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Abstract

Background: The computation of pattern motion in visual area MT based on motion input from area V1 has been
investigated in many experiments and models attempting to replicate the main mechanisms. Two different core conceptual
approaches were developed to explain the findings. In integrationist models the key mechanism to achieve pattern
selectivity is the nonlinear integration of V1 motion activity. In contrast, selectionist models focus on the motion
computation at positions with 2D features.

Methodology/Principal Findings: Recent experiments revealed that neither of the two concepts alone is sufficient to
explain all experimental data and that most of the existing models cannot account for the complex behaviour found. MT
pattern selectivity changes over time for stimuli like type II plaids from vector average to the direction computed with an
intersection of constraint rule or by feature tracking. Also, the spatial arrangement of the stimulus within the receptive field
of a MT cell plays a crucial role. We propose a recurrent neural model showing how feature integration and selection can be
combined into one common architecture to explain these findings. The key features of the model are the computation of
1D and 2D motion in model area V1 subpopulations that are integrated in model MT cells using feedforward and feedback
processing. Our results are also in line with findings concerning the solution of the aperture problem.

Conclusions/Significance: We propose a new neural model for MT pattern computation and motion disambiguation that is
based on a combination of feature selection and integration. The model can explain a range of recent neurophysiological
findings including temporally dynamic behaviour.
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Introduction

Motion is an important feature of the visual input as it plays a

key role for a subject interacting with his or her environment.

Whether for social interaction, e.g. a friend waving his hands, or

for the recognition of dangerous situations like an enemy

approaching quickly, detailed computation of the movement of

objects in a scene is a valuable cue. The question is how the visual

system generates a proper representation of object motion in order

to command decisions. Motion processing in the visual cortex has

been a topic of intense investigation for several decades. However,

it is still an open question how localized measurements of spatio-

temporal changes are integrated and disambiguated, in particular

in the case of stimuli provoking non-unique neural responses.

Neurophysiological experiments revealed that area MT as part

of the dorsal pathway plays a very important role for the

computation of motion. The strongest input to this area results

from a direct connection with area V1 [1] and the majority of its

neurons show motion selective responses [2]. One of the major

differences between direction selective V1 and MT cells that has

been found is its different response to composed stimuli like a plaid

generated by two superimposed gratings oriented in different

directions that are both moving orthogonally to their contrasts

(Figure 1). As Movshon and colleagues pointed out [3], some MT

neurons do not only respond to the components of the plaid, but

they are also capable to compute the pattern motion of the

presented stimulus (see also [4,5,6]). The computation of coherent

object motion which may differ from the locally measurable

component motion is not only apparent for plaid stimuli. Another

example is an elongated contour moving as depicted in Figure 2.

Independent of the true motion direction, only the local

movement component orthogonal to its contrast can be detected

(called ‘‘aperture problem’’). Recent investigations by Pack and

Born revealed that MT neurons do not suffer from the aperture

problem, in contrast to the neurons in area V1 [7]. In addition,

these authors found that area MT neurons can compute the global

motion direction for larger stimuli, e.g., for the barberpole

stimulus, again in contrast to responses measured in area V1 [8].

These findings lead to the question how MT achieves the

computation of the global pattern velocity, while mainly receiving

component selective input from V1. There have been several

proposals to explain the generation of pattern selectivity in area

MT. Pack and Born [9] suggested a rough distinction of these

approaches into two categories depending on the used input
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features (Figure 3). The so-called ‘‘integrationist’’ models compute

the pattern motion by definition based on a nonlinear integration

of the V1 input. Simoncelli and Heeger [10], for example,

proposed a model that computes the intersection of constraints

(IOC) based on the localized activations of V1 cells. Further

models have been developed that are driven by this general idea

[11,12,13,14]. Unlike the integrationist concept, the ‘‘selectionist’’

models propose to restrict the motion computation to the activity

of neurons that respond to 2D features. This has the advantage

that the aperture problem does not impede motion processing at

these positions since the object-specific localized features already

indicate the correct motion direction. Different models have been

proposed that follow this idea, for example by [15,16,17,18,19].

Further approaches exist, amongst other Bayesian approaches

[20,21], models that investigate the interaction between depth and

motion information [22]. Another idea is to realize the motion

disambiguation process via diffusion mechanisms [23]. Only

recently, a model was proposed that emphasizes the role of V1

surround supression for motion integration in area MT, also in the

context of plaid stimuli [24].

With respect to the ability of all these models to explain

neurophysiological and psychophysical data, we can summarize

that these models can explain the pattern selective responses to the

commonly used plaid input (compare the review of Pack and Born

[9]). However, there remain several challenges which are currently

addressed by only few approaches. For example, a number of

neurophysiological and psychophysical experiments have shown

that the response of MT neurons changes over time from a simple

vector average to a direction corresponding to the IOC [25] (see

Figure 1) or depends on the contrast of the stimulus [26,27,21].

These findings demonstrate that the mechanisms contributing to

the pattern computation are part of a dynamic process. The

correct tuning takes time to evolve and depends on properties of

the stimulus. We suggest that for this process, the interaction of

different processing areas is necessary and that the varying

behaviour is due to small changes of the input that bias the

interaction between the different model areas.

In this paper, we present a neural model that takes advantage of

the disparate mechanisms of feature integration and feature

selection for motion computation to overcome current model

limitations. On the basis of available physiological and behavioral

data we show how a neural model of feedforward and feedback

interaction between areas V1 and MT including distinct

subpopulations of neurons can explain key experimental findings.

In particular, the model was probed with stimuli including

individual bars of different lengths, type I and type II plaids as

well as moving bars in overlay and components displays. Here, we

show that the tuning of model MT neurons can replicate

challenging experimental findings, namely the disambiguation of

responses and the development of pattern selectivity over a time-

course of several tens of milliseconds. In particular the question,

how plaid II type patterns can be explained is addressed. The

specific role of the model subpopulations is demonstrated using

lesion experiments. A preliminary version of this paper has been

published in abstract form [28].

Methods

We propose a neural model that achieves pattern selectivity in

area MT based on mechanisms of feature selection and

integration. Our approach is inspired by a previous model of

motion detection and integration developed by Bayerl and

Neumann [29] that simulates areas V1 and MT of the dorsal

pathway in visual cortex. In contrast to their proposal, the model

areas here include subpopulations of neurons with different

properties in both V1 and MT that will be explained in the

following subsections (see Figure 4). In a nutshell, the proposed

architecture is organized in the following way. (i) Two cell

populations in V1 perform the initial motion computation. (ii)

Succeedingly, MT neurons integrate the V1 input, followed by (iii)

contrast cells (MT/MSTl) responsive to opponent motion

directions in the center and surround of the receptive field. The

feedforward and feedback connections between the subpopula-

tions allow for an interplay between the different neurons. Each

subpopulation contributes to different aspects of motion compu-

tation and is as such necessary to achieve the broad range of

neurophysiological behaviour.

Figure 1. Plaid stimuli. Plaid stimuli are formed by two superimposed gratings consisting of parallel lines that both move in normal flow direction.
The stimuli are presented in a circular aperture. A) In plaids of type I the direction of the gratings lie on either side of the generated pattern motion. In
this case, the vector average of the two motion vectors and the intersections of constraints (IOC) rule will result in (approximately) the same direction.
This stimulus was typically used when investigating the pattern response in area MT. B) Plaids of type II are characterized by gratings moving in
similar direction, i.e. both lying on the same side with regard to the movement that is generated at the 2D crossings. In this case, vector average and
the IOC rule will lead to different directions. For this reason, this stimulus provides the possibility to distinguish the computation rule used. Note that
a feature signal will lead to the same results as the IOC rule.
doi:10.1371/journal.pone.0021254.g001

Figure 2. Aperture problem. For an elongated moving contour
locally only the normal flow can be estimated. The measured temporal
course in macaque area MT [7] indicates for neurons with receptive
fields that are spatially aligned along the contour an initial tuning in
normal flow direction. This tuning changes over time towards the true
motion direction.
doi:10.1371/journal.pone.0021254.g002

MT Pattern Selectivity
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Model area V1
In model area V1 the motion of the input stimulus is computed

by two subpopulations, namely complex and endstopped cells.

The corresponding neurons differ in the way they respond to both

the spatial and the temporal components of the input.

Complex cells. We simulate complex cells that compute the

normal flow of the input [3,30]. The activity of these neurons is

computed with a simple spatio-temporal motion detector for normal

flow (compare, e.g., [31]). It will be explained briefly in the following.

Initially, the input images are integrated in concentric on-center-off-

surround receptive fields. Based on these results, the temporal

derivative for two succeeding images is computed as well as the

response for different spatial orientations using elongated receptive

fields. The responses of these cells, for both the spatial and the

temporal domain, are then divided in ON- and OFF-channels to

separate positive and negative responses. The direction selective

responses of the neurons are achieved by a multiplicative

combination of ON- and OFF-channels of both the temporal and

the spatial domain. Note that the responses of the spatial domain

have to be shifted orthogonally to their contrast to align the

elongated receptive fields side by side. The multiplication of the ON-

and OFF-channels without the additional temporal factor resembles

the computation of a V1 simple cell. After the multiplication, the

response of the complex cells is determined by the selection of the

maximal responses for the two different contrast polarities. The

complex cells will respond most to movement directions orthogonal

to the local contrast orientation. Speed selectivity is achieved by

filters of increasing spatial size for neurons tuned to higher speeds. As

we are currently focusing on the effects of perceived motion direction

rather than speed characteristics such a simplistic approach was

chosen. To be able to include the comptetitive interaction between

the neurons tuned to different speeds, we limited the speeds to the

minimum speed tuning that is needed to cover the pixel movements

that appear in the images. This led to a speed tuning from 0 pixel to 5

pixel shift with respect to the input image.

Endstopped cells. The second subpopulation of model area

V1 consists of endstopped cells [32]. The simulation of these cells

is based on recent evidence for the existence of V1 endstopped

neurons in visual cortex that compute 2D motion [33,34,35].

Different approaches which have been suggested include

mechanisms of endstopped neurons to compute motion (e.g.,

[36,16,18]. We computed the responses of the endstopped cells for

a static image using a recently proposed approach by

Weidenbacher and Neumann [37]. Their model consists of two

areas V1 and V2 computing the form features including the

activity at line ends and crossings. In these model areas and their

interactions, key mechanisms at the early stages of shape

processing in the temporal pathway are implemented. Visual

area V2 is the next stage after V1 in the hierarchy of processing

stages along the ventral stream that is assumed to primarily

contribute to form processing. Several neurophysiological studies

have shown that cells in V2 respond to luminance contrasts, to

illusory contours as as well as to moderately complex patterns such

as angle stimuli [38,39,40]. There is evidence that feedback

originating in higher level visual areas such as V2, V4, IT or MT,

Figure 3. Integrationist and selectionist concept. A) A model following the integrationist approach typically has V1 neurons that are
component selective, but that do not indicate pattern motion. A nonlinear integration mechanism is then used to compute pattern selective
responses in model area MT. The circles in V1 indicate the size of example receptive fields used for integration in model area MT. B) Selectionist
models are based on a mechanism to find the 2D features in the image as these positions provide 2D motion. Subsequently, Model MT neurons
selectively integrate their input to achieve (or inherit) pattern selective responses.
doi:10.1371/journal.pone.0021254.g003

Figure 4. Model overview. Our model includes four neural
subpopulations in area V1 and MT. The input enters V1 Complex and
V1 Endstopped neurons where motion estimates are computed
independently. The computation of endstopped cells takes slightly
longer and is for this reason one iteration delayed until the first
response is fed forward to area MT. In MT Integration, both inputs are
integrated, with a stronger weight and a sharper tuning for the
endstopped neurons. Next, the activity is fed forward to MT Contrast.
This subpopulation enhances activity of motion surrounded by the
opposite motion direction. MT Contrast has feedback connections to
MT Integration. The part of the model within the yellow box shows
characteristics of integrationist models. Motion computation only in
these subpopulations would result in the computation of the vector
average. In the blue box, instead, endstopped cells represent a selection
process. MT Contrast cells can be assigned to both concepts as they
integrate local information, but also contribute to the segementation of
image parts moving in different directions.
doi:10.1371/journal.pone.0021254.g004
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from cells with bigger receptive fields and more complex feature

selectivities can manipulate and shape V1 responses, accounting

for contextual or extra-classical receptive field effects [41,42,43].

Weidenbacher and Neumann account for these findings by

incorporating a recurrent interaction mechanism between model

areas V1 and V2 (similar to [44]). In their model, activity in V2

serves as top-down feedback signal to iteratively improve initial

feedforward activity in V1. Multiple iterations of feedforward-

feedback processing between model areas V1 and V2 lead to more

consistent and stable results for the endstopped as well as the other

neurons simulated compared to purely feedforward processing

schemes. However, the endstopped activity could also be achieved

by other mechanisms as proposed in the literature, e.g., lateral

connections within V1 or feedback from other areas. Since the

model stages of the model of Weidenbacher and Neumann uses

essentially the same processing mechanisms, the computation of

the responses of the endstopped cells were easily integrated in the

feedforward/feedback loop of our model. Just like for the motion

information, the results of the form information are improved

during the iterations leading to sharper responses. Endstopped cell

responses indicate the positions where the local luminance

function of the input image has 2D features. The endstopped

population receives input from simple and complex cells.

Endstopped cells respond to edges or lines that terminate within

their receptive field. This includes also corners or junctions where

more than one contour ends at the same location. At positions

along contours, endstopped cells do not respond. The endstopped

cells are modeled by an elongated excitatory subfield and an

inhibitory isotropic counterpart which are combined

multiplicatively as indicated in Figure 4. The neurons are

direction sensitive and are therefore modeled for a set of

directions between 0 and 360 degrees. Activities of endstopped

cells corresponding to opposite directions are additively combined

in order to achieve invariance of contrast direction. These

endstopped neurons belong to a processing loop of feedforward

and feedback interaction including further neurons in area V1 and

V2. The interactions allow to stabilize and increase the responses

of the endstopped neurons. Only neurons whose activation exceed

a certain threshold are then used for the 2D motion computation.

The direction of movement is computed by a temporal integration

of the responses of the endstopped cells. Direction selective filters

are used to generate responses reflecting the local movement. Like

for the complex cells modelled, speed tuning ranges from 0 to 5

pixels shift. An important difference between the motion

computation in the two V1 subpopulations is the time that is

needed to compute motion signals. While complex cells respond

immediately to movement, endstopped cells need one additional

iteration to achieve a stable representation of the static 2D

features. Subsequently, their activation is sufficient to lead to

motion activity.

Model area MT
In model area MT two different subpopulations are simulated

that are mutually interacting, namely MT Integration and MT

Contrast, based on findings of Born and Bradley [45]. They differ

in their receptive field type and size and in the input they receive.

MT Integration. The first subpopulation in the model is called

MT Integration and pools the input of the V1 neurons. The

mechanism of spatial integration in macaque area MT is one crucial

property distinguishing area MT from V1. The receptive field size of

the neurons in MT is an order of magnitude larger, compared to the

cells that compute V1 activation [1]. The rationale, like in several

previous models [10,29,11], is that MT cells sample signals over a

large variety of directions and over a larger spatial neighbourhood

(tuning width approx. +/290 degree). As such MT cells integrate

responses with initial uncertainity and noise component. In our

model we use a subsampling of factor five to keep the image size at a

reasonable pixel number (a factor of up to ten is indicated in the

literature for macaque MT). The input is weighted with a Gaussian

kernel in the spatial and the velocity domain. The input of the

endstopped cells is weighted more than the input of the complex cells

and has a sharper tuning in the velocity domain to take into account

that the motion computation of the endstopped cells is more reliable

and more precise than the motion computation of the complex cells.

This is due to the fact that the endstopped cells signal 2D motion and

do not suffer from the aperture problem. The activity of the MT

subpopulation is then fed forward to the other neural MT

subpopulations, namely MT Contrast.

MT Contrast. The MT Contrast subpopulation consists of

neurons with an excitatory spatial on-center-off-surround

receptive fields organization. The center and the surround are

tuned to different motion directions. The cells respond most when

the center motion is opponent to the surround motion. For this

reason, these neurons support the segregation of objects moving in

different directions. This effect can be associated with the

selectionist idea as it contributes to the selection of salient

positions. At the same time, the integration of motion cues in

the center of the on-center-off-surround receptive field contributes

to the generation of smooth computed flow, in particular if no

opponent movement can be found in the surround. The

subpopulation has recurrent connections to MT Integration

cells. Neurophysiological evidence for this type of neuron is

provided by experiments [46,47,48], which showed that the

responses in macaque MT can be locally enhanced if the surround

contains movement in the opposite direction compared to the

center movement. In the current implementation, the delayed

response time of the surround in area MT as found in studies by

Perge and colleagues is not included explicitly [49]. However, the

additional processing step that is included in the model before

center-surround neurons in MT are activated would lead

inherently to a slightly delayed response of these model neurons.

Model mechanisms
The implementation of model areas uses rate coding model neurons

whose dynamics are described by first-order ordinary differential

equations. Within all model areas the same processing mechanisms are

applied as depicted in Figure 5. First, the neurons integrate the

feedforward input. Second, modulatory feedback of higher areas can

enhance the neural activity. Third, in a stage of center-surround

interaction the neural activity is normalized with respect to the activity

of the neighbourhood of the target cell. This divisive on-center-off-

surround competition represents an effect of lateral shunting inhibition

where salient signals are enhanced. The following equations give a

mathematical description of this generic three step processing:

dtv
(1)~{v(1)zsFF � L spaceð Þ

s1 �Y velocityð Þ
s2 ð1Þ

dtv
2ð Þ~{v 2ð Þzv 1ð Þ: 1zC:zFB � L spaceð Þ

s2

� �
ð2Þ

dtv
3ð Þ~{v 3ð Þzv 2ð Þ{ EzF :v 3ð Þ

� �
:
X

velocities
v 2ð Þ ð3Þ

The terms n(1), n(2), and, n(3) denote the activity within the three

stages of the particular model area. The term sFF in (1) denotes the
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driving input signal, while zFB in (2) is the modulatory feedback

signal. The functions L and Y in (1) and (2) are weighting kernels

in the spatial and the velocity domain, respectively, * denotes the

convolution operator for filtering operations in space and velocity

domain. The constants C and E in (2) and (3) adjust the strength of

feedback and lateral subtractive inhibition, respectively. The

constant F adjusts the strength of the shunting, or divisive,

inhibition. In the results presented here, the steady-state solutions

of Eq. (1)–(3) are used to compute the neural activity in order to

keep the computational costs in bounds. We have simulated the

same model architecture in full dynamics (compare, e.g. [72]) and

observed that equilibrated responses did not deviate significantly

from those results achieved by steady-state iterations. This lead us

to approximate and simplify the computations here. The term

‘‘iteration’’ is used to denote one complete feedforward/feedback

processing step. One iteration corresponds to approximately 10–

20 ms. We do not take into account here that feedfoward and

feedback processing may take a different amount of time. One

processing sweep includes the computation of activity in V1, with

feedback as computed in the previous iteration in MT, followed by

the computation of activity in MT based on the new V1

feedforward input, and the feedback from the activity of MT

subpopulations of the previous iteration. The interplay of

feedforward and feedback processing is crucial for the model to

achieve the expected results. For some model stages, the input

activity used in the equations was enhanced by a nonlinear

operation. We used the squared activity of the neurons to sharpen

the distribution within the neural population. A mathematical

description of the equations and the corresponding parameters

used at the different model areas can be found in Text S1.

Results

We tested the proposed neural model with different input

stimuli to determine whether the motion computation in model

area MT is consistent with neurophysiological and psychophysical

results. First, we tested the ability of model MT neurons to solve

the aperture problem and to compute pattern motion for plaids of

type I. Here, a behaviour similar to the models mainly building on

integration mechanisms is shown. Second, the focus was on stimuli

that challenge pure integrationist and selectionist models accord-

ing to our coarse distinction in the Introduction. As one example

we utilized plaids of type II where the perceived motion direction

changes during presentation time. To clarify the role that the

different neural subpopulations of the model play, we conducted

several lesion experiments where connections to one of the neural

subpopulations were cut successively. Furthermore, we present the

results for an experiment where the response of neurons in area

MT was tested for small bars moving within the receptive field of

one MT neuron, both with overlapping and spatially distinct

positions of the bars. This investigation shows how different model

functionalities achieve the properties that are indicative of models

using feature selection.

With the exception of the results from experiment 4, the results

were computed for succeeding input images, i.e. for each iteration

one new input image of the sequence was used. In experiment 4,

the iterations were based on the same pair of input images

(‘‘inplace iterations’’) to be able to keep the bars within the same

receptive fields. This means that the spatial position of the stimulus

did not change during the iterations, only the neural tuning for

motion was refined with every iteration. The model parameters

remained identical during all experiments.

Experiment 1: Moving elongated bar
In Figure 6 the results for a vertically aligned bar are depicted

that is moving downward to the right (45u diagonal). The input

images consist of 1706125 pixels. From the beginning, the

response of the complex cells in V1 reflects the normal flow

direction of the elongated contour of the bar. In contrast, V1

Endstopped cells respond after a short temporal delay, namely in

iteration two, as the computation of its responses needs more time.

This has also been found in neurophysiological experiments

[33,50]. As a consequence, the motion computed in area MT

initially suffers from the aperture problem. Only when the activity

of the endstopped cells starts to feed forward to MT, the

disambiguation of the motion to form one coherently moving

object begins. Due to the stronger weights of the endstopped cells

compared with the normal flow cells, the correct 2D flow

propagates with each iteration further along the bar until the

whole contour indicates the correct motion. In our model feedback

connections to model V1 neural populations are weak, which is in

contrast to the model of Bayerl and Neumann [29]. In their model

strong feedback caused homologous motion representations in

model areas V1 and MT. Particularly, it was predicted that V1

cells solve the aperture problem with a brief delay compared to

MT cells. This prediction was in contradiction with experimental

findings by Pack et al. [8] who measured responses in normal flow

direction along the elongated contours of a barberpole stimulus. In

the new model proposed here, we incorporate weak feedback

connections from MT to V1. As a consequence, the strength of

MT cell influence on V1 computations is reduced such that the

tuning of the neurons only slightly changes during the iterations.

The solution of the aperture problem in the model proposed here

is thus achieved through the interactions between the two different

MT subpopulations. We compared this data to the neurophysi-

ological data of macaque area MT [7]. These authors had shown

Figure 5. Three-level processing cascade. Each model area is defined by three processing steps. The filtering step differs in terms of the size and
the type of receptive field. In general, higher areas in the hierarchy have bigger receptive fields. The receptive field types include concentric and
elongated receptive fields as well as concentric on-center-off-surround receptive fields. The following feedback step indicated by the red arrow is a
modulatory enhancement of the feedforward input. This means that feedback itself will never create new activity. However, if it matches feedforward
input, this activity will be enhanced. The center-surround inhibition is achieved by dividing the activity of each neuron by the overall neural activity at
each spatial position. It generates a normalization of the activity within the velocity space.
doi:10.1371/journal.pone.0021254.g005
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that the mean tuning of MT neurons along the boundary changes

from normal flow direction to the correct 2D flow. The temporal

evolution of the model responses are qualitatively in line with the

temporal course of the experimental data when the iterations are

considered as a time scale (1 iteration = 10 ms) and the delay of

neural responses is added. One of the predictions of this neural

model is that the disambiguation depends on the length of the bar.

In Figure 7 (right) the results are shown for three different bar

lengths. The time to solve the aperture problem increases with the

stimulus length in accordance to recent findings in ocular following

experiments [51].

Experiment 2: Plaid type I
When investigating MT motion pattern selectivity, the typical

stimulus used is a plaid, two superimposed gratings with similar

contrast and spatial frequency that are both moving orthogonally

to their contrast boundaries. Alternatively, the plaid can be

generated by the overlay of two layers of parallel bars drifting in

different directions. Many experiments have shown that the

initially perceived motion direction is the coherent pattern motion

direction, which corresponds to the movement of the 2D crossings.

The perceptual response thus integrates the individual movments

of the grating components into one coherent object motion. The

combination of component motions corresponds to the vector-

average of the inputs. Physiological experiments investigating

direction tuning in MT for plaid stimuli also found neurons tuned

to the pattern motion. For a plaid of type I the two gratings have a

direction that is pointing towards different sides with respect to the

pattern motion direction generated (cmp. Figure 1A). As a

consequence, for these stimuli the resulting pattern motion can

be computed either by taking the vector average or the IOC

because they basically indicate the same direction. In Figure 8 the

results for an exemplary plaid of type I are depicted (image size

1806180, gratings formed by parallel bars). The V1 complex cells

locally compute the normal flow of the two gratings, while the

endstopped cells indicate after two iterations the movement at the

intersections of the two gratings. Also, at the bar endings 2D

movement is detected. Due to the circular shape of the aperture,

the direction measured at these positions is not consistent along the

aperture. For this reason, these 2D responses cannot generate a

strong influence on the whole stimulus. In model MT neurons, the

V1 input leads to a combined computation of vector average based

on the complex cell input, and an integration of feature tracking

like signals based on the input of the endstopped cells. The

mechanisms that allow the motion propagation within the context

of the aperture problem as presented in the first experiment

support here the generation of one coherent pattern. The

temporal disambiguation of motion is clearly visible in the polar

Figure 6. Results of experiment 1. In this figure, the motion tuning within the model subpopulations is depicted. The mean motion direction is
indicated by the color code displayed in the upper right corner (e.g., light blue corresponds to rightward motion) and arrows. In some figures, parts
are enlarged to allow a more detailed representation (e.g., to show the V1 Endstopped activity in the top row, right). In the model, neurons were
tuned to 8 different orientations (Dw= 45u) and 5 different speeds. Top row: A vertically elongated bar is moving to the lower right corner (45u). The
mean response of V1 complex cells indicates the normal flow direction from the beginning. V1 Endstopped cells achieve pattern selective responses
at iteration 2. The responses of both subpopulations in V1 do not change considerably, for this reason no further results are shown. Bottom row:
Tuning of MT Integration neurons. After the first iteration, the normal flow dominates at most of the positions. In the bottom right corner a polar plot
shows the tuning of all MT neurons active (scaling of radial axis indicated by small numbers in lower right of circles). Initially, the tuning is very coarse
with a bias towards the normal flow direction. The disambiguation of motion is visible in the results of iteration 4 and 9 where the true motion is
propagated from the corners along the contour until the whole object is moving in a coherent manner.
doi:10.1371/journal.pone.0021254.g006
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plot that shows the mean MT directional responses weighted with

its activation (Figure 3). While the tuning is very coarse at the

beginning, a clear peak emerges after only few iterations.

Experiment 3: Plaid type II
In plaids of type II the directions of the two gratings lie both on

one side with respect to the pattern motion that they generate

when moving (cmp. Figure 1B). This entails the possibility to

distinguish whether an IOC/feature tracking or a simple vector

average of the moving gratings is computed at the stage of MT

because they indicate different directions. The results for our

model when tested with a plaid of type II are shown in Figure 9.

Similar to experiment 2, complex neurons indicate the normal

flow direction of the gratings. With a slight delay, endstopped cells

indicate the direction in which the 2D features, i.e. the crossings of

the gratings, are moving. The integration of these two cell

populations in MT now leads to conflicting evidences for motion

direction since vector average and feature tracking directions are

different. Note that we do not suggest any intermediate stage of

representation where the two input regimes are kept separate and

subsequently start competing at a neural level. Instead, we argue

that the integration of the normal flow responses alone would lead

to a computation of the vector average, whereas the integration of

the endstopped neurons alone would favor the feature tracking

direction which corresponds to the direction indicated by the IOC.

Depending on which evidence receives larger evidence the

collective response is strongly biased towards either one of the

two different possible solutions. The results show that at the

beginning the normal flow directions dominate the neuronal

tuning as the endstopped cells only respond later. Once the

endstopped cells are active, their input starts pushing the tuning of

the MT neurons into the direction of the 2D features. After several

iterations, MT neurons indicate the pattern motion in a coherent

way. Compared with the experiment using the plaid of type I, the

disambiguation takes some more iterations as the different motion

directions indicated by complex cells and endstopped cells delays

the propagation of the 2D motion cues. This behaviour represents

a testable model prediction that can be used to verify the model

mechanisms by neurophysiological experiments using plaid I and

plaid II stimuli.

Experiment 4: Individual bars in one receptive field
Another experiment to test the theory of whether MT is simply

pooling the input of one cell population as proposed by the

integrationist concept is presented in this experiment. We probed

MT neurons by stimuli which contain several moving objects at

disjoint locations within the receptive field of a cell. If the MT

neurons integrated the whole input, then the different object

movements would be treated as belonging to one coherent object.

We tested our model with a stimulus derived from neurophysi-

ological experiments of Majaj and colleagues [52]. In our

experiment, we have two small bars oriented in different directions

that are both moving orthogonally to the grating orientation (see

Figure 10). The bars only differ in their spatial orientation and the

direction of movement, but not in contrast or size. Also, at the

position of the intersection the contrast does not differ from the

other parts of the bars. For this reason, we assume that the

stimulus will not lead to the perception of transparent motion as

known for plaids that show differences in contrast or spatial

frequency. Nevertheless, we cannot completely rule out the

possibility that an effect of transparency may affect the perception

in this simplified stimulus. In the first condition, the two bars are

located in the upper and lower half of the receptive field of the

measured MT neurons without any overlap. To compare effects,

in the second condition the two bars are overlapping, forming an

‘‘X’’ whose components are moving in different directions. Note

that this stimulus differs from the well known chopstick illusion

because of the small size of the bars. Here, the bars are placed in

the upper half of one model MT cell receptive field. The results

depicted in Figure 10 show that for the first condition, the MT

cells with a receptive field center located between the two bars

clearly show a tuning with two peaks representing the direction of

the two individual bars. For the second condition, the neurons

show a different behaviour. After the first iterations, mainly the bar

endings show a strong activity indicating their different movement

directions, with an additional small activity of the center

representing the movement direction of the crossing. After several

iterations, the direction tuning of the bar endings shifts

continuously towards the movement of the crossing. Finally, the

tuning indicates one peak in the direction of the pattern motion

formed by the two component bars and their crossing. Due to the

Figure 7. Results of experiment 1 - comparison with neurophysiological data. Left: Pack and Born [7] showed in their neurophysiological
investigations that the direction tuning of MT neurons located at the elongated contour changes from the normal flow direction (90u) to the correct
direction (in this test case 45u; figure adapted and redrawn from [7]). Center: Temporal course of our model neurons at three different positions
along the bar as indicated by the red, blue, and green dots in the input sketch. The response of the central and the spatially adjacent neurons are
shown. The course matches qualitatively with the neurophysiological data. The true motion direction is indicated after approximately 140–150 ms.
Right: When the bar length increases, the disambiguation process takes longer. This effect observed in experiments of ocular following responses is
also replicated by our model. Exemplarily, we show the time course for three different bar lengths indicated by the blue, green, and red bar for
neurons located in the center of the bars.
doi:10.1371/journal.pone.0021254.g007
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combination of two different cell populations a distinct response is

achieved for the two experimental conditions. This clearly

distinguishes our model from the concept of pure integrationist

models which do not have the capability to respond differently to

the two cases predicting the same response behaviour, irrespective

of the exact stimulus placement within the receptive field.

Experiment 5: Lesion experiments
To clarify the particular contribution of each of the model

subpopulations, we systematically impaired the neural connections

in the model. Therefore, the activity of each subpopulation except

for MT Integration was silenced successively in several computa-

tional experiments. MT Integration itself has not been excluded

from the simulations, as it represents the central processing

mechanism of the model. Exemplarily, we will focus on the plaid

type II stimuli to explain the results.

Lesioning V1 Complex Cell input. When the input from

V1 Complex Cells to MT is suppressed, the motion computed in

model area MT Integration shows two main changes. First, the

MT neurons will respond later as the only input comes from the

V1 Endstopped neurons which need longer to be activated.

Second, not in all MT positions the neurons are activated, there

remain void responses where no motion is indicated (Figure 11A).

This is a consequence of the missing input along the contours of

the bars that form the plaid patterns. It shows that the input of the

V1 Complex cells is important to complete the plaid pattern in

area MT.

Lesioning V1 Endstopped Cell input. The inactivation of

input from V1 Endstopped Cells to MT Integration results in an

increased tendency of MT motion tuning in the direction of the

vector average of the two plaid components. Without endstopped

contribution, the movement of the 2D positions formed by the two

gratings of the plaid do not influence the MT Integration neurons.

For this reason, the model will not show the change of neural

activity as presented in Experiment 3 using plaids of type II

(Figure 11B). The endstopped neurons are thus the basis in our

Figure 8. Results of experiment 2. Top row: A plaid of type I is used as input, the component and pattern motion are indicated by the coloured
arrows. Responses of the complex cells indicate the normal flow direction, V1 Endstopped cells respond from iteration 2 to the motion of the 2D
features indicating the pattern direction. Center row: Responses of MT Integration neurons. At the beginning, the different motion directions
dominate locally indicating component motions. After 5 iterations one coherent motion direction is achieved. Bottom row: The polar plots indicate
the tuning of MT neurons responding to the plaid pattern for iteration 1, 2, and 5 (note that the scale for the first iteration is smaller than for the other
polar plots as indicated by the numbers denoted in the bottom right part of the solid circle). The coarse tuning at the beginning gets quickly
sharpened toward the pattern motion direction. The mean velocity corresponds to the pattern motion from the first iteration as both vector average
and the 2D motion at the crossings of the gratings indicate the same direction.
doi:10.1371/journal.pone.0021254.g008
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model to achieve the flexibility to gradually change from the vector

average response towards the IOC direction as perceived by

humans for plaids of type II.

Lesioning MT Contrast Cell input. Also MT Contrast cells

play a crucial role in the model. When the connections from MT

Integration cells to MT Contrast cells are cut, the plaid motion can

no longer be computed correctly. Instead of a smooth global

movement direction, MT Integration neurons indicate different

directions even after a large number of processing iterations. As a

consequence, the stimulus representation remains noisy and

incoherent (Figure 11C).

Discussion

The question how pattern selectivity in visual area MT can be

computed has been addressed by a large number of models. Based

on neurophysiological findings that supported the computation of

an IOC rule or a vector average, the idea of the integrationist

concept was seized by several groups. Initial evidence was

provided by Movshon and colleagues [3] who showed in both

psychophysical and neurophysiological experiments that one

coherent movement is perceived for plaids formed of gratings

with similar frequency and contrast as indicated by pattern

selective neurons in macaque area MT. Furthermore, they

performed masking and adaptation experiments whose results

further supported the theory of integration of localized movement

signals. The results are also in line with data showing that

adaptation to one grating with reduced speed biases the overall

direction of a succeedingly presented plaid to the non-adapted

grating [53]. The idea of the integrationist approach fits also with

the investigations of [54] who showed that pattern neurons have a

broader tuning than component neurons. Nevertheless, recent

research revealed that there is a range of experimental results

which cannot be explained by this approach. A number of

experiments showed that terminators or 2D features added in a

stimulus display can crucially influence the perceived motion

Figure 9. Results of experiment 3. Top row: A plaid of type II was used to test the temporal dynamics of the model. The response of V1 complex
and V1 Endstopped cells indicate normal flow and pattern motion, respectively, similar to the responses for experiment 2. Center/bottom row:
After the first iteration, the responses in the direction of the vector average dominate the activity in MT Integration. Once activity of V1 Endstopped
cells enter the integration process in MT the overall activity gets shifted towards the pattern direction as the results for iteration 2 show. After five
iterations a coherent motion representation is achieved. To sharpen the neural tuning to a similar level reached for experiment 2 some additional
iterations are necessary (compare polar plots for iteration 5 and 10).
doi:10.1371/journal.pone.0021254.g009
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direction [26,55]. The selectionist concept takes the significance of

2D features into account by selecting these positions to compute

the pattern motion. However, this concept cannot represent a

comprehensive explanation for all the neurophysiological and

psychophysical results that have been gathered so far. There is

evidence that the process of computing pattern motion shows

temporal dynamics that gradually change from a tuning to the

vector average to a tuning to the IOC direction. Furthermore, the

contrast of the presented stimulus influences the percept [25,21].

This raises the question whether combinations based on properties

of both the integrationist and the selectionist theory could account

for the observed data.

We propose here an approach to combine feature integration

and feature selection to achieve a broad range of neural behaviour.

The key features of our model are

a) two neural subpopulations in area V1 that perform distinct

computations of motion providing both the normal flow and

the flow at 2D features

b) a subpopulation in MT that integrates the input of both V1

subpopulations with a more pronounced influence of the 2D

(endstopped) features

c) feedback connections between MT subpopulations and from

MT motion integration stage to V1 subpopulations that allow

the propagation and enhancement of salient motion.

In the following subsections we will compare our model with the

existing approaches. Furthermore, we will discuss its biological

plausibility as well as its potential to account for neurophysiolog-

ical data.

Related work
Among the models with a strong emphasis on motion

integration, the F-plane model of Simoncelli and Heeger is one

of the most influential approaches [10]. MT pattern computation

is based on an appropriate weighting of input from area V1 spatio-

temporal neurons to compute the IOC. In contrast to our model,

no inter-areal feedback connections are used. The model can

explain a range of neurophysiological data including data of plaid

type I experiments. However, the model does neither show the

temporal dynamics that have been observed, e.g., for plaids of type

II, nor does it have the capability to segment different small objects

as demonstrated with our proposed model.

More recently, Rust and colleagues [11] developed a model to

explain MT pattern computation that was derived from

neurophysiological data they had measured for plaid stimuli.

The two key mechanisms of their model are a strong center-

surround inhibition in area V1 followed by a mechanism of

motion opponency in area MT. The integration in area MT

follows a broad directional tuning curve which is similar to our

model in which complex cell responses are integrated by broadly

tuned MT cells. The temporal course of responses to plaids, the

spatial structure of the normalization pool as well as the influence

of the spatial arrangements of the gratings (overlay versus distinct

positions) have not been explained by the model. In the approach,

a broad directional tuning of MT neurons with respect to the

Figure 10. Results of experiment 4. A) Experimental results of Majaj et al. [52] (adapted from [56]; note that the direction tuning curves have
been rotated 120u clockwise to simplify comparison with our data.). Left column: The input stimulus included two moving gratings within one
receptive field of a MT neuron. In the first condition, the two gratings were placed at different positions within the receptive field depicted by the red
dotted rectangle (top), in the second condition they overlapped (bottom). Right column: Response of an MT neuron. When the gratings are not
superimposed the response of the neuron is broadly tuned to their component directions (top). For a plaid like stimulus the pattern motion is
indicated (bottom). B) Adapted version of the experiment to test the model. Left column: The tuning of MT neurons was measured for the two
cases. In both cases, the size and the movement of the bars (orthogonal to their contrast, orientation +/245u) are identical. The size and position of
the bar was chosen in a way to be mainly within the receptive field of the measured MT neurons as indicted by the red dotted box. Right column:
The polar plot (radial scale identical for both stimuli) shows that the tuning of MT Integration neurons whose receptive fields includes both bars show
a distinct response for the two cases. A bi-lobed tuning appears for the two separate bars that is comparable to the response to the gratings in the
experiment of Majaj and colleagues. For the overlapping bars, one clear peak indicating pattern motion is the result.
doi:10.1371/journal.pone.0021254.g010
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integration of V1 supports the computation of pattern motion

which is also reflected in the large tuning comprised by our MT

neurons.

A further approach with a strong focus on realistic speed tuning

of the simulated neurons was proposed by Perrone and Krauzlis

[56]. Their approach differs from other models by modeling V1

and MT neurons that closely replicate the speed tuning curves and

the spatio-temporal frequency tuning maps that have been

estimated experimentally. Recent results show the replication of

the data of Majaj et al. [52]. However, the replication of the

dynamics shown in plaids of type II and further experiments has

not yet been tested in their model.

Selectionist models could also successfully replicate some of the

neurophysiological data. The model of Nowlan and Sejnowski

[15] is based on a two stage approach where the motion energy is

computed first, followed by a selection of salient 2D features which

restrict the position that will enter the final velocity computation.

Another model has been proposed by Skottun [17] who used a

multiplication (or logical AND-combination) of orientation-tuned

filters to compute 2D features. This resembles the use of

endstopped cells in our model area V1. However, the computa-

tional results achieved here are improved by recurrent processing

allowing to arrive at very stable responses. Zetzsche and Barth [16]

developed a model where the selection is focused on regions that

contain features of multiple contrast orientations, so-called

intrinsically 2D structures. While all these models can successfully

account for experimental data that measured motion in the

direction of the 2D features moving, they do not provide an

explanation how changing motion percepts and motion tuning can

be generated.

A recent model by Weiss and colleagues [21] uses a Bayesian

approach to generate flexible model behaviour. The authors could

show the replication of data including both the vector average and

the IOC based on an uncertainty value that reflects the local

ambiguity of V1 motion estimates. In our model this uncertainty

value is implicitly included in the feedforward integration of the

two V1 subpopulations in MT. First, the endstopped cells

providing unambiguous motion estimates have stronger connec-

tions to MT. Second, the integration of complex cells in MT uses a

broader directional pooling which results in a reduced activation

after the normalization step compared to the sharper input from

endstopped cells. Another Bayesian model was proposed by [20]

where the focus is on the consistency of information between

feedforward and the expected information provided by later

recurrent signal. The propagation process of solving the aperture

problem looks similar to our result. The computation itself shows

different properties due to the different approach of feedforward/

lateral activity versus a feedforward/feedback activity here.

Detailed plaid results for transparent plaids are shown, but plaids

of type II are not considered. Another idea to solve motion

disambiguation was prosoped using a luminance-based diffusion

mechanism [23]. The model can simulate a range of neurophys-

Figure 11. Lesion experiments. In this figure, the results for the plaid of type II input are shown for the model impaired by lesions. Exemplarily,
activity in area MT Integration is depicted after 5 iterations. A) Cutting the connections from V1 Complex cells leads to MT positions that do not
indicate any movements. B) When the acitivity from V1 Endstopped Cells is cut off, MT neurons are not able to compute the 2D pattern movement.
C) Lesioning the connections to MT Contrast also changes the computed pattern in MT Integration. Instead of one coherent motion pattern, the
neurons indicate both the normal flow direction and the direction of the 2D crossings.
doi:10.1371/journal.pone.0021254.g011
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iological and psychophysical experiments, including plaids of type

II. The focus of their model is on the steering mechanism of

motion integration given a luminance-driven representation in the

form pathway while we focus on the cascade of motion integration

and concentrate on the contribution of the different neural

subpopulations found in V1 and MT.

The question how direction selectivity and endstopping interacts

in V1 has been investigated in a recent model of Pack, Born and

colleagues [57,24]. Initial motion is detected calculating motion

energy by adopting the model of Adelson and Bergen [58]. The

output is combined with local inhibitory input from adjacent

neurons to generate endstopping properties by center-surround

modulation effects in V1 neurons. Subsequently, their activity is

integrated in a model MT neuron. The model can replicate

detailed neurophysiological response behaviour of MT neurons as

measured in Pack and Born [7] including the temporal dynamics

from normal flow to the correct flow direction and explain some of

the contrast effects on integration properties [27,7]. Endstopping

in their model is generated by temporally delayed pooling of V1

responses in an elongated bi-partite integration field and divisive

inhibition of target V1 cell responses by the integrated activity.

This resembles computational properties as in our model, since the

endstopped responses are generated in our mechanism by gated

on/off integration of motion responses (compare Figure 4]. Similar

to our model the temporal delay for endstopped neurons is caused

by the time it takes to achieve the endstop selectivity. Concerning

the interaction of neural areas, the model is based on feedforward

integration in one model MT neuron. Their model assumes that

the moving bars with their line endings are fully covered by the

size of the MT cell receptive field such that no propagation of the

2D motion direction is necessary to resolve the aperture problem.

In addition, we predict that the integration of input for type II

plaids in the Tsui et al. [24] model is biased towards the vector

average. Since their model V1 input responses (with endstopping

enabled) do not significantly differ for type I plaid input patterns,

their simplified feedforward mechanism is not capable to generate

different integrated responses for type I and type II plaid probes.

This argument also holds for the challenging display configura-

tions used by Majaj et al. [52]. Again the model proposed by Tsui

et al. does not generate distinguishing V1 endstopped responses

before integrating them at the stage of their model MT cell.

Overall, the focus of their model is on the complex properties that

can already be computed in area V1 with a simple integration in

area MT. We suggest how the different responses generated by

complex and endstopped cells generate different response

likelihoods which are disambiguated by the collective integration

and feedback signals to account for a disambiguated response at

the MT cell level.

In our approach, the interaction between different cortical areas

and neural subpopulations with different response properties are

crucial to achieve correct result. We claim that this interaction is

necssary for the MT motion computation. This link has also been

shown in the context of more complex form information in [59],

e.g., for stimuli that include spatial occluders. Additional

interactions with the form pathway are necessary to compute the

correct motion. This has, amongst others, been shown for the

barberpole illusion [8], the Chopstick illusion [60] as well as for

stimuli including depth-order information [22].

Biological evidence for V1 model subpopulations
Our model area V1 incorporates complex and endstopped cells

which are both connected with model neurons of area MT. This is

similar to the model by Loeffler and Orbach [61] who suggested

separate streams of complex cell and endstopped responses,

respectively, that were kept separate to compute Fourier and non-

Fourier motion. Unlike their proposal, which explicitly argues

against endstopping, we utilize mechanisms selective for 1D and

2D input features. Complex cell responses are computed by a

simple spatio-temporal motion detector with elongated receptive

fields for the computation of orientation selective responses. The

resulting motion tuning shows strongest responses to the normal

flow with ambiguous responses at 2D features. We chose this sort

of motion detector as it represents a very simple way to model

basic properties of V1 spatio-temporal filters as measured by

[3,30]. However, the stage could also be replaced by a more

refined model of V1 computing properties.

The second subpopulation that we simulate is based on the

response of endstopped neurons. The existence of endstopped cells

responding to 2D static features has already been shown by Hubel

and Wiesel [32]. Only few years ago, a study by Pack and

colleagues [33] demonstrated that also 2D motion signals are

computed by endstopped neurons in macaque area V1. Further-

more, Tinsley et al. [35] as well as Guo et al. [34] measured the

selectivity of V1 neurons to pattern motion. Until now, it has not

been unequivocally demonstrated that these neurons are indeed

projecting to neurons in area MT (e.g., [62]). However, based on

the origin of the measured neurons in layer 4B of area V1 which

contains a large population of neurons projecting to area MT, the

contribution of endstopped cells to MT pattern computation is

very likely (see [9] for a detailed discussion). Concerning the shape

of the supressive receptive field, [63] showed that length

suppression for these celles is stronger than side suppresion as

realized in our model endstopped neurons. In the current

implementation of the model, for simplicity only the two extremes

of purely complex and endstopped cells are modeled to show how

these subpopulations may contribute to the motion computation.

In neurohphysiological findings, it has been shown that these two

classes of cells have large overlaps. This model simplification is one

reason for the fact that our simulation results generated by the

model are sharper than the measured neurophysiological data.

Furthermore, our current experiments do not contain additional

noise inputs.

Replication of neurophysiological data
A large number of neurophysiological experiments has clarified

and constrained the computation of pattern motion in area MT.

With the model proposed here, we focus a) on the temporal course

of responses and b) on the different mechanisms, namely vector

average and IOC/feature tracking, that seem to be applied in MT

as shown by various experiments [26,25,21]. In the first

experiment we tested the ability of our model to perform a crucial

property observed in macaque area MT neurons, namely the

solution of the aperture problem. The results (Figure 6 and 7)

confirm that our model can propagate the 2D movement

measured at the line endings along the contour and that it shows

a similar time course compared to the neurophysiological data.

The computation is mainly achieved during the feedforward/

feedback processing of MT Integration and MT Contrast. Spatial

propagation of the correct motion direction detected at the corners

is necessary to achieve the correct direction for the whole

elongated object as its extent is much larger than the size of the

corresponding MT receptive fields. For object segmentation based

on motion, the bigger receptive fields of MT can be combined

with the more detailed form information of area V2 as has been

shown in further computational experiments [59,64]. The longer

time needed for disambiguation (Figure 7) that appears with

increasing bar length is consistent with data measuring the ocular

following responses for tilted bars of different lengths moving
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horizontally [65]. The reduced response strength of MT neurons

in the first iteration is not in line with the neurophysiological

experiments by [7] where the spike rate per ms in area MT cells is

stable over time for the single neurons measured. However, in our

model only the mean response rate is represented and a discretized

time scale is used. Further experiments need to be done to see

whether this effect can be reduced when the simulation based on

iterations of the steady-state equations is replaced by the stepwise

solution of the model differential equations, following the

experiments of [72]. At present, the difference of the activity level

arises as the feedback only interacts after the first iteration.The

question whether the computation of the motion disambiguation is

also reflected in the V1 responses is still unclear. There is some

recent evidence that V1 responses change their tuning [66]

contradicting the previous findings [3,30,8]. In the current model

version, we show that a changing tuning of V1 complex cells is not

necessary to achieve the motion disambiguation. Concerning area

MT, studies revealed that approximately 50% of MT neurons

show center surround characteristic [46,67]. These findings are

the reason why we incorporated two different types of MT cells

our model, namely integration and contrast cells. We assume that

the interplay of the different neural response characteristics leads

to the final neural interpretation of data.

The constrast neurons simulated in the model could also be

found in area MSTl. There is evidence from neurophysiological

experiments that this cell type appears both in area MT [45] and

area MSTl [68]. Area MSTl is known to contribute to the

detection of small moving objects, for this reason a contribution of

these neurons to the computation of patterns that include strong

2D features like plaids seems possible.

The propagation of salient motion features is also relevant for

the computation of pattern motion when presenting plaids. In

experiment 2 and 3, we showed the results for plaids of type I and

II (see Figure 8 and 9). For the type I stimulus, both the vector

average indicated by the integrated normal flow responses as well

as the feature tracking/IOC signal provided by the endstopped

cells point into approximately the same direction. For this reason,

the computation of the coherent plaid motion is achieved after few

iterations. For the results using a plaid of type II, two differences

are noticeable. First, the initial MT responses clearly indicate

movement in vector average direction, which then turns into the

IOC direction once the endstopped neurons get active. Second,

due to the different directions indicated by the two V1

subpopulations, the disambiguation process takes longer than for

the plaid of type I. The observation that pattern selectivity only

emerges slightly after component selectivity has also been found in

neurophysiological and psychophysical investigations. The tem-

poral course of MT cell tuning for plaids and gratings shows an

earlier response of component selective neurons while pattern

selective neurons show a brief time-lag in their response

characteristic [6]. Masson and Castet [69] showed that the ocular

following responses of humans for a plaid stimulus have a delay of

about 20 ms until the pattern direction is pursued, confirmed by

the investigations of Born and colleagues [50]. In line with that

data, Yo and Wilson [25] found that for a short presentation time,

plaids of type II appear to be moving in the direction of the vector

average. Our model gives a plausible explanation for these effects,

as its dynamics depend on the activation of two subpopulations in

V1 that have different time courses.

The recent experimental results of Majaj and collaborators [52]

represent a further challenge for models simulating MT pattern

selectivity. Unlike, e.g., the model of [56] and our approach, many

of the existing approaches do not take into account spatially

distributed locations and can therefore not account for this data.

For the simplified stimulus that we used – the gratings were

reduced to single bars – the tuning responses of model area MT

neurons look similar to the responses measured. This behaviour is

achieved due to the different responses of the endstopped cells that

contribute to the MT motion computation. It allows the switch

from a bi-lobed tuning (indicative of component selectivity) to a

clear peak (indicative of pattern selectivity) when a plaid is

presented. The psychophysical experiments by Mingolla et al. [55]

addressed the question how the visual system integrates boundary

movements to form a coherent percept by utilizing separated

apertures each containing distinct stimulus components. Their

results argue in favor of a hybrid mechanism that combines vector

average and feature motion integration. Our model supports this

view by suggesting area MT motion computation that is flexible to

compute partial motion from translational, rotational or more

complex pattern movements.

The perception of plaids has also been studied for much longer

presentation times. Hupé and Rubin [70] showed that if one

observes the plaid stimuli for 20 seconds and longer the percept

switches from the pattern configuration to a bi-stable percept

where pattern and the component configuration of two transpar-

ent gratings alternate. In our model, the two different cell

populations simulated in area V1 would represent a good basis to

represent bi-stability as they basically reflect the two different

percepts that are competing. At the level of MT, our subpopu-

lation of pattern selective neurons would have to be extended by a

component in our model which was currently not needed but

which would allow to adapt the excitation after a brief period of

persistent input stimulation. For example, this could be achieved at

the level of input integration by incorporating transmitter

habituation (e.g., [71]). The introduction of such a fatigue

mechanism allows to take into account bi-stability as generated

by mechanisms with mutually competing response selectivities (e.g.

opposite motion directions).

Predictions and outlook
The presented model makes predictions that could be tested by

neurophysiological experiments to gain further knowledge about

motion processing in area MT. First, our model predicts that due

to the two different cell populations in area V1 contributing to MT

activity, a sort of competition between endstopped and complex

cells occurs for type II plaids. For this reason, the temporal course

should be delayed if compared to the response of type I plaids.

Second, endstopped activity in V1 is generated in a feedforward-

feedback loop with V2 form activity in our model. Thus, cooling of

area V2 should reduce endstopped selectivity in neurophysiolog-

ical experiments. We would further predict that, as a consequence,

the reduced endstopped activity will lead to a change of activity in

MT for type II plaids. The complex cell input would dominate the

MT activity leading to a bias towards the vector average response

of the moving gratings. In fact, this converges to the investigation

of the detailed mechanisms of temporal V1 responses, as studied

by Tsui and colleagues [24] and the model proposed here. Our

model operates and takes into account a larger scale of neural

computational mechanisms involved to achieve different response

properties and selectivities. A layout of a generalized model

framework that demonstrates receptive field computation at a

population level and the (delayed) response normalization effects

by integrating pooled activation has been recently proposed by

Bouecke et al. [72].

In future experiments, we will take a closer look at experimental

results where the switch between vector average and IOC

direction is due to the strength of contrast. It has been shown

that endstopped cells are contrast selective [73,74]. Reduced

MT Pattern Selectivity
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responses of the endstopped cells in our model would reduce its

influence during the integration in area MT. This would be a

possible explanation for the perceived motion in vector average

direction when a thin rhombus is displayed at low contrast [21]. In

this case, the weak endstopped responses would hardly contribute

to the MT input. As a consequence, the ‘‘integrationist’’ part - the

complex cell input - would bias the overall computation

considerably, leading to a tuning towards the vector average.

The strength of contrast has also been linked to changing

behaviour of MT models in the contrast of solving motion

disambiguaty. Either antagonistic or integrative properties have

been found and modeled [75]. Further investigating these

properties in our model could be a key to simulate other

neurophyiosological findings.

Conclusion
We suggest a new neural model for MT pattern computation

and motion disambiguation that can account for a number of

recent neurophysiological findings. This model proposes a

combination of feature selection and integration for motion

computation in area MT. Thus, we are able to replicate seemingly

conflicting experimental data in one common framework that

achieves temporally dynamic behaviour including responses to the

vector average and to the IOC/feature tracking at different time

steps.
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