; NOX‐2: Hs00166163_m1; iNOS: Hs01110250_m1,

eNOS: Hs01574665_m1 and 18S rRNA: 4310893E. Data were

expressed as fold increase over control.

2.4 | NADPH oxidase activity assay

The O2
·− production generated by NADPH oxidase activity was

determined by a chemiluminescence assay, as described.22 Briefly,

ECs were rinsed with PBS and harvested in phosphate buffer

(50 mmol/L KH2PO4, 1 mmol/L EGTA, 150 mmol/L sucrose, pH 7.4).

The reaction was started by the addition of a lucigenin mixture

(5 μmol/L) and NADPH (100 μmol/L) (Sigma‐Aldrich) to the protein

sample in a final volume of 250 μL. Chemiluminescence was deter-

mined every 2.4 seconds for 3 minutes in a microtiter plate lumi-

nometer (Enspire Perkin Elmer). Basal activity in the absence of

NADPH was subtracted from each reading, normalized to protein

concentration and expressed as fold increase over control.

2.5 | Detection of intracellular mitochondrial
superoxide production

For quantifying the production of mitochondrial O2
·−, ECs were incu-

bated with Mitosox Red (0.5 μmol/L; Life Technologies Inc.) for

30 minutes in the dark. The fluorescence intensity was measured

with a microtiter plate fluorimeter (Enspire Perkin Elmer) and each

reading was normalized to protein concentration. Data were

expressed as fold increase over control. Additionally, ECs plated in

coverslips were incubated with Mitosox, counterstained with DAPI

(Sigma) and visualized with a confocal microscope (Leica TCS SP2,

40× objective), λexcitation = 510 and λemission = 580 nm, using the

same imaging settings in each case.

2.6 | DNA binding assay

DNA binding assay was performed as described by Li et al24 with

minor modifications. Oligonucleotides for NF‐κB (0.125 pmol/μL) and

NF‐κB complementary sequences (50 nmol/L) were synthesized by

Invitrogen. Primary antibodies were used for p65 (1/200, Cell

Signalling, Boston, MA, USA) detection. A donkey anti‐rabbit Alexa

488 (1/2000, Life Technology) secondary antibody was used to

detect it in a microtiter plate fluorimeter (Enspire, Perkin Elmer)

(λexcitation = 495 and λemission = 519 nm). Data were represented as

fluorescence intensity and expressed as fold increase over control.

2.7 | Cells adhesion assay

ECs were plated in 96‐well plates (1 × 104 cells/well) and stimulated

with BCAA (6 mmol/L, 1 hour) in the presence or absence of different

inhibitors (see Section 3) for 30 minutes. On the other hand, PBMC

(1 × 105/well) were stained with 5 μmol/L calcein‐AM (Sigma Aldrich)

and coincubated with ECs for 30 minutes. Non‐adherent cells were

removed and adhered PBMCs were harvested in 0.1% SDS and fluo-

rescence from each well was measured at λexcitation = 485 nm and

λemission = 530 nm. The adhesion capacity was calculated as relative

fluorescence/protein and expressed as fold increase over control.

2.8 | Vascular reactivity studies

Ex vivo experiments were performed in intact aorta from 3‐month‐
old male C57BL/6J mice. All experimental procedures were

approved by the Ethical Committee of Research of the Universidad

Autónoma de Madrid and Dirección General de Medio Ambiente,

Comunidad de Madrid, Spain (PROEX 345/14). Animals were taken

care of and used according to the Spanish Policy for Animal Pro-

tection RD53/2013, which meets the European Union Directive

2010/63/UE on the protection of animals used for experimental

and other scientific purposes and experiments were conducted in

accordance with the National Institutes of Health (NIH) Guide for

the Care and Use of Laboratory Animals. The animals were killed

with CO2.

Vascular reactivity was studied in a wire myograph by isometric

tension recording. After a 30‐minutes equilibration period in oxy-

genated Krebs Henseleit solution (KHS) at 37°C and pH 7.4, seg-

ments were stretched to their optimal lumen diameter for active

tension development. This was determined based on the internal

circumference/wall tension ratio of the segments by setting their

internal circumference (Lo) to 90% of what the vessels would have

if they were exposed to a passive tension equivalent to that pro-

duced by a transmural pressure of 100 mm Hg. Contractility of the

segments was tested by an initial exposure to a high K+ solution

(K+‐KHS, 120 mmol/L). The presence of endothelium was deter-

mined by the ability of 10 μmol/L acetylcholine to relax arteries

pre‐contracted with phenylephrine at ∼50% K+‐KHS contraction.

Thereafter, concentration‐response curves to BCAA (0.2‐10 mmol/L)

with or without pre‐contraction with phenylephrine (0.3 μmol/L),

were performed. The effects of gp91dstat (5 μmol/L), ML171

(0.5 μmol/L) and mito‐TEMPO (0.5 μmol/L) were analysed by their

addition 30 minutes before the BCAA concentration‐response
curves.

In some experiments, mouse aortic segments were pre‐incu-
bated in the organ bath with N‐nitro‐L‐arginine methyl ester (L‐
NAME, 0.1 mmol/L) in the absence or presence of gp91dstat,

ML171, mito‐TEMPO or celecoxib (1 μmol/L) before the BCAA con-

centration‐response curves. These segments were not pre‐con-
tracted with phenylephrine. These drugs were added 30 minutes

before L‐NAME.
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To demonstrate a possible direct effect of BCAA on vascular

smooth muscle cells we performed experiments where the

endothelium was mechanically removed. Concentration‐response
curves to BCAA in phenylephrine pre‐contracted vessels or in

arteries incubated or not with L‐NAME were performed as

described above.

In another set of experiments, aortic segments were exposed to

BCAA (6 mmol/L) in the absence or presence of gp91dstat, ML171

and mito‐TEMPO in DMEM‐F12 Ham supplemented with 1% FBS

and antibiotics (100 U/mL of penicilin and 100 mg/mL of strepto-

mycin) for 24 hours, 37°C. Afterwards, concentration‐response
curves to acetylcholine (1‐10 μmol/L), diethylamine NONOate (DEA‐
NO, 1‐10 μmol/L) and phenylephrine (1‐30 μmol/L) were performed

in each segment. Control arteries were not exposed to stimuli and

they were incubated in the same culture conditions.

Vasoconstrictor responses were expressed as mN/mm. BCAA‐
induced contractile responses were measured either from the basal

level or after pre‐contraction with phenylephrine. Vasodilator

responses were expressed as a percentage of the previous tone gen-

erated by phenylephrine.

2.9 | Immunohistochemistry

OCT‐embedded aortic segments were stained using standard histol-

ogy procedures. Immunostaining was carried out in 3‐μm‐thick tissue

sections and fixed using phosphate‐buffered 4% paraformaldehyde.

Endogenous peroxidase was blocked and aorta sections were incu-

bated with the primary antibody (3‐Nitrotyrosin, 1/1000; Abcam,

Cambridge, UK) overnight at 4°C. After washing, slides were treated

with the corresponding anti‐IgG biotinylated‐conjugated secondary

antibody (Amersham Bioscience, Amersham, UK) followed by the avi-

din‐biotin‐peroxidase complex, and 3,3′‐diaminobenzidine as chro-

mogen (Dako Diagnosticos S.A.). Sections were counterstained with

Carazzi's haematoxylin and mounted with DPX. The specificity was

checked by omission of primary antibodies and use of non‐immune

sera. Images were obtained with the Nikon Eclipse E400 microscope

and analysed by Image Pro‐plus (Media Cybernetics, Inc., Rockville,

MD). All samples were evaluated in a blinded manner. For each

mouse, the mean score value was obtained by evaluating 4 different

high‐power fields (40×) per section.

2.10 | Fluorimetric peroxynitrite assay

Peroxynitrite levels were measured in supernatants from aortic seg-

ments exposed to BCAA in the absence or presence of gp91dstat

and ML171 in DMEM‐F12 Ham for 24 hour as described above,

using the Fluorimetric Peroxynitrite Quantification kit (AAT Bioquest

Inc., Sunnyvale, CA, USA) according to the manufacturer's instruc-

tions. Standard curve was performed with a commercial peroxynitrite

(Sigma‐Aldrich). Fluorescence was quantified using a microtiter plate

fluorimeter (Ex/Em = 490/530 nm; Enspire, Perkin Elmer). Data were

normalized by vessel length and expressed as fold increase over the

control segment of the corresponding animal.

2.11 | Materials

BCAA were prepared as a mixture of leucine, isoleucine and valine at

0.2‐12 mmol/L each. BCAA, rapamycin, wortmannin, diphenyliodo-

nium chloride (DPI), L‐NAME, acetylcholine, phenylephrine and DEA‐
NO were obtained from Sigma‐Aldrich (Sigma Chemical Co., St. Louis,

MO, USA). DMEM‐F12 Ham medium and foetal bovine serum (FBS)

were also obtained from Sigma‐Aldrich. 5‐Aminoimidazole‐4‐carboxa-
mide‐1‐D‐ribofuranoside (AICAR) was purchased from Toronto

Research Chemicals (North York, Canada), while BAY‐11‐7082 and

ML171 were obtained from Calbiochem (La Jolla, CA). Mito‐TEMPO

was obtained from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA).

Celecoxib was a kind gift from Pfizer Inc. (Groton, CT, USA) and

gp91dstat was obtained from Anaspec (Fremont, CA). Wortmannin

and BAY‐11‐7082 were dissolved in DMSO. ML171 was dissolved in

75% ethanol. Further dilutions were in distilled water.

2.12 | Statistical analysis

Results are expressed as mean ± standard error (SEM). Statistical anal-

ysis was performed by using Mann‐Whitney test, or Kruskal‐Wallis test

for multiple comparison for in vitro experiments. Two‐way analysis of

variance followed by Bonferroni's post hoc test was used in ex vivo

vascular reactivity studies. A P < .05 was considered significant. Statis-

tical analysis was conducted using the PRISM5 statistical software.

3 | RESULTS

3.1 | BCAA stimulate the mTORC1 and AMPK
signalling pathways

BCAA produce several cell responses mainly via Akt/PI3K‐mTORC1

signalling pathway.22,25 We previously demonstrated that this axis

was activated under high concentrations of BCAA in PBMC.22 Thus,

we investigated the activation of Akt, mTORC1 and AMPK pathways

in ECs in vitro.

First, we performed a BCAA concentration‐response curve to

evaluate the phosphorylation of both pathways, using a concentra-

tion range from 0.2 to 12 mmol/L. The selected concentrations

range covered different pathological states including pathophysio-

logical concentrations found in obese and T2DM patients (0.2‐
0.7 mmol/L)9,10 and MSUD (2‐6 mmol/L)11,26 and in situations of

prolonged consumption as nutritional supplements (3‐6 mmol/L)

found in some individuals if consumed daily 6‐20 g BCAA for

2 months in 2 or 3 cycles per year or for uninterrupted period of

time.5,6 As shown in Figure 1A,B, BCAA induced phosphorylation

of mTORC1 and AMPK, with a maximal effect at 6 mmol/L after

1 hour of stimulation. Furthermore, AMPK induction caused by

BCAA mimicked the effect produced by AICAR (0.5 mmol/L), an

AMPK inducer used as a positive control (Figure 1C).

PI3K/Akt pathway is as an upstream activator of mTORC1 in dif-

ferent cell types.22,27,28 In ECs, BCAA promoted Akt phosphorylation

(Figure 1D). Interestingly, both the mTORC1 inhibitor rapamycin
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F IGURE 1 BCAA activate the PI3K/Akt‐mTORC1 and AMPK axis in endothelial cells. Effects of increasing BCAA concentrations (0.2‐
12 mmol/L, 1 h) on A, mTORC1 and B, AMPK activation on human endothelial cells (ECs). Effect of BCAA (6 mmol/L, 1 h) on human ECs pre‐
incubated 30 min with or without rapamycin (100 nmol/L) or AICAR (0.5 mmol/L) on C, AMPK, D, Akt and E, mTOR activation. F, eNOS mRNA
and protein expression in ECs. mTOR, AMPK and Akt activation and eNOS expression were calculated as ratios of phosphorylated proteins vs
corresponding total mTOR, GAPDH or α‐tubulin values and expressed as fold increase over control. For each panel, representative blots are
shown above. Data are expressed as mean ± SEM. *P < .05; **P < .01 vs Control vs Control (C); ≠P < .05 vs BCAA. n = 6
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(100 nmol/L) and the AMPK inducer AICAR decreased the BCAA‐
induced activation of Akt and mTORC1 (Figure 1D,E) suggesting that

in response to BCAA, AMPK is likely activated to counteract the

Akt/mTOR pathways and that there is a reciprocal relationship

between mTORC1 and Akt. Notably, BCAA also increased gene and

protein eNOS expression (Figure 1F).

3.2 | BCAA induce oxidative stress by activating
the mTORC1 pathway

We next investigated whether BCAA induce oxidative stress in

ECs and we focused on NADPH oxidase and mitochondria as

major sources of ROS at vascular level. As shown in Figure 2A‐C,
both NADPH oxidase activity and mitochondrial ROS production

were increased in the presence of BCAA (6 mmol/L) and this acti-

vation was abolished by rapamycin and AICAR. In addition, we

suggest the implication of 2 catalytic subunits of NADPH oxidase,

NOX‐1 and NOX‐2, as their gene expression was increased in the

presence of BCAA and also abolished by rapamycin and AICAR

(Figure 2D,E). Additionally, the BCAA‐induced NADPH oxidase

activation was abolished by the non‐selective inhibitor of NOX

(ML171, 0.5 μmol/L), by the selective NOX‐2 inhibitor gp91dstat

(5 μmol/L) and by the flavoprotein inhibitor DPI (10 μmol/L) (Fig-

ure 2A). As expected, the mitochondrial antioxidant (mito‐TEMPO,

F IGURE 2 BCAA induce ROS production via mTORC1. Effect of BCAA (6 mmol/L, 1 h) on human ECs pre‐incubated 30 min with or
without rapamycin (RAPA, 100 nmol/L), AICAR (0.5 mmol/L), DPI (10 μmol/L), ML171 (ML, 0.5 μmol/L), gp91dstat (dstat, 5 μmol/L), mito‐
TEMPO (MITO, 0.5 μmol/L) or BAY‐11‐7082 (BAY, 1 mmol/L) on A, NADPH oxidase activity and B, mitochondrial O2

·−. C, Confocal microscopy
images showing mitochondrial O2

·− production using Mitosox (red) and DAPI for nuclei (blue). Effect of BCAA with or without rapamycin or
AICAR on gene expression of the NADPH oxidase subunits NOX‐1 (D) and NOX‐2 (E). Data are expressed as mean ± SEM. *P < .05;
**P < .01 vs Control vs Control (C). ≠P < .05 vs BCAA. n = 5‐7
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0.5 μmol/L) inhibited the BCAA‐induced production of mitochon-

drial ROS (Figure 2B). We then explored the involvement of other

pathways in the increase of ROS production by BCAA. Thus, the

inhibitor of the NF‐κB pathway (BAY‐11‐7082, 1 mmol/L) did not

affect NADPH oxidase activation or mitochondrial ROS production

(Figure 2A,B).

3.3 | BCAA trigger NF‐κB pro‐inflammatory
pathway in ECs

A positive relationship between oxidative stress generation and acti-

vation of the pro‐inflammatory NF‐κB pathway has been described

in different clinical conditions.29 One of the earliest events in NF‐κB

F IGURE 3 BCAA trigger NF‐κB pathway and pro‐inflammatory genes expression. Effect of BCAA (6 mmol/L, 1 h) on human ECs pre‐
incubated 30 min with or without rapamycin (RAPA), AICAR, ML171 (ML), gp91dstat (dstat), mito‐TEMPO (MITO) or BAY‐11‐7082 (BAY) on A,
p65 phosphorylation, B, DNA‐binding activity of p65 and on gene expression of C, E‐selectin and D, ICAM‐1. E, Effect of BCAA on iNOS
mRNA expression in ECs. Data are expressed as mean ± SEM. *P < .05; **P < .01 vs Control (C). ≠P < .05 vs BCAA. n = 6‐7
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pathway activation is the phosphorylation of p65 subunit. BCAA

(6 mmol/L) induced p65 activation and nuclear translocation and

binding to its DNA consensus sequence measured by DNA binding

activity assay in ECs (Figure 3A,B). The inhibition of mTORC1 by

rapamycin and the activation of AMPK by AICAR prevented the

effects of BCAA on NF‐κB activation (Figure 3A,B). Furthermore, the

increased p65 binding to its DNA consensus sequence elicited by

BCAA was dependent on the generation of mitochondrial ROS as it

was abolished in the presence of mito‐TEMPO, but not in presence

of NOXs inhibitors, ML171 and gp91dstat (Figure 3B).

Next, we evaluated several genes involved in cell adhesion and

migration regulated by NF‐κB such as E‐selectin and ICAM‐1.30 As

shown in Figure 3C,D, BCAA induced the expression of E‐Selectin
and ICAM‐1 in ECs. Both rapamycin and AICAR significantly

decreased gene expression similarly to that observed in the presence

of BAY‐11‐7082, used as control. The gene expression of the induci-

ble NO synthase isoform iNOS, another NF‐κB induced gene, was

also increased by BCAA (Figure 3E).

3.4 | BCAA induce leucocyte adhesion to
endothelium

The adhesion of monocytes to endothelial cells is considered one

of the initial events in endothelial dysfunction in vascular patholo-

gies.31,32 In our recent study, high levels of BCAA induced PBMC

migration22 and herein we observed increased expression of adhe-

sion molecules in ECs in response to BCAA. Thus, we next investi-

gated the effect of BCAA on PBMC adhesion to ECs. As shown in

Figure 4, BCAA significantly increased the adhesion of leucocytes

to ECs. This effect was prevented by rapamycin, AICAR and mito‐
TEMPO, but not by the NOXs inhibitors ML171 and gp91dstat,

wortmannin (PI3K inhibitor) or by the inhibitor of NF‐κB pathway

BAY‐11‐7082 (Figure 4) although a tendency towards decrease was

observed with wortmannin and BAY‐11‐7082.

3.5 | BCAA induce vasoconstrictor responses
through ROS production

The above results suggest that BCAA induce inflammation and

oxidative stress in ECs. To explore whether this might have an

impact on vascular reactivity, ex vivo experiments in aortic rings

were performed. In basal situation, BCAA triggered a minor vaso-

constrictor response of the aorta at very high concentrations

(>8 mmol/L) (Figure 5A,C). In contrast, when the aortic segments

were pre‐contracted with a submaximal concentration of phenyle-

phrine (0.3 μmol/L), BCAA contractile response was greatly

enhanced (Figure 5B,C). Pre‐treatment of the segments with

ML171, gp91dstat and mito‐TEMPO, decreased the BCAA‐induced
vasoconstriction (Figure 5C) without affecting phenylephrine pre‐
contraction (data not shown), supporting the contribution of ROS

from NADPH oxidase and mitochondria to BCAA‐induced vascular

contraction.

Endothelium modulates arterial responses to different vasocon-

strictors by releasing different vasodilator factors including NO. To

determine whether BCAA‐induced contractile response in basal

conditions was masked by NO, aortic segments were pre‐incu-
bated with the NOS inhibitor N‐nitro‐L‐arginine methyl ester (L‐
NAME) before BCAA concentration‐response curve. As shown in

Figure 5D, L‐NAME potentiated BCAA‐induced contractile

responses. Interestingly, in the presence of L‐NAME, BCAA‐
induced contractile responses were significantly diminished by

gp91‐dstat, ML171 and mito‐TEMPO, again suggesting that BCAA

induces vasoconstrictor responses through NADPH oxidase and

mitochondria‐derived ROS (Figure 5D). Additionally, COX‐2‐derived
contractile prostanoids could also participate in BCAA‐induced
contraction, as its selective inhibitor celecoxib decreased BCAA

contractile responses in the presence of L‐NAME (Figure 5D). A

possible effect due to osmotic pressure was excluded as the inac-

tive enantiomers D‐BCAA did not induce contractile responses in

aorta pre‐contracted with a submaximal concentration of phenyle-

phrine or when pre‐incubated with the NOS inhibitor L‐NAME

(data not shown).

To demonstrate the contribution of vascular smooth muscle cells

to BCAA‐induced contraction, we performed experiments where the

endothelium was mechanically removed. As shown in Figure 5E, in

endothelium‐denuded arteries pre‐contracted with phenylephrine

BCAA still induced a contractile response. However, this contractile

response was not observed neither in basal conditions nor in arteries

incubated with L‐NAME (Figure 5F), suggesting that endothelium‐

F IGURE 4 BCAA promote leucocytes
adhesion to endothelium. Effect of BCAA
(6 mmol/L, 1 h) on leucocytes adhesion to
ECs pre‐incubated with or without
rapamycin (RAPA), AICAR, wortmannin
(W), mito‐TEMPO (MITO), gp91dstat
(dstat), ML171 (ML) and BAY‐11‐7082
(BAY). Data are expressed as mean ± SEM.
***P < .001 vs Control (C). ≠P < .05;
≠≠P < .01 vs BCAA. n = 7
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dependent and ‐independent mechanisms are responsible for BCAA‐
induced contraction. They also suggest complex mechanisms of

smooth muscle contraction in response to BCAA as pre‐contraction
seems to be needed to achieve contraction.

3.6 | BCAA induce endothelial dysfunction through
ROS production

Oxidative stress is a well‐known promoter of endothelial dysfunc-

tion.33 We next evaluated the effect of long exposure (24 hour) to

F IGURE 5 BCAA induce vasoconstrictor responses through ROS and COX‐2‐derived contractile prostanoids. Representative tracings
showing the effect of BCAA (0.2‐10 mmol/L) on contraction of aortic segments in the absence (Control) (A) and in the presence of
phenylphrine (Phe) pre‐contraction (B). Quantification of contractile responses (red arrows) is shown in C, together with the effect of
gp91dstat, ML171 and mito‐TEMPO on concentration‐response curves to BCAA in aortic segments pre‐contracted with phenylephrine. D,
Effect of gp91dstat, ML171, mito‐TEMPO and celecoxib on BCAA‐induced contractile responses in aortic segments incubated with L‐NAME
(100 μmol/L, 30 min) without phenylephrine pre‐contraction. Concentration‐response curves to BCAA in aorta without endothelium (E‐) pre‐
contracted with phenylephrine (E) or incubated with L‐NAME without phenylephrine pre‐contraction (F). Data represent mean ± SEM.
***P < .001 vs Control. ≠P < .05; ≠≠P < .01; ≠≠≠P < .001 vs Phe or L‐NAME. n = 7‐10

4956 | ZHENYUKH ET AL.



high concentrations of BCAA (6 mmol/L) in vascular responses. As

shown in Figure 6A,B, K+‐KHS and phenylephrine‐induced contractile

responses were greater in aortic segments incubated with BCAA

when compared to control and were both normalized by gp91dstat,

ML171 and mito‐TEMPO. BCAA also impaired the endothelium‐
dependent vasodilator responses induced by acetylcholine without

affecting endothelium‐independent relaxation to DEA‐NO (Fig-

ure 6C,D). Gp91dstat and ML171, but not mito‐TEMPO, normalized

endothelial function in BCAA‐incubated arteries (Figure 6C) suggest-

ing a role for NADPH oxidase derived ROS in BCAA‐induced
endothelial dysfunction. No significant effect of inhibitors was found

in control arteries (data not shown).

Excessive O2
·− can react with NO increasing peroxynitrite levels,

a potent oxidant that leads to the nitration of tyrosine residues in

tissue proteins. Accordingly, BCAA incubation increased aortic pro-

tein levels of nitrotyrosine and peroxynitrite formation that were

prevented by ML171 and gp91dstat (Figure 7A,B). Together, these

results suggest that BCAA impairs NO availability, rather than NO

signalling in vascular smooth muscle cells, by increasing ROS levels

mainly from NADPH oxidase.

4 | DISCUSSION

The main findings of our study are that high BCAA concentrations

can trigger oxidative stress and NF‐κB activation and inflammation in

ECs and in the vasculature thus likely contributing to the endothelial

dysfunction and cardiovascular disease frequently observed in differ-

ent pathological conditions associated to elevated BCAA levels.

There are few data about the relationship between elevated

BCAA plasma levels and inflammation. In MSUD patients, high BCAA

blood concentrations cause neurological damage associated with sus-

tained inflammation including elevated serum levels of IL‐1β, IL‐6
and IFN‐γ.34 In normoglycemic women, insulin resistance was associ-

ated with increased serum BCAA concentrations, down‐regulation of

mitochondrial energy metabolism and increased expression of inflam-

mation‐related genes (CCL2‐CCL5) in the adipose tissue.35 Finally,

our recent study demonstrated that elevated concentrations of

BCAA induced inflammation and oxidative stress in PBMC.22 Our

results in ECs further support the role of BCAA as mediators of

inflammation and ROS production and provide novel important infor-

mation that connects this systemic and local inflammatory milieu

with vascular damage. Thus, BCAA trigger ROS generation from

NADPH oxidases and mitochondria and also promote a pro‐inflam-

matory response characterized by increased NF‐κB activation and

subsequent up‐regulation of inflammatory molecules such as iNOS

and the adhesion molecules ICAM‐1 and E‐selectin, which facilitate

inflammatory cell migration22 and adhesion to ECs (present study).

Interestingly, mitochondrial ROS was responsible at least in part, for

the NF‐κB activation, but this transcription factor did not influence

ROS generation in response to BCAA, suggesting that alternative

pathways exist for BCAA‐induced oxidative stress. Our data are in

contrast with those published by D'Antona et al,36 showing

improved mitochondria biogenesis and decreased ROS production

together with increased antioxidant defenses in middle‐aged
(16 months old) mice supplemented with a BCAA enriched mixture

during 3 months. However, this approach is clearly different from

the acute effects of BCAA evaluated in our study. It is also impor-

tant to highlight that in this study,36 the levels of BCAA reached in

plasma after 3 months of BCAA supplementation are unknown and

this might be an important issue in the context of local exposure to

BCAA. Finally, HL‐1 cardiomyocytes were treated with a BCAA

enriched mixture that included 11 different amino acids which differ

from the 3 amino acids mixture used in our study.36

BCAA act as strong nutrient signals mainly activating mTORC1

to promote cell growth, proliferation, migration, inflammation and

oxidative stress in cancer cells27,37 and PBMC.22 We found that in

ECs BCAA also promoted concentration‐dependent phosphorylation

of mTORC1 and activation of Akt. Interestingly, mTORC1 was able

to modulate Akt activation, suggesting the existence of a cross‐talk
between both signalling pathways. More importantly, the effects of

BCAA on ROS generation, NF‐κB activation, inflammatory genes

expression and leucocytes adhesion to ECs, were blunted by rapa-

mycin. This highlights the pivotal role of mTORC1 in mediating pro‐
oxidant and pro‐inflammatory effects of BCAA on ECs, and it might

be in agreement with the role of the overactivation of Akt‐mTORC1

axis and the progression of the metabolic syndrome, future develop-

ment of T2DM and the associated endothelial cell activation and

endothelial dysfunction.37-39 The molecular mechanisms responsible

for the mTOR‐dependent activation of NOX and NF‐κB in response

to BCAA are unknown and this is a limitation of our study. However,

other authors have also found a role for mTOR in oxidative stress

generation40,41 or NF‐κB activation in response to different stimuli

or pathological conditions.42,43 Besides mTORC1, BCAA trigger sev-

eral signalling responses via the activation of AMPK, which plays a

role in cellular energy homoeostasis. We suggest that the upstream

activation of AMPK could be a tool to limit the activation of

mTORC1 in response to BCAA. This is in line with previous studies

in other cell types showing that AMPK can prevent mTORC1 activa-

tion.44 In turn, this mechanism might prevent, at least in part, down-

stream mTORC1‐induced ROS production, inflammation and cell

adhesion. In agreement, an AMPK activator AICAR, is able to

decrease these parameters in response to BCAA.

It is well accepted that unbalanced ROS production actively par-

ticipate in alterations of vascular tone associated with various dis-

eases, such as hypertension, diabetes or atherosclerosis.33,45 The

major sources of ROS at vascular level are NADPH oxidase and

mitochondria.46-48 Our data show for the first time that BCAA pro-

duce functional effects on the vascular wall. Thus, although BCAA

induced minor vasoconstrictor responses per se, they led to strong

contractile responses in arteries that were pre‐contracted with sub-

maximal concentrations of phenylephrine, suggesting that some

degree of vascular tone, probably as found in physiological condi-

tions, is needed for BCAA to induce contraction. This might also

have pathophysiological consequences particularly in the context of

vascular diseases where vascular hypercontractility is frequently
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observed. Moreover, BCAA enhanced K+‐KHS and phenylephrine

contractions after overnight incubation. The mechanisms responsible

for the augmented vascular contractility in response to BCAA war-

rant further investigation. However, both the contractile responses

induced by BCAA and the BCAA‐induced enhancement of K+‐KHS

and phenylephrine responses were diminished by mito‐TEMPO and

NADPH oxidase inhibitors, suggesting a role for mitochondria and

NADPH‐derived ROS in BCAA‐induced contraction. Additionally,

BCAA might act directly in vascular smooth muscle cells as sug-

gested by the fact that in endothelium‐denuded vessels BCAA still

induced contraction and, as mentioned, in BCAA‐incubated arteries,

responses to a depolarizing K+‐KHS stimulus, were significantly

enhanced. Mechanisms responsible of this direct effect of BCAA in

vascular smooth muscle cell are also unknown. However, Ca2+‐sensi-
tization mechanisms cannot be discarded as ROS have been reported

to activate different proteins involved in that process.49,50

It is well known that NO is a powerful vasodilator released toni-

cally and in response to agonists such as acetylcholine. NOS blockade

with L‐NAME unmasked contractile responses to BCAA in resting

arteries that were inhibited by different antioxidants such as ML‐171,
gp91dstat and mito‐TEMPO, again demonstrating the potential of

BCAA to induced oxidative stress with functional impact. We also

demonstrated the contribution of COX‐2 to BCAA‐induced contrac-

tion as the selective COX‐2 inhibitor celecoxib also abolished BCAA

F IGURE 6 BCAA induce endothelial dysfunction through ROS. A, Contraction to depolarizing solution of high KCl (K+‐KHS) in arteries
incubated with BCAA (6 mmol/L, 24 h) in the absence or presence of different antioxidants: gp91dstat, ML171, and mito‐TEMPO.
Concentration‐response curves to phenylephrine (Phe) (B), acetylcholine (ACh) (C) and diethylamine NONOate (DEA‐NO) (D) in aortic segments
incubated with BCAA in the absence or presence of gp91dstat, ML171 and mito‐TEMPO. Data represent mean ± SEM. *P < .05; ***P < .001
vs Control; ≠P < .05; ≠≠P < .01; ≠≠≠P < .001 vs BCAA.
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contractile responses in L‐NAME‐incubated arteries. Whether this

effect was due to COX‐2‐derived prostanoids or to the reciprocal

relationship between ROS and COX‐2 suggested previously,51-54 is

unknown. More importantly, our data demonstrate that this exces-

sive O2
·− likely reacts with NO leading to increased peroxynitrite

formation and nitrosylated proteins, decreased NO availability and

in turn, endothelium dysfunction. The fact that NADPH oxidase

inhibitors, although not mitochondrial antioxidants, improved

endothelial‐dependent relaxation confirms this hypothesis. Of note,

a dysfunctional endothelium with diminished NO levels might be

unable to buffer BCAA‐induced ROS production, thus amplifying

BCAA ability to contract the arteries further perpetuating the vas-

cular damage.

One limitation of our study is that we cannot know exactly what

is the main source of ROS in response to BCAA in our experimental

paradigm, and we can only affirm that BCAA increases the activation

of NADPH oxidase and mitochondrial ROS production that in turn

affect different processes including NF‐κB activation, cell adhesion

and vascular function. The reasons for the different contribution of

mitochondria and NADPH oxidase to the different parameters are

unknown and probably rely on a complex regulation of each

response or a possible reciprocal relationship between both sources

as described earlier.54,55 Finally, other sources of O2
·− such as the

uncoupled eNOS, COX‐2 or xanthine oxidase among others, cannot

be excluded.

Our data provide a proof‐of‐concept of the potential harmful

effect of BCAA in the vascular endothelium. However, the physiologi-

cal relevance of the concentrations of BCAA and times of exposure

used in the present study remain to be established. Thus, the pro‐oxi-
dant and inflammatory effects of BCAA were observed at concentra-

tions that could be reached in MSUD7,27 or in daily BCAA

supplementation in sportsmen,5,6 but higher than those found in

patients suffering from obesity or diabetes.8,9 However, it is important

to highlight that lower concentrations of BCAA (0.5‐2 mmol/L) already

increased vascular contraction which might add physiological rele-

vance. On the other hand, chronic exposure to moderately elevated

BCAA levels added to hyperglycaemia and pro‐inflammatory condi-

tions decrease the threshold of mTOR phosphorylation and increase

ROS formation in PBMC27,37 and we cannot discard that this mecha-

nism might be also operating in endothelial cells.

Together, our findings provide mechanistic and functional evi-

dence linking elevated levels of BCAA and endothelial dysfunction.

We demonstrate that elevated BCAA levels produce inflammation

and oxidative stress in endothelial cells via mTORC1 pathway, there-

fore facilitating inflammatory cells adhesion. In turn, this pro‐oxidant
and inflammatory milieu facilitate vascular hypercontractility and

F IGURE 7 BCAA induce nitrotyrosine expression and increase peroxynitrite levels. Effect of BCAA (6 mmol/L, 24 h) pre‐incubated 30 min
with or without ML171 and gp91dstat (dstat) on A, protein nitrosylation levels in aortic sections and B, peroxinytrite levels measured in
supernatants from aortic segments. Data are expressed as mean ± SEM. *P < .05 vs Control (C). ≠P < .05 vs BCAA. n = 3‐5
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diminished endothelium‐dependent relaxation (Figure 8). If chronic

exposure to these BCAA is achieved, these early events might even-

tually converge in atherosclerosis and other cardiovascular complica-

tions.
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