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ABSTRACT: Adequate stability, manufacturability, and safety are crucial to bringing an
antibody-based biotherapeutic to the market. Following the concept of holistic in silico
developability, we introduce a physicochemical description of 91 market-stage antibody-based
biotherapeutics based on orthogonal molecular properties of variable regions (Fvs) embedded
in different simulation environments, mimicking conditions experienced by antibodies during
manufacturing, formulation, and in vivo. In this work, the evaluation of molecular properties
includes conformational flexibility of the Fvs using molecular dynamics (MD) simulations. The
comparison between static homology models and simulations shows that MD significantly
affects certain molecular descriptors like surface molecular patches. Moreover, the structural
stability of a subset of Fv regions is linked to changes in their specific molecular interactions
with ions in different experimental conditions. This is supported by the observation of
differences in protein melting temperatures upon addition of NaCl. A DEvelopability
Navigator In Silico (DENIS) is proposed to compare mAb candidates for their similarity with
market-stage biotherapeutics in terms of physicochemical properties and conformational
stability. Expanding on our previous developability guidelines (Ahmed et al. Proc. Natl. Acad. Sci. 2021, 118 (37), e2020577118), the
hydrodynamic radius and the protein strand ratio are introduced as two additional descriptors that enable a more comprehensive in
silico characterization of biotherapeutic drug candidates. Test cases show how this approach can facilitate identification and
optimization of intrinsically developable lead candidates. DENIS represents an advanced computational tool to progress
biotherapeutic drug candidates from discovery into early development by predicting drug properties in different aqueous
environments.
KEYWORDS: biotherapeutics, protein flexibility, molecular dynamic simulations, ionic effects, physicochemical profile

■ INTRODUCTION
Antibody-based biotherapeutics have emerged as one of the
fastest-growing class of pharmaceuticals, covering multiple
therapeutic areas.1−3 Despite rapid industrialization, there are
still several hurdles to successfully discover, develop, and
manufacture biotherapeutic products at a commercial scale.
Although there has been a trend of lowering attrition rates in
preclinical and clinical stages,4 only one in five biotherapeutic
drug candidates that enter clinical trials survives through phases
I, II, and III and eventually wins approval from regulatory
agencies.5 In addition to an optimal binding affinity toward the
antigen, an antibody-based drug candidate must satisfy several
other requirements in terms of safety, efficacy, and chemistry,
manufacturing, and controls (CMC).6−9 These challenges are
further enhanced by the arrival of multi-specific antibody-based
biotherapeutic candidates, which are still poorly understood due
to their more complex structural formats.10 Increasing drug
development costs have promoted development of new in silico
methods to support the selection and optimization of biologic
drug candidates not only for function but also for “develop-
ability”, i.e., the intrinsic ability of a drug candidate to be stable,

manufacturable, safe, and pharmacologically effective.9,11,12

Early selection of a good-to-develop drug candidate suitable
for company-specific drug development platforms can help
reduce the cost, time, and risk of failure at the later stages.

Increase in the availability of monoclonal antibody (mAb)
experimental characterizations, access to accurate structural
information, and homology modeling (HM) capabilities have
fostered the development of computational approaches to
address several developability aspects of biotherapeutics.6 In
silico evaluations do not require any material and can be
performed either in parallel to or ahead of the experimental
evaluations to support drug discovery, as shown by several works
describing the prediction of experimental properties.13−25

However, these tools often tackle individual aspects of
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developability and do not take into consideration that the
optimization of one antibody feature may potentially have
detrimental effects on other properties.

Holistic in silico developability guidelines, which consider
multiple aspects of antibody developability, are still scarce and
not widely established. One example called Developability
Index26 provides a way to rank mAb candidates using a
combination of only two characteristics: the spatial aggregation
propensity (SAP) score of the complementary-determining
regions (CDRs)27 and the protein net charge of the full-length
mAb. Another strategy highlights candidates similar to clinical-
stage antibodies in terms of their computed biophysical
properties (Therapeutic Antibody Profiler, TAP).28 This tool
tests homology models of the variable regions of antibody drug
candidates against those of a set of clinical-stage antibody
therapeutics using five metrics extracted from the reference
structures. Similar molecular descriptors as in TAP were used in
another work aimed at establishing profiling rules of clinical-
stage antibody therapeutics.29 In this case, the molecular
descriptors were selected and evaluated to be predictive for
aggregation, pharmacokinetics, and solution behavior. Pre-
viously, we have built an intrinsic physicochemical profile of 77
market-stage antibody-based therapeutics using variable region
(Fv) homology models.30 The term “market stage” should not
be confused with “marketing or sales” aspects of biotherapeutics.
Availability of an antibody-based biotherapeutic in the market is
the final milestone in a journey that started with its discovery as a
potential drug candidate and passed through all the stages of
product and process development, clinical trials, regulatory
approval, and commercial-scale manufacturing. While regula-
tory decisions for approval of biotherapeutics are often made on
a case-to-case basis after a thorough analysis of risks versus
benefits, there are some common characteristics among the
marketed drug products. For example, all of them have been
shown to be safe, effective, possess low (or no) target mediated
or non-mechanism toxicity, and have acceptable pharmacology.
Moreover, manufacturers of these biotherapeutics may have
encountered several hurdles during their drug product develop-
ment, process validation, and scale-up, but these hurdles did not
prove insurmountable (see discussion in ref 30). Our previous
work was focused on static homology-based models, excluding
effects due to their conformational flexibility. Moreover, the
workflow included only a single condition with fixed pH and
ionic strength, whereas biotherapeutic drug candidates need to
withstand various conditions during production, purification,
storage, and in vivo upon administration.6

The physicochemical properties and solution behaviors of
biotherapeutic drug candidates are highly dependent on their
intrinsic conformational dynamics and on the environment
conditions.31 The use of a single static-energy-minimized
antibody conformation is therefore a simplification of a complex
conformational landscape that responds to the changes in the
environmental conditions of the antibody molecule as it passes
through various stages of formulation, manufacturing, and in
vivo administration. Moreover, homology models generated
using crystal structure templates may keep imprints from the
template, suffer from crystal packing effects, and not accurately
represent the dominant conformation of the antibody in
solution.31,32 For these reasons, it is desirable that in silico
methods include, wherever feasible, conformational ensembles
accessible to the antibody candidates.15,33−35

In this work, we have obtained new intrinsic physicochemical
profiles of current market-stage antibodies by simulating

conformational flexibilities of their Fv regions via all-atom
explicit solvent molecular dynamics (MD). The simulations
were performed at four conditions relevant to their solution
behaviors at physiological, manufacturing, formulation, and
downstream processing, therefore providing a broader in silico
characterization of the market-stage antibody-based biother-
apeutics at specific pH values and ionic strengths encountered
during diverse research and development phases and in vivo.
This profile, called here DEvelopability Navigator In Silico
(DENIS), embedded MD and showed improved discriminatory
characteristics when compared to using static homology models.
The analysis of the simulation trajectories in different conditions
provided insights into the stability of the variable regions of
market-stage biotherapeutics in the presence/absence of ions
and at different pH values.

■ MATERIALS AND METHODS
Sequence Collection ofMarket-StageAntibody-Based

Biotherapeutics.The set of market-stage biotherapeutics used
in this work includes 12 new biotherapeutics (crizanlizumab,
emapalumab, enfortumab vedotin, eptinezumab, inebilizumab,
isatuximab, polatuzumab vedotin, ravulizumab, risankizumab,
romosozumab, sacituzumab govitecan, and teprotumumab) that
were approved by June 2020, in addition to the 79 Fvs from 77
market-stage biotherapeutics used in our previous work.30 All
available sequences were extracted from WHO,36 TABS,37 or
IMGT.38 Table S1 shows the publicly available information on
all the 89 biotherapeutics studied in this report. The information
compiled here includes the generic names, molecular formats,
heavy and light chain isotypes, and formulations. Note that some
of the information in this table was also previously disclosed in
the Supplementary Material for our previous publication.30

Of the 89 market-stage biotherapeutics, 87 are monospecific
antibodies and 2 are bispecific antibodies (emicizumab and
blinatumomab, accounting for the two additional Fv regions in
the dataset). The use of market-stage antibody-based biother-
apeutics as references for holistic in silico developability
guidelines is justified by the fact that drug products in the
market have already been developed to withstand different
physicochemical stresses experienced by the drug substance
during manufacturing, shipping, storage, and administration.
Therefore, information on whether a drug candidate has similar
or better intrinsic physicochemical characteristics as the market-
stage ones can be particularly useful toward its progression
during discovery and the development cycle. However, due to
the complex nature of biotherapeutics behavior, an in silico
similarity to this reference set does not guarantee a successful
journey of a candidate to the market. Instead, this profile should
be used as an advisory for potentially optimizing the drug
candidates whose intrinsic physicochemical parameters show
significant deviations.
Preparation of Homology-Based Molecular Models.

Molecular models of 91 Fv regions from 89 market-stage mAbs
were obtained via homology modeling using the Antibody
Modeler module implemented inMolecular Operating Environ-
ment (MOE) 202039 with a default Amber10: EHT force field.
Solvation was included using the Generalized Born implicit
model40 with internal and external dielectric values set
respectively to 4 and 80 and the non-bonded interaction tapered
to zero between 10 and 12 Å. C-termini of the Fv light and heavy
chains were amidated to have a neutral charge. The CCG
(Chemical Computing Group) antibody annotation schemewas
used throughout the work. The generatedmodels underwent the
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default structure preparation protocol in MOE to remove any
errors and adjust their protonation states to the final desired pH
and ion concentration. All structures were energy minimized
below a 10−6 kcal/mol/Å2 root mean square gradient threshold.
All Fv regions were prepared in four different conditions, which
were devised to mimic their solution behaviors at physiological,
formulation processing, and low pH hold conditions during the
viral inactivation step of biomanufacturing. The conditions differ
in pH values and ion (NaCl) concentration (Table 1). The

protonation state was determined using the Protonate 3D
function41 in MOE. After the homology modeling workflow, six
antibodies (bezlotoxumab, cemiplimab, durvalumab, fremane-
zumab, racotumomab, rituximab) presented at least one cis-
peptide bond, originating from the crystal structures used as
modeling templates.42 After repeating the protocol for obtaining
conformation-averaged molecular descriptors (see next para-
graphs) on bezlotoxumab with fixed cis-peptide bonds, no
significant differences were observed, highlighting that within
the simulation time, the presence of a few cis-peptide bonds does
not significantly influence the relevant properties used in this
work (Figure S1).
MD Simulations. All classical MD simulations were

performed using NAMD2 and NAMD3, for equilibration and
production runs, respectively.43 The fully atomistic
CHARMM36m force field44 was used for protein, and the
standard TIP3P model45 was used for water. Nonbonded
interactions were calculated with a cutoff of 12 Å, with a
switching function starting at 10 Å. Particle mesh Ewald
(PME)46 was used to account for long-range electrostatic
interactions with a grid density of 1 Å−3 and a PME interpolation
order of 6. Rigid bonds for all hydrogen atoms were enforced
using the SHAKE algorithm.47 All simulations used for analysis
were performed using periodic boundary conditions in the NPT
ensemble (constant number of particles, pressure, and temper-
ature), which was maintained by a Nose−́Hoover−Langevin
piston and a Langevin thermostat (1 atm, period: 50 fs, decay: 25
fs, damping coefficient: 1.0 ps−1).48,49 The sizes of the
rectangular box varied according to protein size, ensuring a
minimum distance of 17 Å from the protein to each face of the
box. The simulation timestep was set to 2 fs. Lennard-Jones
forces were updated at every timestep, whereas PME forces were
updated every two timesteps. All Fvs were equilibrated following
an extensive multistep protocol: (i) 2000 steps of minimization
followed by 20 ps simulation with a fixed periodic cell (NVT)
and restraining all but water molecules with a high force constant
(10 kcal/mol·Å2); (ii) 20 ps in NPT restraining all but water
molecules with the same force constant as in (i); (iii) additional
20 ps restraining only the protein and keeping the force constant

as in (i); (iv) 100 ps restraining only the protein heavy atoms
with a lower force constant (2.5 kcal/mol·Å2); (v) 100 ps
restraining only the protein backbone with the same force
constant as in (iv); (vi) 100 ps restraining the protein backbone
with a force constant of 1.0 kcal/mol·Å2; and (vii) 100 ps
without any restrains. This protocol ensures the thermal
equilibration of the protein while avoiding large structural
rearrangements that improperly alter the initial homology
model. The total volume of the simulation cell after the
equilibration ranged between 460 and 560 nm3, with a total
number of atoms varying between ∼45,900 and ∼51,100. The
coordinates and velocities in the last snapshot of step (7) were
used to start the simulation in production mode, which then
were used for analysis. These final unrestrained trajectories ran
for 200 ns for each mAb. The total simulation time sums up to
∼73 μs considering all 91 mAbs in all four conditions. The
equilibration of the simulation systems was examined by
monitoring the total energy, temperature, and pressure.
Moreover, the root mean square deviation (RMSD) of the
variable regions calculated in the 20−110 ns and in the 110−200
ns time ranges was extracted for each system at each condition
and showed that there is no significant rearrangement of the
protein conformations after the first 20 ns of equilibration
(Figure S2).

Analysis of the trajectories was performed in VMD50 using
custom scripts. The final trajectories were prepared by centering
the protein in the center of the box and aligning all frames to the
position of the alpha carbon atoms in the first frame. The RMSD
and root mean square fluctuation (RMSF) were calculated in
VMD using the measure rmsd/rmsf functions by selecting only
the alpha carbon atoms of all amino acids (Table S2). UniqueH-
bonds along the entire production trajectories were identified
using a donor−acceptor distance cutoff of 3 Å and an angle
cutoff of 20°; the cutoffs were increased to 4 Å and 60° when the
acceptor was chlorine anion. Radial distribution functions were
calculated using the measure gofr function implemented in
VMD.51 The variable region in nimotuzumab shows a peculiar
behavior during the simulations with greater fluctuations in
comparison to the variable regions from other biotherapeutics
(Figure S3). The reason is ascribed to a disorderedN-terminal in
the heavy chains (Q1 to G8), with a local RMSF greater than
∼10 Å in all the four simulation conditions. The crystal structure
of nimotuzumab (Protein Data Bank (PDB)52 entry 3GKW)53

also shows that its N-terminal is disordered, as the five N-
terminal residues (Q1 toQ5) were not resolved due to smears in
the electron density map. Other studies involving MD
simulations of nimotuzumab did not report this effect, probably
because of shorter simulation times, which did not allow for a
more extensive observation of the disordered N-terminal.53−55

Calculation of Molecular Descriptors. For each Fv,
protein properties were calculated using the energy-minimized
homology models and the trajectories from the simulations. For
the latter, the last 180 ns of the trajectories was used, since a
preliminary analysis for three antibodies (burosumab, crizanli-
zumab, and denosumab) showed that there is still a significant
change for protein properties in the first few nanoseconds
(Figure S4A). Moreover, this analysis showed that it is not
necessary to use all snapshots saved during theMD simulation to
obtain converged averages for protein properties. For this work,
it was sufficient to consider 300 snapshots along the 200 ns
simulation (∼0.6 ns timestep, Figure S4B). Before calculating
molecular descriptors, all protein snapshots went through the
MOE structure preparation protocol to set the partial charges to

Table 1. Conditions Used for Homology Modeling and MD
Simulations toMimic the Solution Behaviors ofMarket-Stage
Biotherapeutics Variable Regions at Physiological,
Formulation Processing, and Low pH Hold (Viral
Inactivation Step) Conditions during Manufacturinga

condition tag pH [NaCl] (mM)

C1 (physiological) 7.4 137
C2 (formulation, no NaCl) 6.0 0
C3 (formulation, with NaCl) 6.0 150
C4 (viral inactivation step) 3.5 0

aThe protonation state of each mAb was estimated at the beginning
of the simulation and was kept fixed thereafter.
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the default Amber10: EHT force field. Since the simulations
were performed using the CHARMM36m force field, this
procedure allows for the electrostatic terms in the molecular
descriptors to be compatible with our previous work.30 The
protonation state was also re-evaluated for each protein
snapshot at the target pH and NaCl concentration in the
conditions C1−C4. A short minimization to a shallow 1.0 kcal/
mol/Å2 gradient threshold assured that there were no clashes
and strains in the protein system.

To compare molecular descriptors obtained through HM and
MD simulations in different simulation conditions, changes for
relevant descriptors (d) were calculated as the mean percentage
error (MPE) and mean absolute percentage error (MAPE)
according to

· = d

n

100 /i
n i i

1 MD

(1)

where Δi = (dMD
i − dHM

i ) or Δi = |dMD
i − dHM

i | for MPE and
MAPE, respectively, with i running over all Fv regions (n = 91).
Similarly, descriptors obtained fromMD simulations at different
simulation conditions were compared using

· = _d

n

100 /i
n i i

1 MD Cref

(2)

with Δi = (dMD_Cref
i − dMD_Cx

i ) or Δi = |dMD_Cref
i − dMD_Cx

i | for
MPE and MAPE, respectively, and subscript Cref indicating the
condition chosen as reference for the comparison. MAPE
estimates the antibody-wise absolute change in properties. MPE
gives additional information of the sign of the overall change,
showing the possible existence of a general behavior for the
whole set of Fv regions. To isolate the effect of ions, MAPE and
MPE were calculated between conditions C2 and C3 (without/
with NaCl and pH fixed at 6.0). Likewise, the effect of pH was
considered by obtaining MAPE/MPE between conditions C2
and C4 (pH 6.0 and 3.5, no NaCl).
UniqueMolecular Descriptors and ScoringMetrics. All

125 protein properties available in MOE 2020 were extracted
during the analysis step to be considered for the final
physicochemical profiles. The features reporting outlier values
in the homology models, e.g., backbone bond torsion outlier, or
possible cis-peptide bonds were excluded (in total six
descriptors), as they carry no useful information to characterize
the Fv regions. The descriptors containing the length on the
CDRs were also disregarded (in total seven descriptors). Two
descriptor combinations were instead added as previously
introduced.30 The first is equal to the ratio of surface areas of
positively and negatively charged patches to that of hydrophobic
patches (“RP”), whereas the second is equal to the ratio of dipole
moment to hydrophobic moment (“RM”). The torsion angle
between HC and LC (“HL angle)” and the distance between
HC and LC (“dc distance)” from ABangle56 implemented in
MOE were used to describe the relative orientation between
antibody variable domains but were not used for the
construction of the physicochemical profiles because these
descriptors carry a geometrical rather than physicochemical
meaning.

Out of the final 114 descriptors, 97 showed a variance higher
than 1% among Fv regions and along the trajectories in all
simulated conditions. Moreover, an initial analysis was used to
remove highly correlated descriptors with Pearson correlation
coefficients higher than 0.75, reducing the number of molecular
features down to 23−25 per simulated condition. To further half

the number of descriptors, an agglomerative hierarchical
clustering in SciPy57 was applied to cluster the descriptors in
12 groups according to their pairwise correlation coefficients
(Figures S5−S8).30 The “average” method in the linkage
function was used to calculate the distance between the newly
formed clusters. One descriptor was selected as representative of
each cluster resulting in a total of 13 descriptors. In an effort to
further reduce the molecular descriptors and obtain only the
most uncorrelated intrinsic properties, a statistically significant
correlation between these 13 descriptors was considered using
the rule of thumb | |rij n

2 , where rij is the correlation
coefficient between descriptors i and j and n is the total number
of samples (|rij| = 0.21 for 91 Fvs in this work).58 For each
descriptor, the number of times that the descriptor was
uncorrelated with another was counted in all simulated
conditions and used as a ranking score (Figure S9). This
exercise allowed for a sub-selection of descriptors that showed
smaller inter-descriptor correlation. The eight computed
descriptors that showed the highest frequency ( f) of
uncorrelation were hydrophobic imbalance ( f = 42), protein
helix ratio ( f = 42), protein strand ratio ( f = 42), ratio of dipole
to hydrophobic moment ( f = 41), buried surface area between
LC and HC ( f = 41), structure-based pI ( f = 40), hydrodynamic
ratio ( f = 35), and ratio of charged to hydrophobic patches ( f =
33). The protein helix ratio was also removed from the final
descriptor because the helix content in Fv regions is low (below
∼5% of amino acids) and secondary structure information is
already captured in the protein strand ratio.

Z-scores for each descriptor were computed as

=Z x( )/i ij i i (3)

with index i and j running along all considered descriptors and
mAbs, respectively, and μ and σ being the mean and standard
deviation of the ith descriptor. The variants are ranked using the
Z-distance metric calculated using the associated Z-scores as

Z
i

i
2

(4)

where the summation runs over the unique sub-selected
descriptors.30

■ EXPERIMENTAL DATA
Thermal stability analysis of a subset of 38 market-stage
antibodies was performed with a QuantStudio 5 RT-PCR
system (Applied Biosystems, Waltham, Massachusetts). Protein
samples in 10 mM histidine pH 6 with either 2 or 150 mMNaCl
were diluted to a final concentration of 0.4 mg/mL and mixed
with 6× SYPRO Orange (Invitrogen) and sealed in a 96-well
PCR plate. The temperature was increased from 25 to 95 °C at a
ramp rate of 1 °C/min. Samples were excited at 470 ± 15 nm
and emission signals collected at 586 ± 11 nm. Fluorescence
signals were plotted against temperature to generate melting
curves. The local maxima of the first derivative of melting curves
were taken as the Tm by using an in-house Python script.

■ RESULTS
pH Has a Greater Impact on Fv Conformational

Stability than the Presence of NaCl. As a first glance into
the effect of dynamics on the Fv regions of the market-stage
biotherapeutics, the RMSD for all the 91 Fvs was extracted in the
four different solution conditions (Table 1). The general trend
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shows that Fv regions fluctuate significantly in the first ∼20 ns,
allowing for the initial homology models to relax toward a more
conformationally stable configuration (Figure S15 and Table
S2). The data indicate that the physiological conditions (C1: pH
7.4 and 137 mM NaCl) give rise to smaller conformational
fluctuations in the Fv regions. On the other end, the low pH
condition used at the viral inactivation step during manufactur-
ing (C4: pH 3.5 and no added NaCl; low pH hold) shows
greater conformational fluctuations indicating pH-induced
destabilization. This observation is in line with the usually
increased antibody aggregation due to protein denaturation at
low pH hold during virus inactivation.59 The two formulation
conditions, C2 and C3 (pH 6 without or with added NaCl),
show intermediate conformational flexibility. The pH therefore
has a greater impact on the general structure stability of the Fv
regions than the presence or absence of ions. Specific regions of
higher fluctuation shown in RMSF profiles (Figure S15)
coincide with the more flexible loops, particularly with CDR-
H3 or with N- and C-termini, as described in the literature.60,61

Values of Physicochemical Descriptors Can Differ
Significantly between Conformational Ensembles and
Energy-Minimized Homology Models. The distributions of
molecular descriptors and theMAPE for the Fv regions showing
a correlation lower than 0.75 are reported in Figure 1 (see
distribution plots in Figure S16 and a complete list of absolute
and difference values in Tables S3 and S4). A few descriptors
such as the structure-based pI or the hydrodynamic radius do
not show changes after the simulations (MAPE <5%). The
protein helix ratio, defined as the number of amino acids in
helical conformation divided by the total number of amino acids
and expressed in percentage, changes by up to ∼60% in C4.
However, since the protein helix ratio is in general below ∼5%
for all Fv regions, the relative change between static and MD
simulation becomes prone to noise and gives rise to large
differences. On the other hand, many other descriptors change
significantly when the protein dynamics is taken into
consideration. The salient ones are described below.

The surface patches obtained through the conformational
ensembles are generally and systematically larger than in
homology models (17−31% MAPE, +5−19% MPE), indicating
that the relaxation allows for the formation of larger and more
stable patches. In particular, the number of hydrophobic patches
near CDRs increases by up to ∼40%. The standard deviations
for patches are systematically higher for static models by 5 to
25% (Table S3). Therefore, distributions are narrower after the
simulations, allowing for more converged molecular patches.
Notably, the increase in hydrophobic patches is larger than the
increase in charged patches, causing an overall decrease in the
ratio of surface areas of the charged to hydrophobic patches
(RP) by −7 to −19% (MPE). These changes reveal that MD
simulations provide greater insights into properties of the
molecular surfaces than the use of energy-minimized homology-
based models alone. It was already discussed in previous works
that hydrophobicity strongly depends on the conformation of
the antibody, with conformational sampling improving the
correlation with experimental values.62

The hydrophobic imbalance (HI) also shows a significant
increase in all simulated conditions (MAPE ∼28%). This
descriptor was devised to characterize the anisotropy in the
hydrophobic residue distributions on the surface of a protein.63

An increase in this value translates into more asymmetric
distributions of hydrophobic residues on the molecular surface.
Other molecular descriptors such as the electric dipole moment
or the hydrophobic moment show significant variations in
absolute terms (MAPE between 10 and 20%) but almost zero
MPE, showing an antibody-dependent rather than a systematic
change across all antibodies.

After theMD simulations, the buried surface area between LC
andHC (BSAVL:VH) shows a systematic reduction of 25 and 32%
in C1 and C4, respectively (MAPE is equal to |MPE|). One
reason for such change is ascribed to the lack of structural
support from the constant region during the Fv simulations, as
CH1 and CL can stabilize interdomain orientation, significantly
altering the binding interface of the antibody.64,65 However,

Figure 1. Effect ofMD simulations on themolecular descriptors obtained as percentage change between values extracted from theMD simulations and
from the energy-minimized homology models (HM) for all simulated conditions (C1: blue, C2: orange, C3: green, C4: red). The mean percentage
error (MPE) and mean absolute percentage error (MAPE) were obtained through eq. 1 as averages along all Fv regions (Table S4). MAPE estimates
the antibody-wise absolute change in properties. MPE gives additional information of the sign of the overall change, highlighting the possible existence
of a general behavior for the whole set of Fv regions. The molecular descriptors were arranged in descending order according to MAPE.
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previous simulations observed no significant differences among
domain orientations in Fv, scFv, or Fabs.66 Alternatively, this
difference can be attributed to potential crystal packing effects in
the homology model template with fewer exposed hydrophobic
residues as to minimize contact with the aqueous environ-
ment.60,67,68

Geometric differences in the LC−HC interface arrangements
were also observed, with systematic ∼8% longer distances
between the two chains after the simulations (“dc distance” in
Table S4) and an overall ∼4% decrease in torsion between the
two variable domains (“HL angle”, MAPE ∼9%).
Salt Presence and pH Affect the Surface Properties of

Antibody Variable Regions. Solution conditions such as
ionic strength and pH affect protein physicochemical properties,
as reported by several studies.69−72 A comparison between
distributions obtained from MD simulations in different
solution conditions illustrates that several molecular descriptors
significantly change with NaCl concentration and pH (Figure 2
and Table S5). While positive patches systematically increase,
on average, by 15% between pH 6.0 and pH 3.5, there is a larger
systematic decrease in negative patches of 46%. These changes
are driven by the protonation states of amino acids with charged
side chains such as histidine, aspartate, and glutamate. This

asymmetric change results in a total decrease in charged patches
by 10% at low pH. As expected from previous experiments,73−75

low pH increases the size as well as the number of hydrophobic
patches (MAPE = 10% and MPE = −4% for the count of
hydrophobic patches; MAPE = 17%, MPE = −6% for the count
of hydrophobic patches near CDRs). The low pH promotes
larger hydrophobic patches because of the decrease in total
charged patches, which in turn triggers a more compact and
favorable reorganization of hydrophobic residues. Taken
together, the two charged and hydrophobic patch modulations
cause a decrease in patch ratio (PR) by 11% on average. The
effect of ions on charged patches is less evident (MAPE <7%)
but still supports the formation of larger patches in the presence
of NaCl. The hydrophobic properties of the Fv regions also
change upon addition of NaCl (e.g., MAPE of 10 and 17% for
count of hydrophobic patches for the whole Fv or near CDRs,
respectively); however, the change is associated with only
certain antibodies and is not generally observed for all antibodies
(MPE ∼−1%).

Changes in NaCl concentration and pH did not cause
significant changes in the structural arrangement of the Fv
regions. For instance, the radius of gyration remains constant,

Figure 2. Effect of pH and NaCl on molecular descriptors obtained from the MD simulations. (Top) pH effect was obtained from the percentage
change between C2 and C4 (no NaCl present). (Bottom) NaCl effect was instead retrieved from the percentage change between C2 and C3 (pH fixed
at 6.0). The mean percentage error (MPE) and mean absolute percentage error (MAPE) were calculated through eq 2 as averages along all Fv regions
(complete list in Table S5 and plot in Figure S17). Descriptors with a MAPE higher than 5% are reported.
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whereas BSAVL:VH and LC/HC torsion angles decrease only
slightly upon lowering the pH.
Ion Interaction with the Fv Regions of CertainMarket-

Stage Antibodies Impacts Their Conformational Stabil-
ities. Apart from being intrinsically encoded in the protein
sequence and structure, the physicochemical behavior of mAbs
can also depend on the extrinsic characteristics such as the type
and concentration of excipients, co-solutes, and buffer in the
antibody formulations.70,76−78 Besides analyzing the effect of
composition on specific molecular descriptors, we analyzed the
MD simulations to understand the impact of specific ion
interactions on the overall Fv conformational stability. Radial
distribution functions, g(r), were extracted between ions (Na+ or
Cl−) and the center of mass of the Fv regions. No strong
preferential binding to ions is observed for most of the
antibodies. However, large peaks with values exceeding g(r) >
4 can be observed for specific antibodies (pertuzumab,
polatuzumab, daclizumab, rituximab, and trastuzumab), point-
ing to a significant ion: protein interaction in the order of −0.5 to
−1.5 kcal/mol for these antibodies (Figure 3A,B and Figure
S18).

Most ion interactions with the Fv regions occur through
chloride rather than sodium ions. This observation agrees with
the Hofmeister series, which favor protein interactions with
anions over cations,79 and can be rationalized on the basis of the
usually positive total charge on the Fv regions, determined by pI
values being usually higher than the solution pH (the average
structure-based pI is ∼7.8 ± 1.4 for all 91 Fvs), which increase
the chance for electrostatic interaction with anions.80 Chloride
has a chaotropic character having a weak hydration shell that
favors interactions with the protein surface, whereas sodium is a
kosmotropic species that prefers interactions with water.

The conformational stability of the Fv regions was
qualitatively assessed using the RMSD averaged along the last
20 ns of the trajectories.81 The distributions of the RMSD were
plotted by splitting the histograms according to the presence of
sodium chloride in the drug formulation, as retrieved from the
FDA package insert (Figure 3C, Table S1, 41 out of the 89 mAb
formulations contained sodium or chloride ions). If the presence
of NaCl does not affect the stability of the antibody, a similar
RMSD distribution between the two sides of the violin plot is
expected since there should be statistically no difference
between the two groups of proteins simulated at one specific
condition. Interestingly, the RMSD distributions obtained for
the simulation conducted without NaCl (particularly C2, pH 6
without salt added) showed higher RMSD values for mAbs
whose drug product formulations contained NaCl. This
observation shows that the presence of NaCl can conforma-
tionally stabilize or destabilize certain mAbs.

To explore this hypothesis, the melting temperature (Tm) for
38 expressed antibodies was experimentally measured by
thermal stability analysis at conditions comparable to C2 and
C3 (complete list in Table S2 and thermal stability profiles in
Figure S19). Even though the presence of NaCl decreased the
Tm of ∼75% of the measured mAbs (28 of the 38 mAbs used for
Tm evaluation), no general correlation between the change of Tm
and the change in RMSD between conditions C2 and C3 was
observed. However, a closer look at certain antibodies with
strong ion interactions as indicated by the g(r)s in Figure 3
reveals that there is a correspondence between the change in
melting temperature between C2 and C3 conditions and the
structural fluctuation of the Fv region. For daclizumab and
polatuzumab, an increase in Tm with the presence of NaCl (+1.4

and +0.7 °C) coincides with a decrease in RMSD (−0.8 and
−0.4 Å, respectively). For pertuzumab, rituximab, and
trastuzumab, the presence of ions causes a decrease in the
melting temperature (−1.7, −3.0, and −1.6 °C) with a
corresponding increase in RMSD (+0.1, +0.5, and +0.8 Å,
respectively). In all cases, the ion pocket localizes within the
cavity formed among all CDRs in HC and L3, with ions
coordinated by acidic or basic residues.
Removal of Chloride Triggers Large Structural

Fluctuations in Daclizumab. As an example of the effect
that ions can have on certain antibodies, we report a detailed
discussion on the molecular origins of the ion-induced
conformational stabilization of daclizumab, a biotherapeutic
drug approved for the treatment of relapsing forms of multiple
sclerosis but withdrawn from the market in 2018.82,83 From the

Figure 3.Radial distribution function, g(r), betweenNa+ or Cl− and the
center of mass of the Fv regions at condition C1 (A, pH 7.4 and 137
mM NaCl) and C3 (B, pH 6.0 and 150 mM NaCl) for the antibodies
showing the strongest ion interaction (peak in g(r) higher than 4). The
horizontal dotted line indicates the g(r) reaching the value of 1 at long
distances. (C) The RMSD averaged for the last 20 ns of each trajectory
is reported splitting the distribution according to the presence (light
gray) or absence (dark gray) of NaCl in the drug product formulation
extracted from the FDA (Food and Drug Administration) package
insert. Values for daclizumab (green stars) and pertuzumab (blue stars)
are indicated explicitly, and the marker position with respect to the side
of the distribution indicates whether the antibody contains NaCl in the
drug formulation.
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MD simulations, its Fv region undergoes large structural
rearrangements in C2 and C4, with the result being reproducible
(Figure 4A). The average RMSF is ∼0.8 Å in C1 (pH 7.4, 137
mMNaCl) and C3 (pH 6.0, 150 mMNaCl) but increases to 1.3
and 2.5 Å in C2 (pH 6.0, and no added NaCl) and C4 (pH 3.5
and no added NaCl). An extensive network of interactions is
responsible for the ion sensitivity (Figure 4B−G and Figures S20
and S21). The changes in NaCl concentration and pH induce
different protonation states for three histidine (His 33 & H89 in
LC and His 35 in HC (CCG annotation reported), all within
CDRs) and four glutamate residues (Glu 70 in LC and Glu 72,
80, and 87 in HC) in the Fv region. The protonation of
glutamates at pH 3.5 reduces their H-bond acceptor capability
but only has a minor effect on the stability of the Fv region
because these glutamates are far from the LC−HC interface. On
the other hand, each histidine residue is located at the interface
between the VH and VL domains. Strikingly, a stable chloride
pocket is formed between H1, H3, and L3 loops at conditions
C1 and C3 (Figure 4D and Figure S21G). In this pocket, His 35
and Arg 32 in HC, Arg 91 in LC, and backbone amides from a

few HC residues concertedly coordinate a chloride, with the
anion occupying the pocket for 77% and 47% of the simulation
time in C1 and C3, respectively. In addition, His 35 forms a H-
bond with Trp 46 in HC, which stabilizes the folding of the L1
loop and the side-chain orientation of His 35. In the absence of
NaCl at conditions C2 and C4, the chloride ion pocket is
missing and interchain coordination is disrupted, with a
detrimental effect on the VH:VL interface and H3 loop
conformational stability (Figure 4E).

The other two histidine residues (His 33 and 89 in LC) also
participate in this pH- and ion-sensitive interplay. For His 33 in
LC, a stable interaction switches from backbone amide of Thr 50
toward the Arg 91 side chain, reducing the possibility for the
latter to stabilize the anion binding pocket upon changing the
environment from C1 to C2 (Figure 4B,E). Less dramatic
changes are observed in the case of His 89 in the light chain,
where the partially buried histidine becomes more solvent-
exposed upon full protonation.

.

Figure 4. (A) RMSF for the daclizumab Fv region at different conditions (C1: blue, C2: orange, C3: green, C4: red, including one additional replica at
C4 in purple). The shaded areas highlight the CDRs (L1−3: purple, H1−2: orange, and H3: red). Snapshots showing the last frame of daclizumab
simulation at (B−D) C1 (pH 7.4, 137 mM NaCl) and (E−G) C2 (pH 6.0, no NaCl) with (B, E) H33, (C, F) H89 in LC, and (D, G) H35 in HC
highlighted. The purple density shows the chloride occupancy at an isovalue of 0.04. Neighboring residues surrounding the histidine residues are
visualized.
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Intrinsic Physicochemical Profile for Biotherapeutics
Can Be Improved by Using Conformational Ensembles
of the Fv Regions. In the previous sections, we have shown
how molecular descriptors and conformational stability of
antibodies can be affected by the inclusion of conformational
sampling and the use of different solution conditions.
Envisioning an improvement in the accuracy of predictive
models by embedding MD, we have built an intrinsic
physicochemical profile for using the 91 Fv portions from 89
biotherapeutics with the molecular descriptors averaged along
the simulation trajectories. The high-variance descriptors were
clustered as described in theMaterials andMethods section, and
hierarchical dendrograms were used to identify non-redundant
descriptors (Figures S5−S14). For all simulated conditions,
seven unique and orthogonal descriptors were selected (Figure
5): BSAVL:VH, RP, RM, HI, structure-based pI, hydrodynamic
radius (HR), and protein strand ratio (PS). The first five of these
descriptors also formed the intrinsic physicochemical profile

built by Ahmed et al.30 using the energy-minimized homology-
based structural models of 77 biotherapeutics. BSAVL:VH
quantifies the contact area between the VL and VH domains of
an Fv region. Higher values are associated with increased protein
stability, as can be seen from its average value rising from ∼640
to ∼670 Å going from pH 3.5 to 7.4 (Table 2). Better interface
stability between the two domains can translate even to higher
antigen affinity. The presence of significantly large charged and
hydrophobic surface patches can affect the solution behavior
(aggregation, viscosity) and immunogenicity of biologic
molecules.84−89 The RP was introduced to track the change in
such surface patches using a single value.30 Values out of typical
ranges on both sides of the distribution can be potentially
associated with greater development risks. Among the simulated
conditions, low pH (C4) causes RP to significantly reduce
(Table 2), highlighting that this pH poses greater challenges for
controlling protein stability. RM equals the ratio between two
fundamental quantities, the electric dipole moment, and the

Figure 5. Intrinsic physicochemical profile of market-stage therapeutic Fvs showing the distribution of Z-scores for all seven descriptors and for static
(white boxes) and simulated (colored boxes) systems at the four simulated conditions. The purple and orange bars represent the mean and median of
the distribution, respectively. Outliers with Z-scores higher/lower than 6/−6 (1 for MD-based and 13 for static-based box plots) are not shown.

Table 2. Means, Standard Deviations, and Ranges (in Parentheses) for Seven Nonredundant Descriptors Obtained from the MD
Simulations in Four Conditions

descriptor
C1: pH = 7.4

[NaCl] = 137 mM C2: pH = 6.0
C3: pH = 6.0

[NaCl] = 150 mM C4: pH = 3.5

buried surface area between LC/HC [Å2] 671 ± 81 (456−941) 654 ± 82 (405−944) 653 ± 82 (425−835) 638 ± 93 (329−858)
ratio of charged to hydrophobic patches (RP) 2.0 ± 0.7 (0.9−5.4) 1.9 ± 0.7 (0.9−5.5) 2.0 ± 0.7 (1.0−5.2) 1.7 ± 0.5 (0.8−3.7)
ratio of dipole to hydrophobic moment [D]
(RM)

1.2 ± 0.9 (0.2−6.7) 1.1 ± 0.7 (0.1−5.2) 1.2 ± 0.8 (0.1−4.4) 1.1 ± 0.7 (0.2−4.9)

hydrophobic imbalance (HI) 1.1 ± 0.4 (0.2−2.0) 1.1 ± 0.4 (0.3−2.2) 1.1 ± 0.4 (0.3−2.2) 1.1 ± 0.4 (0.3−2.0)
structure-based pI 7.7 ± 1.4 (4.3−9.6) 7.8 ± 1.4 (4.4−9.7) 7.8 ± 1.4 (4.3−9.6) 7.8 ± 1.4 (4.4−9.6)
hydrodynamic radius [Å] (HR) 23.6 ± 0.3 (23.0−24.5) 23.7 ± 0.3 (23.1−24.4) 23.7 ± 0.3 (23.2−24.7) 23.7 ± 0.3 (23.2−24.8)
protein strand ratio [%] (PS) 48.2 ± 1.9 (44.0−53.8) 48.0 ± 2.0 (43.4−53.9) 47.9 ± 2.0 (44.0−54.6) 48.1 ± 2.0 (40.4−53.2)
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hydrophobic moment, characterizing the distribution of charged
and hydrophobic residues in the biologic molecule, respectively.
Together, they can report on protein−protein and protein−
solvent interactions through polar and non-polar residues. The
HI, previously introduced,63 and the structure-based isoelectric
point (pI, i.e., pH at which a protein carries no net electrical
charge) do not show large changes in the different conditions.
However, they are also crucial for determining the solution
behavior of biotherapeutics in terms of colloidal stability,
aggregation, and pharmacokinetics.63,90−92 Two additional
descriptors, namely, HR and PS, were identified by the MD
simulations as characterizing antibodies in a unique and
orthogonal way. HR is defined through the size and mass of a
macromolecule and is connected to its diffusivity in solution.
The PS refers to the amount of β-sheet content in the protein
and is indicative of folding stability associated with a secondary
structure. Both HR and PS relate to the conformation stabilities
and flexibilities of the variable regions.

Z-scores (eq 3) of the seven descriptors obtained from the
MD simulations were compared to the Z-scores of the 91 initial
homology-based models. While the MD profiles show at all
conditions only one outlier, defined as a datapoint with Z-scores
higher/lower than 6/−6, there are 13 outliers for profiles from
static models. A higher number of outliers are also observed in
the Z-distance space at different conditions (Figure S22).
Moreover, the standard deviation of Z-distance is systematically
smaller after the simulations (from 1.3−1.5 using homology
models to 0.8−0.9 using MD simulations). Therefore, the
physicochemical properties obtained from MD simulations
converge better than those from the static models. Given the
distribution of the seven orthogonal descriptors after MD
simulations, we noticed no significant changes for five of them
when comparing conditions C1−C4 (Table 2). However,
BSAVL:VH and RP show clear changes that are particularly

pronounced at low pH (C4). Consequently, these two
descriptors represent the key features of the MD-based
physicochemical profile that can discriminate between antibody
candidates in different environment conditions.

Altogether, MD simulations improve the in silico derived
intrinsic physicochemical profiles by (a) increasing the accuracy
and precision of the computed properties, (b) bringing in two
additional non-redundant descriptors that provide insights into
dynamic behaviors of the Fvs regions, and (c) considering
environmental conditions experienced by biotherapeutics under
physiological as well as different manufacturing and formulation
processing conditions. These more stringent profiles can
potentially help better guide the developability assessments of
leads selected for optimization.
Applying the MD-Enhanced Intrinsic Physicochemical

Profile to Biotherapeutic Case Studies. The greatest
potential of the intrinsic physicochemical profile of market-
stage biotherapeutics is the selection and optimization of lead
candidates for discovery and development. To evaluate the
performance of the intrinsic physicochemical profile and the
benefits introduced by embedding the protein dynamics, the
MD-based DENIS was tested relative to the homology
modeling-based one30 on a series of cetuximab variants that
have been optimized for thermal stability.93 Although thermal
stability is not the only parameter determining biotherapeutics
developability, it is generally related to a lower unfolding
propensity,12 a lower risk for aggregation,27,95 and better
expression titer.9,96 Both DENIS approaches are able to rank
the variants with the highest thermal stability as having a low Z-
distance (always within 67% of the antibodies, Figure 6A).
However, homology modeling-based DENIS is less selective. It
lists 24 variants within 33% of the mAb population instead of 16
identified by the MD-based one. Moreover, the MD-based
profile classifies the G2 VH/G2 Vκ as the best candidate, which

Figure 6. Candidates ranking according to Z-distance obtained from homology models (left) or including dynamics through MD simulations (right).
(A) A set of cetuximab variants modeled at the C1 condition was used as a first test case.93 Variants with melting temperatures higher than 80 °C are
highlighted with a green asterisk. The Tm and DENIS values are reported in Table S6. (B) A parent/variant (single mutation) pair, with the variant
having a threefold increased product titer, reduced level of aggregates, and fragments after downstream process purification and enhanced colloidal
stability, was used as a second test case.94 DENIS was applied in all four simulation conditions (C1−C4). Orange and red horizontal lines indicate 33
and 67% population of the reference 91 Fv region dataset at the specific simulation condition.
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also exhibited the highest thermal stability among all variants in
the dataset with a Tm of 82.5 °C.

In a second case, a difficult-to-develop mAb (a G6 parent
antibody) that binds vascular endothelial growth factor (VEGF,
Protein Data Bank (PDB) entry 2FJF)97 was evaluated via
DENIS in all four conditions (C1−C4, Figure 6B) relative to an
optimized variant that showed significantly improved CMC
(Chemistry, Manufacturing, and Control) characteristics after
substituting a single amino acid (S52R in LC).94 During
experimental evaluation, the variant showed a threefold
increased product titer, reduced level of aggregates and
fragmentation during the downstream purification, and
enhanced colloidal stability, while maintaining potency similar
to the parent antibody.94 Improved characteristics for the variant
were also demonstrated at low pH applied during acidic
treatment. HM-based DENIS was able to rank the parent/
variant correctly only in conditions C1 and C2, while MD-based
DENIS systematically favored the variant in all simulation
conditions. Contrary to the MD-based counterpart, the original
HM-based model indicated opposite rankings at C2 and C3
(without and with NaCl), probably due to differences in the
homology models of parent and variant obtained at the two
conditions. The MD-based DENIS profile sensitively predicted
the improved developability of the variant even if the sequence
only differs at one position from the parental mAb.

As the final case study, the NIST (National Institute for
Standards and Technology) sample reference monoclonal
antibody (NIST mAb)98 was analyzed using the method
developed in this work, even though this antibody is not a
biotherapeutic drug candidate or product. The NIST mAb has
been previously characterized for its biophysical properties using
a variety of experiments,90 which makes this antibody another
useful resource for us. The experimental data available on this
mAb corresponds to the conditions C2 and C3 (pH 6 without
and with added salt, respectively). In these two conditions, all
the seven physicochemical descriptors computed from MD
trajectories of NIST mAb’s variable region fall within the ranges
observed for 91 Fvs from the market-stage biotherapeutics (see
Table S7 and Table 2) and therefore the MD-based DENIS
shows small Z-distance values for this antibody (Z-distance =
1.90 for C2 and 1.86 for C3). The values of Z-distance for the
NISTmAb in the other two conditions C1 (1.78) and C4 (1.51)
are also small, and all the seven descriptors also fall within the
ranges observed for the market-stage biotherapeutics for these
conditions (see Table 2). Figure S23 compares the intrinsic
physicochemical profile of NIST mAb with the 91 Fvs from the
market-stage biotherapeutics in the C2 condition using the Z-
score box plots. All the seven non-redundant physicochemical
descriptors, except for the PS, fall within their respective boxes.
PS shows higher Z-scores in the other three conditions also
(Table S7). Additionally, Table S7 shows that the Z-scores for all
seven descriptors in all four conditions vary from −0.78 to 1.62,
showing thereby that physicochemical properties of the NIST
mAb are similar to those of the market-stage biotherapeutics.
These observations agree with results from the extended
experimental characterizations of the developability of the
NIST mAb reported in the literature.99,100

■ DISCUSSION
Solution behaviors of biotherapeutic macromolecules are
determined by multiple factors, namely, their amino acid
sequences, their molecular surface characteristics, and character-
istics of their environmental conditions (e.g., formulation

buffers, excipients, pH, ionic strengths, or surfactants). In this
work, in silico physicochemical profiles for 91 Fv regions from
89 market-stage antibodies were built after simulations for
hundreds of nanoseconds in four different conditions:
physiological, formulation with or without added ions, and
low pH hold. These solution environments are experienced by
the biotherapeutic drug candidates at various stages of
production, storage, and administration. These phenomeno-
logical profiles can provide valuable guidelines for developability
assessments of biotherapeutic drug candidates, particularly
during lead optimization. Our previous work on physicochem-
ical profiling of the market-stage biotherapeutics was based on
the energy-minimized homology models of 79 Fv regions from
77 biotherapeutics available in the market as of early 2020.30

Here, we found for an updated list of 91 Fv regions from 89
biotherapeutics that theHM-based approach can be significantly
improved by accounting for the protein conformational
dynamics, which in turn enabled a more precise definition of
intrinsic physicochemical profile for the market-stage antibody-
based biotherapeutics. Inclusion of MD reveals additional
descriptors that may be important for conformational stability
of the variable regions. Hydrodynamic radius and PS are the two
additional descriptors included in the MD-based DENIS to
increase its selective power. The application of the new profiles
to a parent/variant mAb pair clearly showed that the inclusion of
protein dynamics provides a more robust ranking capability in all
tested simulation conditions. The experimental data highlight a
better developability for the variant at both low and high pH,
which was correctly accounted for only by theMD-based profile.
An early, fast, and efficient in silico screening by DENIS can
assist in making data-informed decisions at important project
milestones during lead optimization and selection of the final
candidate for start of drug development.

There are several limitations to the applicability of the
intrinsic physicochemical profiles derived solely from sequence
and structural characteristics of the Fv regions of the market-
stage antibodies. First, it must be stated that the profiles
described in this work and also previously described ones are
essentially phenomenological models.26,28,30 They are not
suitable for drawing any inferences about causal relationships
rooted in the laws of physics and chemistry. That is, such models
are inherently incapable of explaining why some biotherapeutic
drug candidates can successfully navigate through different
stages of drug product development, clinical pharmacology,
safety and efficacy testing, regulatory approvals, and commerci-
alization while several others cannot. Furthermore, these profiles
cannot describe the mechanism of action or to infer a target-
mediated toxicology effect of the biotherapeutic drug. Such drug
characteristics rely on many other aspects that may not be
accounted for by the intrinsic molecular properties of Fv regions.
An extension of DENIS to Fabs and full-length models can
potentially improve the applicability and accuracy of mAb
rankings for standard IgG derivatives and multi-specific formats.
Thereby, a modified set of physicochemical descriptors might be
used to characterize full-length mAbs accurately. Even if the full
exploration of a full-length mAbs’ conformational space remains
computationally daunting, a limited sampling can potentially
still reveal interactions affecting its overall solution behavior.65

The conditions considered in this work can be extended to other
experimental scenarios experienced during manufacturing and
storage. It should also be stated that use of MD-based intrinsic
physicochemical profiles to assess the similarity of the drug
candidates with the market-stage biotherapeutics is not practical
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at the earliest stage of drug discovery, namely, hit selection,
which involves high-throughput screening of potential binders
obtained from antibody generation campaigns. Homology-
based intrinsic physicochemical profiles at such stages can still
be successfully used to identify promising hits for further
experimental studies.

The analyses of the MD simulations of the market-stage
antibodies revealed that pH and ions can have a strong impact
on the structure and the physicochemical properties of the Fv
regions. Lowering the pH can potentially cause larger structural
fluctuations and an asymmetric change in charged patches.
Together with an increase in hydrophobic patches, self-
association is then facilitated, explaining the tendency of certain
mAbs to aggregate at low pH.73,101

The effect of ions on molecular surface patches is smaller than
that of pH but not negligible. Therefore, the choice of salts can
potentially modulate an antibody’s solution behavior, with
significant implications for downstream processing and pH-
buffer formulation screening. Specific interactions of ions with
solvent-exposed residues on the molecular surface can affect
antibody structural organization with both stabilizing and
perturbing roles. This is consistent with the knowledge that
ions can directly bind proteins and affect their solution
behaviors, as in the case of chloride binding to enzymes or
transporters and influencing their spatial arrangement and
function.102 The analyses shown here highlight important but
opposing roles of ionic strength for conformational stability of
API (active pharmaceutical ingredient) in formulation. The case
study of daclizumab revealed the presence of the chloride ion
pocket in the middle of CDRs, which explains how the absence
of chloride anion in solution triggers large fluctuations in its Fv
region. Note that the final drug formulation of daclizumab
contains NaCl as per information available via Package inserts.
From the Wyman linkage theory,103 ions can interact with
charged side chains on the surface of the antibody and lead to a
stabilization of the protein native state.104 On the other hand,
ions binding more strongly to non-native protein states will
destabilize the folding and possibly promote subsequent protein
aggregation.

A similar computational approach, as discussed herein, can be
used to build models that can predict the stability of a drug in
different formulations with changes in buffer composition,
excipients, or co-solutes. Development of such tools is nowadays
computationally feasible and can have a favorable impact on the
speed and cost of biologic drug development. The advantage of
using computational approaches such as MD simulations relies
on the fact that the stability of a protein can be assessed by
simply analyzing the data without any prior assumption on the
effect of specific ions or pH. However, there are only scarce
examples of application and validation in this direction andmore
work is required to build standardized procedures and protocols.
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