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Responder analysis is in common use in clinical trials, and has been described and endorsed in regulatory
guidance documents, especially in trials where “soft” clinical endpoints such as rating scales are used.
The procedure is useful, because responder rates can be understood more intuitively than a difference in
means of rating scales. However, two major issues arise: 1) such dichotomized outcomes are inefficient
in terms of using the information available and can seriously reduce the power of the study; and 2) the
results of clinical trials depend considerably on the response cutoff chosen, yet in many disease areas
there is no consensus as to what is the most appropriate cutoff. This article addresses these two issues,
offering a novel approach for responder analysis that could both improve the power of responder
analysis and explore different responder cutoffs if an agreed-upon common cutoff is not present. Spe-
cifically, we propose a statistically rigorous clinical trial design that pre-specifies multiple tests of
responder rates between treatment groups based on a range of pre-specified responder cutoffs, and uses
the minimum of the p-values for formal inference. The critical value for hypothesis testing comes from
permutation distributions. Simulation studies are carried out to examine the finite sample performance
of the proposed method. We demonstrate that the new method substantially improves the power of
responder analysis, and in certain cases, yields power that is approaching the analysis using the original
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continuous (or ordinal) measure.
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1. Introduction

In many disease areas in which “hard” clinical endpoints such as
mortality are not appropriate measures of efficacy, rating scales and
other continuous measures are used for the evaluation of treat-
ments. For instance, in schizophrenia clinical trials, the MATRICS
Consensus Cognitive Battery (MCCB) or the Negative Symptom
Assessment-16 (NSA-16) are frequently used instruments for
evaluating psychopathology in study subjects. Other examples
include the use of the Expanded Disability Status Scale (EDSS) in
multiple sclerosis trials, the use of exercise tolerance (ET) measures
in trials of heart failure therapies, and etc. In such studies, overall
treatment effect has typically been tested by assessing the differ-
ence in mean change over time of the continuous (or ordinal)
measure between the treatment and control group. Although such
analyses are usually the primary outcomes, one problem is that the
translation of the results into clinical practice is difficult. We might
not know what, for example, a difference which is statistically
significant but amounts to only 1 MCCB point in magnitude means
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from a clinical perspective. Such a problem can be addressed by
using a responder analysis, in which each subject is classified as
either a “responder” or a “non-responder”, and the proportions of
patients who benefit are quantified and compared between treat-
ment groups. A common approach is to define a threshold for the
change from baseline in the continuous (or ordinal) endpoint, and
define a patient as a “responder” if his/her change value is above (or
below) the threshold.

Responder analysis provides several benefits and hence is in
many cases proposed or recommended by regulatory guidance or
clinical communities to be used in clinical trials. For example, draft
guidance from the FDA on patient-reported outcomes specifically
endorsed the responder analysis as an alternative approach to
assessing clinical relevance [1]. The procedure is useful, because
responder rates can be understood more intuitively than a differ-
ence in means of rating scales. It also helps ensure that a reported
statistically significant result represents a clinically meaningful
benefit. However, two major issues arise from this procedure. First,
it is well known that dichotomization tends to result in a loss of
statistical power compared to an analysis of the original continuous
variable. The procedure hence is inefficient in terms of using the
information available and requires greater sample size in clinical
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trials as analyzed, for example, by Snapinn and Jiang [2]. The second
issue with responder analysis is that the results of clinical trials
depend considerably on the response cutoff chosen. Yet in many
disease areas across different clinical trials, various definitions of
response have been used, and there is no consensus as to which is
the most appropriate one [3]. If a cutoff is chosen post hoc, this is
potentially an inappropriate manipulation of the data.

The issues and challenges inherent in the responder approach
deserve particular attention in the development and licensing of
new therapeutics. The present paper addresses the two issues
mentioned above, offering a novel approach for responder analysis
that could both improve the efficiency and power of responder
analysis and explore different responder cutoffs if an agreed-upon
common cutoff is not present.

Pre-specification of the responder cutoff and a properly planned
statistical analysis are essential to avoid multiple comparisons and
inflated type I error rates. But how can we pre-specify when we are
not certain which responder cutoff is the optimal one? Ganju et al.
recently proposed to analyze clinical trial data by pre-specifying
multiple test statistics and using a combined statistic — the mini-
mum p-value — for inference when there is uncertainty about what
candidate primary endpoint, hypothesis, or statistical test to use in
planning a clinical trial [4—7]. The critical value for hypothesis
testing comes from permutation which consists of re-randomizing
the treatment assignments and calculating the combined statistic.
For instance, for a trial with a time-to-event endpoint, it might be
unclear at the planning stage of the trial whether a log-rank test or
a stratified log-rank test would be more appropriate for the anal-
ysis. Using the proposed method, the trialists can pre-specify both
tests and use the minimum of the p-values as the new test statistic.
It has been shown that the method, referred to as MinP, is robust,
controls the type I error rate, and provide statistical power that is
closest to the best-performing statistic.

In this paper, we borrow the idea from Ganju et al. and extend
the use of MinP to clinical trials analyzed by the responder
approach. We propose a statistically rigorous clinical trial design
that pre-specifies multiple tests of responder rates between treat-
ment groups based on a range of pre-specified responder cutoffs,
and uses the minimum of the p-values for formal inference. The
null hypothesis associated with the multiple tests is that there is no
treatment effect however the “responder” is defined. The alterna-
tive hypothesis is that there is a significantly greater proportion of
responders in the new treatment group, with the criterion for
“responding” being one of the pre-specified cutoffs. The proposed
method therefore provides not only a formal test for the treatment
effect, but also an estimate of the optimal responder cutoff, which
could be carried forward into future trials. More importantly, we
show that the proposed method, which we will refer to as MinP
responder analysis in the rest of this paper, substantially improves
the power of responder analysis. In many cases, the MinP responder
analysis yields power that is approaching the analysis using the
original continuous (or ordinal) measure.

The rest of the paper is structured as follows. In Section 2, we
describe the proposed method. The method is then illustrated on a
real data example in Section 3, and simulation studies evaluating
the performance of the MinP responder analysis are presented in
Section 4. Discussions and conclusion are given in Section 5.

2. Method
2.1. Design considerations
In general, suppose that the clinical endpoint is a continuous

variable, Y, such that larger values represent better efficacy. Note
that Y could represent a measurement taken at the conclusion of

the trial or a change in that measurement from its baseline value.
Assume, without loss of generality, a two-treatment trial with Np
subjects randomized to treatment A (e.g. experimental treatment)
and N to treatment B (e.g. control). There is interest in the mean
difference in this endpoint, 1, between the experimental treatment
and the control.

The difference in treatment effects can be determined using the
original continuous scale. In this case, the typical null hypothesis
(assuming one-sided testing) is that of no difference, or p < 0,
versus the alternative hypothesis p > 0.

Alternatively, with responder analysis, a threshold value is
defined above which a subject is considered to be a “responder”,
and below which a subject is considered to be a “non-responder”. If
we let yg represent the threshold value, then

1

W= { L

is a binary variable indicating whether or not the subject is a
responder. Now let pa and pg be the response rates in the experi-
mental group and the control group, respectively. Therefore the
null hypothesis for the responder analysis is pa < pg, and the
alternative is pa > pg. If the responder null hypothesis is rejected
then both statistical significance and clinical relevance are
concluded. When the responder cutoff value yq is not well estab-
lished and properly validated before the study, however, the results
from such responder analysis could be inadequate or irrelevant.
Moreover, as pointed out before, this approach substantially reduce

the power of the study as information is lost through dichotomi-
zation the continuous endpoint.

if Y>yo
if Y<yo

2.2. MinP responder analysis procedure

Consider a setting for which there is a lack of consensus on the
proper responder cutoff to use. Without loss of generality, assume
that the continuous endpoint (and hence the responder cutoff yg)
take values in the interval (0, 100). The objective of the proposed
design is to

1. Formally test for any treatment effect, i.e. determining whether
a significantly greater proportion of subjects in the experimental
arm “respond” to the treatment compared to the control arm
based on a certain responder cutoff; and

2. Identify optimal responder cutoff which could be carried for-
ward into future trials.

As the responder cutoff point is not well-established, we design
the trial by pre-specifying multiple tests of responder rates be-
tween treatment groups based on a range of pre-specified
responder cutoffs. Based on prior medical knowledge and discus-
sion with the clinical team, a series of plausible candidate
responder cutoffs {yox: k=1, 2, ..., K} in the interval (0, 100) can be
pre-specified. For instance, {yox} = {10, 20, 30, ..., 90}. For each
candidate cutoff ygx, a proportion test T will be performed to test
the null hypothesis that py < pg, resulting in a series of p-values
{pr}. A natural approach to converting a series of p-values that are
calculated over the range of possible cutoff values into a single
statistic is then to take the minimum:

minP = min(py, ..., Px)

Because of the well-known multiple testing problem, the stan-
dard asymptotic theory does not apply to the new statistic, minP. To
provide a statistically valid p-value for minP, we propose to use the
permutation distribution of minP, in which the treatment group
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labels are permuted. The permutation procedure as described in
Ganju et al. is summarized below [4]:

i. From the K pre-specified proportion tests fit to the data,
obtain minP,,; = min(py, ..., p);

ii. Re-randomize treatments A or B to the Np + Ng subjects
maintaining the same Na/Np ratio as that observed. This can
be more easily understood by envisioning the data as an
(Na + Np) by 2 matrix, where one column is the response y
and the other column contains the actual treatment assign-
ments. Permutation or re-randomization is achieved by
randomly re-ordering the labels ‘A’ or ‘B’ of the treatment
vector. If the trial design is stratified such that randomization
occurred within stratification levels, then permutations
should be carried out within strata to reflect the design.

iii. Repeat step ii L times, and denote the minimum p-value for
the Ith permutation minPl* (I=1,2,..,L). A large enough
subset of all possible permutations, rather than the complete
set, which is often infeasible to generate, suffices. The smaller
the o, the larger the number of permutations might be
needed for more accurate estimation. The distribution of
minP" denotes the permutation null distribution.

iv. The p-value of minP,ps is %Z,L:ﬂ(minP,* < minPy), where I()
denotes the indicator function that takes the value 1 if the
condition in parentheses is true and 0 otherwise.

v. The null hypothesis is rejected at level a if the p-value of
minPops < o.

If the permutation procedure rejects the null hypothesis of no
treatment effect, the next step is to identify the responder cutoff
above which a subject will be considered a “responder”. Naturally
the responder cutoff that produces the minimum p-value can be
selected as the optimal cutoff point to be carried forward to future
trials. In some cases, a few neighboring cutoff points might produce
similarly small p-values. In this case, we recommend that other
practical considerations, such as clinical interpretation, sample size
of the potential “responder” group, etc., should be taken into ac-
count when selecting the responder cutoff for future studies.

3. Simulation studies

In this section, we evaluate the performance of MinP procedure
for responder analysis in the context of trials with two treatment
groups, active and control. The clinical endpoint of the trial is
assumed to be continuous. Different analysis strategies are consid-
ered, including 1) comparison of the means of the two groups; 2)
responder analysis, i.e. comparison of responder rates with a pre-
specified responder cutoff; and 3) the MinP procedure for
responder analysis. Two main scenarios are considered, and in each
scenario we investigate the behavior of the type I error and the power
under each analysis strategy. For both simulation studies we consider
clinical trials with a sample size of 200 per group, which represents a
typical Phase II clinical trial. The treatment difference is considered
significant at the 0.05 level if the p-value is less than 0.05.

In Scenario 1, consider the measurement, Y, being a normally
distributed variable with a known variance. Without loss of gen-
erality, assume a true mean value in the control group of -11/2, a true
mean value in the experimental group of j1/2, and an equal standard
deviation of 24 such that most of the observations fall within [-100,
100]. Suppose a measurement value greater than O indicates
improvement. For the MinP procedure, we use a grid of candidate
responder cutoff values of 10, 20, 30, ..., 90, i.e. {yox} = {10, 20, 30,
..., 90}. In real clinical trial scenarios, a narrower range of candidate
cutoff values might be used given prior medical knowledge and
clinical input.

We performed simulations with i = 0, 2, 3, and 4. Table 1 shows
the type I error and the power of detecting a treatment effect with
different analysis strategies. As expected, the type I error is
controlled under all analysis strategies. Under the alternatives,
testing the difference in means (a t-test in this case) always gives a
greater power compared to a responder analysis, which is not
surprising as the t-test utilizes more information than the propor-
tion test. Compared to the single proportion tests, the MinP pro-
cedure improves the power of detecting a treatment effect
substantially, by around 4%, 7%, and 5% respectively, under each
configuration. In other words, MinP is a combination of all single
responder tests specified, yet its power is greater than the best of
these single tests. This would translate to a much smaller sample
size needed if the responder analysis is the desirable analysis
method for the trial.

Scenario 2 assumes the measurement Y follows a beta distri-
bution with shape parameters o and B. Without loss of generality,
assume true o = 2 for both treatment groups, a true 3 parameter in
the control group of B, and a true  parameter in the experimental
group of Bg. All observations fall within [0, 1] and a grid of candidate
responder cutoff values of 0.1, 0.2, 0.3, ..., 0.9, i.e. {yox} = {0.1, 0.2,
0.3, ...,0.9}, is pre-specified for the MinP procedure. The type I error
and power results under 4 configurations are presented in Table 2.
Again, the type I error is controlled under all analysis strategies.
Under the alternatives, we observe the power may suffer dramat-
ically if an inappropriate responder cutoff is chosen. For instance,
under configurations 3 (Ba = 2.4) and 4 (Ba = 2.6), the lost in power
can be 25% or more if a cutoff value of less than 0.4 (including 0.4) is
chosen. Overall, compared to the single proportion tests, the MinP
procedure improves the power of detecting a treatment effect by
2%—18% under configuration (2), 8%—51% under configuration (3),
and 7%—74% under configuration (4). The optimal power is again
achieved by testing the mean difference of the continuous variable,
but the advantage over MinP is minimum (5%—6% in all alternative
configurations).

4. Example

Finally we illustrate the performance of the proposed MinP
method using data from published clinical trials of heart failure
therapies. For clinical studies of cardiac resynchronization thera-
pies (CRT), quality of life (QoL) measures and exercise tolerance (ET)
measures have emerged as clinically relevant primary endpoints.
One objective measure of ET that has been used in several studies is
peak oxygen consumption (VO,). However, there is currently no
objectively justifiable precedence for how to select a universal
signal value to define “responder” or “success” for the peak VO,
measure used in clinical trials. In this section, we use data from two
published CRT studies to illustrate how the MinP responder anal-
ysis method can be applied to such studies.

The Multicenter InSync Randomized Clinical Evaluation (MIR-
ACLE) trial was a double-blind study of cardiac resynchronization in
patients with moderate-to-severe heart failure and a prolonged
QRS interval [8]. Approximately 400 patients were randomized and
implanted with a CRT device which was turned on in half of the
patients and left off in the other half for 6 months. A traditional
analysis evaluating between-group differences in mean changes of
the ET measurements was performed. The mean (+SD) change in
peak VO, between baseline and 6 months was 0.2 + 3.8 mL/kg/min
in the control group and 1.1 + 3.5 mL/kg/min in the treatment
group. Significant treatment effect was established based on this
analysis of peak VO, in continuous scale. Assuming that the data are
normally distributed, these numbers can be used to construct
estimated distributions of the data.

We intend to determine whether a clinically significant
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Type I error and power for detecting treatment difference (A) in means; (B) in responder rates with a pre-specified responder cutoff (10, 20, 30, ..., 90); and (C) with MinP
procedure. The sample size per group is 200.

Configuration (A) difference in means (B) difference in responder rates with pre-specified cutoff values: (C) MinP
10 20 30 40 50 60 70 80 90

(MHp=0 0.050 0.038 0.039 0.040 0.038 0.039 0.036 0.043 0.040 0.037 0.049

2)u=2 0.483 0.324 0325 0.333 0324 0333 0.320 0311 0.324 0.326 0.363

B)u=3 0.826 0.622 0.622 0.632 0.647 0.635 0.632 0.639 0.642 0.640 0.704

4)p=4 0.964 0.834 0.831 0.827 0.830 0.831 0.825 0.824 0.823 0.834 0.877

Results are based on 5000 simulations and 2000 permutations.

Table 2

Type I error and power for detecting treatment difference (A) in means; (B) in responder rates with a pre-specified responder cutoff (0.1, 0.2, 0.3, ..., 0.9); and (C) with MinP
procedure. The sample size per group is 200.

Configuration (A) difference in means (B) difference in responder rates with pre-specified cutoff values: (C) MinP
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9

(1) Ba = 2.0, g = 2.0 0.050 0.025 0.036 0.038 0.042 0.036 0.036 0.039 0.038 0.024 0.046

(2)Ba=22,Pp=20 0274 0.050 0.092 0.120 0.161 0.182 0.210 0.198 0.154 0.072 0.225

(3)Ba =24, Pg=2.0 0.673 0.096 0.202 0.325 0.410 0.504 0.531 0.509 0.418 0.182 0.607

(4) Ba = 2.6, B = 2.0 0.917 0.127 0.334 0.534 0.661 0.763 0.789 0.762 0.670 0.258 0.867

Results are based on 5000 simulations and 2000 permutations.

Table 3

Power for detecting treatment difference (A) in means; (B) in responder rates with a pre-specified responder cutoff (0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 mL/kg/min); and (C) with the
MinP procedure. The sample size per group is 200 for both the MIRACLE trial and the COMPANION trial.

Scenario (A) difference in means (B) difference in responder rates with pre-specified cutoff values (mL/kg/min): (C) MinP
0.5 0.6 0.7 0.8 0.9 1.0

(1) MIRACLE trial 0.743 0.582 0.594 0.592 0.582 0.588 0.572 0.631

(2) COMPANION trial 0.667 0.399 0.427 0.435 0.443 0.445 0.460 0.510

Results are based on 5000 simulations and 2000 permutations.

difference would have been demonstrated in terms of difference in
responder rates had a responder analysis, either the traditional
responder analysis with a single pre-specified cutoff point or the
MinP method, been planned as the primary analysis. A total of 5000
simulated trials were conducted. Seven (7) plausible cutoffs for
peak VO, measure are used to defined response: at least 0.5, 0.6,
0.7, 0.8, 0.9, and 1.0 mL/kg/min increase from baseline 6 months.
Three analysis strategies are compared: 1) comparison of the
means of the two groups; 2) responder analysis, i.e. comparison of
responder rates with the pre-specified responder cutoff; and 3) the
MinP procedure for responder analysis. The power of each test to
detect significant differences is reported in Table 3. As can be seen,
the continuous test still provides the greatest power (74.3%), but
MinP is able to improve power by 4%—6% for responder analysis.

This evaluation can be repeated with data from the Comparison
of Medical, Pacing, and Defibrillation Therapies in Heart Failure
(COMPANION) clinical trial, where subjects were randomized in a
1:4 ratio to optimal medical therapy (OPT) or to OPT plus CRT [9]. In
the COMPANION Sub-study, cardiopulmonary exercise testing (peak
VO,) was assessed as the primary endpoint, and success was defined
as occurring if peak VO, improved > 0.7 mL/kg/min at 6 months of
assigned therapy. The mean (+SD) change in peak VO, between
baseline and 6 months was 0.6 + 2.7 mL/kg/min in the control OPT
group and 1.2 + 3.0 mL/kg/min in the CRT group. The primary
endpoint was not met in this study. We are interested to see if the
study power could have been improved if a MinP responder analysis
approach was used. Similarly using simulated data from the trial, we
report in Table 3 the power of each analysis strategy to detect sig-
nificant differences. In this case, the MinP method is able to improve
the power of responder analysis by 5%—11%.

5. Discussion and conclusions

A responder analysis is one in which each subject is classified as
either a “responder” or a “non-responder”, and the proportions of
patients who benefit are quantified and compared between treat-
ment groups. The use of responder analysis is often recommended
by regulatory guidance, especially in trials where “soft” clinical
endpoints such as rating scales are used to evaluate treatments.
Although the responder analysis is in common use, it has sub-
stantial disadvantages. It has been widely acknowledged that the
main concern about the responder analysis is the arbitrary nature
of the definition of a response. A second problem with the analysis
is the dramatic reduction in statistical power by dichotomizing
continuous endpoints. In this paper, we address these two issues
together by proposing a novel approach for responder analysis that
could both improve the power of responder analysis and explore
different responder cutoffs if an agreed-upon common cutoff is not
present. Specifically, we propose a statistically rigorous clinical trial
design that pre-specifies multiple tests of responder rates between
treatment groups based on a range of pre-specified responder
cutoffs, and uses the minimum of the p-values for formal inference.

The MinP procedure enables us to both establish the treatment
effect and find the responder cutoff at the same time. Hence we
recommend prospectively incorporating the multiple testing and
permutation procedures into the study design and describe them in
the study protocol. his method can be most useful in Phase II
studies where such exploration and selection of responder cutoff
points are appropriate. The information learned and the optimal
cutoff selected from this study can then be carried forward to
future, Phase III trials which perhaps are less likely to implement
such flexible design.
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Simulations can be used in determining the sample size
required for a study designed using the proposed MinP method.
The clinical trialists should be considerate in the selection of
candidate cutoff points; only cutoff values that represent a clinically
meaningful treatment effect should be included in the design and
analysis plan. Statistical judgment should also be in place to include
a reasonable number of candidate cutoff values to avoid adversely
affecting the sample size required.
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