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Abstract

Early detection and management of adverse drug reactions (ADRs) is crucial for improving

patients’ quality of life. Hand-foot syndrome (HFS) is one of the most problematic ADRs for

cancer patients. Recently, an increasing number of patients post their daily experiences to

internet community, for example in blogs, where potential ADR signals not captured through

routine clinic visits can be described. Therefore, this study aimed to identify patients with

potential ADRs, focusing on HFS, from internet blogs by using natural language processing

(NLP) deep-learning methods. From 10,646 blog posts, written in Japanese by cancer

patients, 149 HFS-positive sentences were extracted after pre-processing, annotation and

scrutiny by a certified oncology pharmacist. The HFS-positive sentences described not only

HFS typical expressions like “pain" or “spoon nail”, but also patient-derived unique expres-

sions like onomatopoeic ones. The dataset was divided at a 4 to 1 ratio and used to train and

evaluate three NLP deep-learning models: long short-term memory (LSTM), bidirectional

LSTM and bidirectional encoder representations from transformers (BERT). The BERT

model gave the best performance with precision 0.63, recall 0.82 and f1 score 0.71 in the

HFS user identification task. Our results demonstrate that this NLP deep-learning model can

successfully identify patients with potential HFS from blog posts, where patients’ real word-

ings on symptoms or impacts on their daily lives are described. Thus, it should be feasible to

utilize patient-generated text data to improve ADR management for individual patients.

Introduction

The incidence of cancers is rising worldwide, and the resulting clinical and economic burden

is substantial [1]. Management of adverse drug reactions (ADRs) during cancer treatment

directly influences patient compliance, and so can have a crucial influence on the outcome of

anticancer treatment [2]. Therefore, early detection of the onset of adverse reactions to anti-

cancer drugs and preventive actions to ameliorate them are important [3–6].
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Hand-foot syndrome (HFS), which is also known as palmar-plantar erythrodysesthesia syn-

drome, is a typical ADR with no curative therapy, and supportive care from an early stage is

essential to manage HFS symptoms well [3,7]. HFS tends to occur during chemotherapy with

fluoropyrimidine or multi-kinase inhibitors [3,8], and is problematic because it negatively

impacts on patients’ quality of life (QOL) and may lead to dose reduction or discontinuation

of anticancer drugs [4,7,9–13]. It is common to consider medical intervention for HFS events

of Grade 2 or higher per Common Terminology Criteria for Adverse Events published by

National Cancer Institute (NCI-CTCAE) ver.5.0 [14]. As guided in the document, Grade eval-

uation depends on how the HFS events obstruct patients’ activities of daily living (ADL). To

accurately understand the impact of HFS events on their ADL, healthcare professionals need

to listen intently to patients’ stories or contexts, not only their straightforward complaints.

Communication with patients is also key to detecting HFS, as the onset signal relies on each

patient’s subjective symptoms. However, there are concerns that HFS symptom signals may be

missed in routine medical examinations by physicians, due to the patients’ hesitation to report

HFS symptoms during a limited consultation time and their feeling that their cancer treatment

should be prioritized [15].

ADR complaints that are not directly reported to healthcare professionals during clinical

visits are sometimes recorded at an early stage by the internet patient community [16]. Thus,

we hypothesized that it would be possible to capture early ADR signals from patient commu-

nity data that have not been utilized for medical purposes in order to deliver appropriate care

to patients as early as possible. Indeed, some studies have already indicated that internet social

communities can be useful for early detection of patient safety issues [17–19]. This trend of

early adverse event reporting is consistent with other reports showing that patient-reported

adverse events were more frequent and occurred earlier than physician’s assessments

[15,20,21] Thus, early detection of adverse events based on patient complaints in the internet

community could be a promising approach to manage ADRs more proactively.

In recent years, natural language processing (NLP) deep learning technology has been

increasingly applied to various kinds of documents, not only massive data sources, but also text

data that requires contextual interpretations [22,23]. Thus, we adopted the deep learning

method here to efficiently extract information from our clinically related text data. This technol-

ogy has already been employed in medical applications, for example, to extract key information

from electronic medical records [24–29]. It has been also investigated for patient-generated

texts. For example, some studies have been conducted to examine how to utilize NLP-extracted

ADRs from patient-authored text data for post-marketing surveillance [30–34]. In addition,

technical improvement has been aimed with a competitive shared task in the Social Media Min-

ing for Health Applications (SMM4H) workshop, where Twitter is the main target source to

classify or extract tweets with adverse events from those containing drug mentions [35–38]. A

prior study on early detection of skin-related ADR from a social health network has been

reported [16], but no study has yet been performed to extract more specific definitions, HFS sig-

nals, from patient-generated texts. Furthermore, there has been no study of the utility of patient

narrative expressions to extract ADR signals in the absence of causative drug information.

Therefore, the purpose of this study was to examine whether cutting-edge deep-learning

methods can identify patients with potential ADRs from patient blogs, focusing on HFS.

Materials and methods

Overview

This study consisted of two parts; one is article processing, including HFS annotation and

scrutiny, and the other is deep learning followed by prediction tasks for evaluation (Fig 1). In
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the first part, individual blog articles were divided into sentences, and sorted into HFS-positive

or negative categories through manual selection by experts to obtain training and evaluation

datasets for deep learning (Fig 1A). In the second part, several deep-learning models were

trained, and then evaluated using two types of prediction tasks (Fig 1B). Details of each step

are described below.

Pre-processing

Blog articles written in Japanese in the patient web community, Life Palette [39], were utilized

for this study. Life Palette is one of the most active internet patient communities in Japan, and

many cancer patients post on it. The data source consisted of 13,570 articles written by 289

users, including non-cancer patients, posted on Life Palette from Mar 6th, 2008, to Nov 20th,

2014.

First, 10,646 articles were extracted as blog articles written by cancer patients, which were a

total of 207 users. Afterwards, all the articles were divided into sentences by using the publicly

available open-source “ja_sentence_segmenter” [40]. This afforded 215,437 sentences. Dupli-

cated sentences were removed, majority of which were just including punctuation marks or a

few words, leaving 192,875 independent sentences (Fig 1A).

Fig 1. Overview of data processing and deep learning.

https://doi.org/10.1371/journal.pone.0267901.g001
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These sentences were processed to extract those that contained hand-foot-relevant terms,

such as “hand”, “foot”, “finger”, and “nail”, based on the assumption that HFS signal sentences

should include at least one hand-foot-related word (Fig 1A). This pre-processing step was

introduced to increase the likelihood of including potential HFS expressions and also save the

cost of following annotation step.

HFS-positive and negative sentences

An annotation guideline for HFS was created to conduct annotation in a unified way among

several annotators, referring to the HFS management literature [3,7,9–12] (Table 1). Specific

keywords were used to annotate HFS-like expressions (e.g. “pain”, “swelling”, “paresthesia”,

and “deformed nail”). In addition to these pre-determined key words, patient-derived unique

expressions were also annotated as HFS if they appeared to refer to HFS-like symptoms. This

annotation guideline was aimed to broadly pick up HFS-like expressions, including undefined

terms like those patient-derived unique ones, to convey all potential HFS expressions to the

final scrutiny step by a certified oncology pharmacist. The scrutiny step is detailed in the two

paragraphs below of this section.

Using this annotation guideline, two researchers (SN, MA) separately conducted annota-

tions for 10% of the population with hand-foot-relevant terms. We confirmed that the results

of the two annotations showed a high kappa coefficient, [41,42] indicating a high degree of

concordance. Then, one of the annotators (SN) completed the HFS annotation for the rest of

the population (Fig 1A).

Following the annotation process, a Japanese Society of Pharmaceutical Health Care and

Science-certified oncology pharmacist (KK), who regularly sees and advises cancer patients at

a dedicated cancer hospital, further evaluated the annotation results to differentiate likely and

unlikely expressions of HFS (Fig 1A). This scrutiny process was a crucial step in this study to

bring real-world pharmacological and clinical expertise into the selection of expressions as

HFS-positive data.

The HFS-positive sentences after the scrutiny by a certified oncology were then divided at a

4 to 1 ratio to obtain training and evaluation datasets. For HFS-negative data, all or a part of

the remaining sentences were used (Fig 1B). Specifically, for the test step, randomly selected

HFS-negative sentences were added to HFS-positive sentences to obtain an evaluation dataset

with the same HFS proportion as the original population. On the other hand, for the training

Table 1. Annotation guideline.

Definition Hand-foot syndrome-like symptoms possibly caused by anti-cancer drug

Positive criteria Including at least one term listed below, being described with hand-foot-relevant terms.

• pain

• numbness

• swelling

• flushing

• eczema

• feeling of wrongness

• paresthesia / dysesthesia

• deformed nail

• other patient-derived unique expressions possibly indicating HFS

Exclusion

criteria

• Symptoms not on-going (i.e., already recovered, possibility for the future, description of general

symptoms, reference to other source articles, imagination)

• Unidentified complaint (i.e., weary, listless, etc.)

• Existing clear causality other than drug (i.e., walking, blood sampling, etc.)

• Swelling caused by water retention

https://doi.org/10.1371/journal.pone.0267901.t001
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step, three patterns of HFS-negative sentences were added to training datasets in the ways

described in detail in the results section.

Deep-learning method

NLP models utilized for this study were long short-term memory (LSTM), bidirectional LSTM

(Bi-LSTM) and BERT [43–46], which are state-of-the-art deep-learning methods to analyze

the context of language. To efficiently learn Japanese word embeddings, we utilized publicly

available trained datasets in Japanese for pre-training: “fastText”, which is open pre-trained

dataset based on Japanese Wikipedia articles provided by Facebook, for LSTM and Bi-LSTM,

and a pre-trained Japanese BERT model released by Tohoku University for BERT [47,48]. As

tokenizers, Janome and MeCab were utilized for LSTM or Bi-LSTM, and BERT, respectively

[49,50]. The training was performed with a 5-fold cross-validation method for each model.

Task and evaluation parameters

Two prediction tasks were set for evaluation; one is to predict HFS-positive or negative for

individual sentences (the “sentence task”), and the other is to differentiate HFS-positive

patients or negative patients (the “user task”) (Fig 1B). The user task aims to prioritize identify-

ing patients themselves, rather than individual sentences, with the ultimate goal of issuing

alerts or supportive information to possible HFS patients. We evaluated the performance of

the trained models in these two tasks in terms of precision, recall and f1 score.

Precision ¼
#of True Positive

#of True Positiveþ False Positive

Recall ¼
#of True Positive

#of True Positiveþ False Negative

F1 score ¼
2 � precision � recall
precisionþ recall

Ethical considerations

In accordance with Life Palette’s terms of service, agreements from all contributing users for

secondary anonymous use of blog posts by a third party for research purposes were obtained

on their individual start dates of service use, by checking the Agree button on the website. Our

laboratory (Keio University) obtained blog post data for research purpose from the operating

company, Mediaid Corporation, based on a joint research agreement. This study was con-

ducted with their anonymized data, following approval by the ethics committee of the Keio

University Faculty of Pharmacy (approval No. 190301–1). Informed consent specific for this

study was waived due to the retrospective observational design of the study.

Results

Dataset

The pre-processing yielded 5,492 sentences with at least one hand-food-related wording (Fig

1A). The mean and the median (Min-Max) number of words in the 5,492 sentences were

68.80 and 44 (3–1328) words, respectively.

Potential HFS-positive sentences among the 5,492 sentences were annotated by two inde-

pendent annotators, with reference to the annotation guideline (Table 1). When the two anno-

tators had annotated 10% of the population, the kappa coefficient was 0.859, indicating a high
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degree of consistency between the results of the two separate annotations. Finally, 460 poten-

tial HFS-positive sentences were obtained from this annotation process (Fig 1A).

Afterwards, the certified oncology pharmacist reviewed the 460 potential HFS-positive sen-

tences, and extracted ones that appeared valid based on clinical experience. This scrutiny pro-

cess left 149 sentences that were finally identified as HFS-positive expressions (Fig 1A),

corresponding to approximately 2.7% of 5,492 sentences with hand-foot-relevant terms.

HFS-positive users/sentences

Some examples of the 149 HFS-positive sentences are shown in Table 2. These include not

only expressions typical of HFS, such as “pain/painful” or “spoon nail”, but also patient-

derived onomatopoeic expressions, such as “The skin of my hand is peeling off like BERO-

BERO (seriously)” or “BUYO-BUYO (something like blisters) on my feet”. The mean and the

median lengths of the 149 HFS-positive sentences (Min-Max) were 52.06 and 37 (11–235)

words, respectively (Table 3).

The number of blog posts that included HFS-positive sentences was 110. Among the 110

articles, 25 included specific anti-cancer drug names within the blog post, based on our man-

ual review, but among them, only 4 articles described how long the patient had taken the anti-

cancer drug (Table 3). There was no comprehensive information regarding prior or concomi-

tant drugs in the blog posts, and no medical diagnosis except for the primary disease of cancer.

Table 2. Examples of HFS positive sentences.

Japanese English (translated for reference)

ところが、4月後半になると階段を上るときに足に痛
みを感じるようになった。

However, in the latter half of April, I started to feel

pain in my legs when I climbed the stairs.

どうも僕の指の爪は、スプーン爪と呼ばれる状態に
なっているらしい。

Apparently my fingernails are in a state called spoon

nails.

ちょっと爪先がどこかに当たっただけではがれて2枚
爪になったりするし、ポロポロと欠けることも多
い。

If the tip of my nail hits somewhere, it will come off

and split into two, and it will often be chipped.

朝から、手のひら、足裏が真っ赤。 From the morning, the palms and soles are bright red.

手の皮がべろべろに剥けている。 The skin of my hands is peeling off like BERO-BERO

(seriously).

足のブヨブヨは、すっかり固くなってる感じ。 The BUYO-BUYO (something like blisters) on my feet

is becoming completely stiff.

https://doi.org/10.1371/journal.pone.0267901.t002

Table 3. Statistical parameters for HFS-positive sentences.

# of HFS-positive sentences (sentences) 149

Length of HFS-positive sentences (words)

• Mean 52.06

• Mean (Min–Max) 37 (11–

235)

# of blog posts that included HFS-positive sentences (articles) . . . [�1] 110

• Out of which [�1], # of blog posts that also included specific anti-cancer drug names (articles) . . .

[�2]

25

• Out of which [�2], # of blog posts that described timing of starting the anti-cancer drug (articles) 4

# of patients who posted HFS-positive blog posts (people) 42

# of posted HFS sentences per patient (sentences)

• Mean 3.55

• Mean (Min–Max) 2 (1–24)

https://doi.org/10.1371/journal.pone.0267901.t003
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The number of users who posted HFS-positive blog posts was 42. The mean and the median

numbers of posted HFS sentences per user (Min-Max) were 3.55 and 2 (1–24) sentences,

respectively. It was confirmed that a single user tends to post multiple HFS-related sentences

in blog articles (Table 3).

Training and performance evaluation

For training, three datasets were prepared to evaluate the performance scores for the two pre-

defined tasks: sentence task and user task. The first training dataset included the same propor-

tion of HFS as the original population and the evaluation dataset, i.e., approximately 2.7%

(designated as “Original”). Secondly, an under-sampling method was tried to address imbal-

ance in the training dataset, which could potentially cause over-fitting to majority data. To

evaluate different patterns of under-sampling, two training datasets were prepared: one with

a 1-to-1 ratio of HFS-positive and negative sentences, and the other with a 1-to-20 ratio of

HFS-positive and negative sentences (designated as “Balanced” and “Under-sampling”

respectively).

The performance scores are listed in Table 4. The best f1 score for the sentence task was

0.54 in BERT with “Under-sampling” (Table 4A). For the user task, the best f1 score was 0.71

in BERT with “Under-sampling” (Table 4B). Training with “Balanced” improved recall dra-

matically, especially in LSTM or Bi-LSTM for both tasks, but negatively impacted on precision,

resulting in relatively low f1 scores (Table 4A and 4B).

Discussion

Our results indicate that cutting-edge NLP technologies can be utilized for the identification of

potential HFS patients from blog articles, confirming that it is feasible to extract patients with

HFS from patient-generated text data by using NLP deep learning. It was also demonstrated

that patient-derived unique HFS expressions, such as onomatopoeic expressions, can be cor-

rectly learned and extracted from patients’ blogs by NLP deep-learning models. Importantly,

our approach can extract potential ADR signals from patient-generated information on the

web without relying on causative drug information, suggesting that this could be versatile

approach for the early detection.

In our study, we utilized three NLP deep-learning models, LSTM, Bi-LSTM and BERT, for

extraction of HFS-positive sentences. LSTM and Bi-LSTM are recurrent neural network mod-

els that have been under development since 1997 [43–45], whereas BERT emerged in 2018

[46]. In previous studies to extract ADR information from Twitter or health-related social

media, the f1 scores were around 0.5 to 0.7 [31,32,34]. The range of f1 score was also compara-

ble in the SMM4H shared tasks in 2020 or 2021, where some cutting-edge BERT based systems

were exploratorily employed [35–38]. Another application of an NLP model for early detection

of skin-related ADR from a social health network achieved a micro-averaged f score of 0.74

[16]. In our study, the best f1 score in the sentence task was 0.54 in BERT with “Under-sam-

pling” (Table 4A). Although the performance may not seem high compared with previous

research described above, it should be considered that our data source does not necessarily

contain causative drug information within the sentences, which leads to a lower density of

ADR mentions than in the case of sentences with causative drug information. Further adjust-

ing the training set or learning parameters can improve the performance scores in the sentence

task, and this might greatly improve the detection of individual ADR mentions from patient

blogs. On the other hand, the best f1 score in the user task was 0.71 in our study (Table 4B),

which is comparable to those in previous research [16,31,32,34–38], although it should be

highlighted that our model had a narrow focus on HFS among ADRs, unlike previous studies.
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The ability of the deep-learning method to identify expressions characteristically used by

patients to describe HFS was confirmed by a certified oncology pharmacist, who had abundant

relevant clinical experience. The HFS-positive patient blogs tended to have multiple HFS-posi-

tive sentences in one article (Table 2), and this would be the reason why the deep-learning

model showed consistently better performance scores in the user task than in the sentence

task. When prioritizing identification of patients with ADR signals in a future implementation

phase, the performance scores in the user task should be strongly emphasized. The f1 scores in

the user task suggest that BERT is the best deep-learning tool to automatically identify poten-

tial HFS patients from patient blogs, though the performance scores of individual models

might be improved by adjusting the training dataset, conditions or system itself, as tried using

SMM4H [35,36]. Performance in the sentence task might be similarly improved.

One of the goals of our research is to utilize patient-generated texts and deep learning anal-

ysis for early detection of patients with ADR signals. As patient blog posts are not grammati-

cally systematized and have relatively large word counts per sentence (the average was 52.06

Table 4. Performance score.

a. Sentence task

Precision Recall f1 score

LSTM

Original 0.28 0.20 0.23

Balanced 0.10 0.96 0.19

Under-sampling 0.41 0.33 0.37

Bi-LSTM

Original 0.35 0.33 0.34

Balanced 0.15 0.86 0.26

Under-sampling 0.33 0.46 0.38

BERT

Original 0.43 0.23 0.30

Balanced 0.03 0.56 0.07

Under-sampling 0.45 0.66 0.54

b. User task

Precision Recall f1 score

LSTM

Original 0.66 0.52 0.58

Balanced 0.23 1.00 0.37

Under-sampling 0.57 0.57 0.57

Bi-LSTM

Original 0.65 0.68 0.66

Balanced 0.30 1.00 0.46

Under-sampling 0.50 0.68 0.57

BERT

Original 0.53 0.36 0.43

Balanced 0.13 0.93 0.23

Under-sampling 0.63 0.82 0.71

Precision, recall and f1 scores are shown in these tables for the sentence task (a) and the user task (b). NLP deep-

learning models used for this study are LSTM, Bi-LSTM and BERT. The percentage of positive data in the training

dataset is approx. 2.7% for “Original” (the same ratio as in the original population), 50% for “Balanced” and 5% for

“Under-sampling”.

https://doi.org/10.1371/journal.pone.0267901.t004
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words per HFS-positive sentence [Table 3]), this is not easy data source to handle, and the

deep learning method is thus the preferred method, even though the scale of the data source

itself was not large (the number of HFS-positive sentences was just 149 among 5,492

[Table 3]). In terms of early detection of ADR signals, we looked into two particular cases

which included both a specific anti-cancer drug name and the timing of starting the drugs in

their blog posts. One mentioned that “It has been 9 weeks since I started to take erlotinib”, and

a complaint of “Cracked fingertips are stressful when working in the kitchen” was mentioned.

The other said “On the 79th tablet from the start of gefitinib” and “The skin symptom has

emerged on my hands and feet, but as it is not itchy and so bad, I don’t use any medications

for now”. Based on published information, HFS caused by kinase inhibitors will commonly

occur within first 12 weeks from the start of medication [3,11,13], so it cannot be concluded

that the 9th week or the 79th tablet (day) from the start truly represents early detection. As

most of the patient blogs in this study did not name a specific anti-cancer drug name or state

the timing of starting the drugs (Table 4), it was infeasible to assess the sensitivity of these

models for early detection of ADR signals in this study. To further investigate this aspect, pro-

spective studies need to be conducted with records of comprehensive time-course information,

including the start dates of individual anti-cancer drugs, dates of clinic visits, and medical

diagnosis of any ADRs, etc., in addition to patient-generated daily texts.

False-positive analysis was also conducted to assess the reliability of the models. We found

that some sentences which the NLP models predicted as “positive” were closely similar to posi-

tive sentences (for example, such false-positives included “Light numbness at the tip of the fin-

ger” or “I have rash on my right lower leg”). They were also included in “potential HFS-

positive” sentences annotated by the two researchers (Fig 1A). This may mean that the deep-

learning models constructed for HFS detection could be useful for broader detection of

adverse events related to the skin.

In clinical practice, it is crucial to distinguish causative drugs, because the clinical course

may differ depending on the administered drug; for example, strictly speaking, the symptoms

caused by fluoropyrimidine and by multi-kinase inhibitors are designated differently as

“hand-foot syndrome” and “hand-foot skin reaction”, respectively [8]. In examining the HFS-

positive sentences in our dataset, we found that those two symptoms may be described with

different expressions by patients (for example, “cracked fingertips” was a typical expression

associated with HFS caused by fluoropyrimidine). Thus, it may be possible to identify causa-

tive drugs using the present deep-learning systems. Another possibility is severity assessment

based on patient-generated texts. Some HFS-positive sentences indicated how the symptoms

affected patients’ daily lives. These statements can be interpreted as Grade 2 or 3 according to

NCI-CTCAE ver.5.0 [14], and thus deep-learning models might also be applicable to assess

severity. These targets might require larger training datasets, as a limitation in our study was

the relatively small dataset used for deep learning. Larger training datasets might also improve

the performance scores for HFS identification. In the future, it would be desirable to incorpo-

rate data from other sources, such as Twitter or other internet community forums, or to collect

additional data from cancer patients through interviews or prospective studies.

This system might be extended in various ways. One possibility would be to examine a

much wider range of patients’ expressions, including those referring to ADRs other than HFS.

This should be feasible, since we confirmed that our deep-learning models can identify distinc-

tive wordings for HFS, including unique patient-derived onomatopoeic expressions, even

from “noisy” sentences with an average of 52.06 words (Table 3). Another possibility, given

that this system can identify HFS patients from just a single sentence, would be to apply this

system to a wider range of source data, including short text sources such as Twitter. Although

it is expected that the deep-learning method would show optimum performance when reading
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out context from relatively complicated sentences, like the data source of this study, the models

constructed from patient blogs may be applicable to a broader range of patient text data.

Incorporation of the system developed here into internet patient communities could be use-

ful to automatically issue an alert to patients with potential ADR, encouraging them to visit the

clinic earlier than planned. The system could also provide patients with self-management mea-

sures via the web to prevent further symptom deterioration. It also seems likely that introduc-

tion of these novel features into internet communities would encourage patient themselves to

proactively record their disease experiences. If the performance of f1 score 0.71 proves to be

insufficient for practical implementation, it would be possible to incorporate follow-up ques-

tions for patients in order to differentiate HFS and the other symptoms more accurately, for

example to clarify the location of adverse events on the body.

In conclusion, we suggest that our NLP deep-learning system to identify users with HFS

from their internet blog posts has the potential to improve individual patients’ ADR

management.
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