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Abstract

NG2 immunoreactive cells (NG2 cells) are found in the brain and peripheral tissues includ-

ing the skin, intestinal tracts, and bladder. In a previous study, we observed the presence of

NG2 cells in the stomach using bioluminescence imaging techniques in NG2-firefly lucifer-

ase (fLuc) transgenic (Tg) rats. Here, we aimed to identify and characterize NG2 cells in the

adult rat stomach. Immunohistochemical studies showed that NG2 cells were mainly pres-

ent in the lamina propria and most of the cells were gastric telocytes, co-expressing CD34,

and platelet-derived growth factor receptor alpha (PDGFRα), with a small oval-shaped cell

body and extremely long and thin cellular prolongations. In the rat stomach, NG2-expressing

telocytes comprised two subpopulations: NG2+/CD34+/PDGFRα+ and NG2+/CD34

+/PDGFRα-. Furthermore, we showed that the expression of NG2 gene in the aged rat

stomach decreased relative to that of the young rat stomach and the decline of NG2 expres-

sion in aged rats was mainly observed in NG2+/CD34+/PDGFRα+ telocytes. These findings

suggested age-related alterations in NG2+/CD34+/PDGFRα+ telocytes of rat stomach.

Introduction

Telocytes were defined as a new type of interstitial cell in 2010 [1,2]. The cells are ultrastructur-

ally characterized by a small cell body with a scarce cytoplasm and a variable number (one to

five) of extremely long and thin prolongations, termed telopodes [3,4]. These cells are widely

distributed in the tissues and organs of the body, including the heart, lungs, kidneys, liver and

other tissues, even the skin [4,5]. Currently, it is believed that the most suitable markers for

detecting telocytes are CD34 and platelet-derived growth factor receptor alpha (PDGFRα)

[4,6]. It has been reported that telocytes have roles in intercellular signaling, immune and

inflammatory responses, and tissue regeneration under physiological and pathological condi-

tions [7–10].

NG2 immunopositive cells (NG2 cells) in the brain are known as oligodendrocyte progeni-

tor cells and can undergo cell division and differentiate into oligodendrocytes and astrocytes,

as well as neurons [11–18]. In addition, NG2 cells are also present in several peripheral tissues,

including skin, small and large intestines, and kidney [19–22]. In terms of the gastrointestinal
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system, NG2 cells in the small and large intestines are myofibroblasts in the lamina propria

and smooth muscle cells in the lamina muscularis mucosae and tunica muscularis of adult

mice [19] and also are pericytes in the gut [23]. It has been known that alpha smooth muscle

actin (αSMA) and PDGFRβ are known as markers for myofibroblasts or smooth muscle cells

[19] and pericytes [24,25], respectively. In addition, we observed the presence of NG2 cells in

the stomach of rats via bioluminescence imaging and gene expression studies in our previous

study [22]. However, the identification and characterization of NG2 cells in the stomach and

age-related alterations of the cells remain unclear. The aim of this study was therefore to exam-

ine the localization and characterization of NG2 cells in the rat stomach and to investigate

changes of NG2 cells in aged rat stomach. Here, we show that the majority of NG2 cells were

located in the lamina propria of the gastric mucosa and were telocytes, exhibiting colocaliza-

tion of CD34 and PDGFRα. Furthermore, NG2-expressing telocytes were composed of two

subtypes based on the expression of PDGFRα. Compared with young rats, the expression of

NG2 declined in the aged rat stomach. Furthermore, the decrease of NG2 expression in the

aged stomach was mainly observed in the NG2+/PDGFRα+ telocytes.

Materials and methods

Ethical approval

All animal experimental procedures were approved by the Ethical Committee on Animal Care

and Use of RIKEN Center for Biosystems Dynamics Research (MA2009-17-20) (1 April 2018),

and all experiments were performed in accordance with the Principles of Laboratory Animal

Care (NIH publication No. 85–23, revised 1985).

Animals

Normal Wistar rats were obtained from Japan SLC (Shizuoka, Japan) and were bred to estab-

lish NG2-firefly luciferase (fLuc) transgenic (Tg) rats, expressing the fLuc transgene in NG2

cells [22]. Young (2–3 months) and aged (22–24 months) Tg rats were housed under a 12/12 h

light/dark cycle at 22 ± 2˚C and 55% ± 10% humidity with free access to a standard diet and

water.

Normal Wistar rats were deeply anesthetized using isoflurane and perfused transcardially

with 0.01 M phosphate-buffered saline (PBS; pH 7.4). Then, the rodents were perfused and

fixed with 4% formaldehyde (PFA) solution in 0.01 M PBS and 0.1% glutaraldehyde/4%

PFA mixture in 0.01 M PBS for immunohistochemical and electron microscopy analyses,

respectively.

Tg rats were employed in ex vivo bioluminescence imaging under anesthesia. After ex vivo
bioluminescence imaging, stomach tissues isolated from all Tg rats were immersed in 4% PFA

at 4˚C for 2 h for histochemical studies or soaked in fresh RNAlater solution at 4 ˚C overnight

for gene expression analysis.

Immunofluorescence staining

Immunostaining studies were performed as described previously [22]. Stomach tissues were

removed and post-fixed in a 4% formaldehyde solution in 0.01 M PBS at 4˚C for 2 h, then

soaked in 30% sucrose solution. Stomach sections (40 μm thick) were prepared using a cryostat

microtome and incubated with monoclonal mouse anti-NG2 IgG (1:100, Abcam, Cambridge,

MA, USA), polyclonal rabbit anti-NG2 IgG (1:100, Abcam), monoclonal rat anti-CD34 IgG

(1:100, Santa Cruz, CA, USA), polyclonal rabbit anti-PDGFRα IgG (1:200, Abcam), polyclonal

rabbit anti-PDGFRβ IgG (1:100, Santa Cruz), monoclonal mouse anti-CD31 IgG (1:100, BD
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Biosciences, New Jersey, USA), monoclonal mouse anti-αSMA IgG (1:100, Abcam), or poly-

clonal goat anti-luciferase (Luc) IgG (1:50, Promega, Madison, USA) antibodies at 4˚C for 15–

20 h. After washing for 30 min with 0.3% Triton-X100 in PBS (PBST), the sections were incu-

bated with the appropriate Cy2, Cy3, or Cy5-conjugated secondary antibodies (1:200, Jackson

ImmunoResearch Laboratories, West Grove, PA, USA) at 4˚C for 2–4 h and washed with

PBST for 30 min. The sections were mounted with Hoechst dye 33258 (Nacalai Tesque, Kyoto,

Japan.) and observed using a confocal laser microscope (Digital Eclipse C1; Nikon, Tokyo,

Japan).

Immunoelectron microscopy

The isolated stomach tissues were soaked in a 0.1% glutaraldehyde/4% PFA mixture at 4˚C

overnight and then soaked in 30% sucrose solution. Tissue slices (50 μm thick) were cut

using a vibratome and washed in 0.01 M PBS. After washing, the sections were incubated in

polyclonal rabbit anti-NG2 IgG antibody (1:200) at 4˚C overnight and were incubated in the

biotinylated goat anti-rabbit IgG antibody at 4˚C for 3–4 h. Immunoreactivity was visualized

with 0.035% diaminobenzidine (Sigma, St. Louis, MO) and 0.028% hydrogen peroxide in

0.01 M PBS. The sections were washed in 0.01M PBS and post-fixed in 1% osmium solution.

Then, the slices were dehydrated in graded ethanol (70, 80, 90, 99.5, and 100%), and embed-

ded in epoxy resin. Thin (70 nm) sections were cut with an ultra-microtome and were

mounted on pieces of silicon wafer. Then, the sections were stained with uranyl acetate,

lead citrate, and observed using a JSM-7900F scanning electron microscope (JEOL, Tokyo,

Japan).

Bioluminescence imaging study

Bioluminescence imaging studies were performed as described previously [22]. In this study,

in vivo bioluminescence imaging was performed with NG2-fLuc Tg rats under laparotomy

conditions. Tg rats were anesthetized with pentobarbital (50 mg/kg) and were placed on a

warm plate in the light-tight imaging chamber of the bioluminescent imaging system equipped

with a CCD camera (IVIS kinetics, Caliper Life Sciences, Hopkinton, MA, USA). Then, the

abdominal skin of the rats was incised and rats were administered D-luciferin at a dose of 30

mg/kg (Promega) intravenously. Bioluminescence images were acquired every minute for 10

min after luciferin injection. Bioluminescence signal intensities from each sample were quanti-

fied via the region of interest (ROI) analysis using Living Image analysis software (Xenogen,

Alameda, CA, USA). The signal intensity in the ROI was expressed in photons/sec/cm2/sr.

Under laparotomy conditions, in vivo bioluminescence imaging could not be used for the

exact quantification of bioluminescence signals from the stomach, due to contaminating biolu-

minescent signals from surrounding tissues. In addition, time-intensity curves showed that

bioluminescence signals from the stomach reached maximum values within one minute, then

declined with time, and started to achieve steady-state emission 10 min after the intravenous

injection of luciferin. Based on these data, ex vivo imaging studies were performed after 10

min of luciferin injection.

For ex vivo bioluminescence imaging, Tg rats were anesthetized with pentobarbital (50 mg/

kg), intravenously injected with D-luciferin, and sacrificed 10 min after luciferin injection.

Then, several tissues were immediately removed and placed on a heated stage in IVIS imaging

system chamber. Bioluminescence images were captured after 20 min using the IVIS imaging

system. Bioluminescence signal intensities from each region were quantified using ROI

analysis.
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Gene expression analysis

Total RNA was extracted from several tissues using the ISOGEN Kit (NIPPON GENE, Tokyo,

Japan). Total RNA (1 μg) was reverse-transcribed into cDNA using the PrimerScript RT

reagent Kit with gDNA Eraser (Takara Bio, Otsu, Japan). Real-time PCR was performed using

the SYBR Green PCR Kit (Toyobo, Osaka, Japan) with a Thermal Cycler Dice Real-Time Sys-

tem (TP-800; Takara Bio) according to the manufacturer’s instructions. The 2−ΔΔCt method

was used to analyze the relative changes in gene expression. qPCR was performed with the fol-

lowing sense and antisense primers: for NG2 sense, 5’-AGGTAAGCATGATGTCCAGGTG-3’ and

antisense, 5’-CAGTTGTGAGTGGAATGGCTTG-3’; for ribosomal protein S18 (rps18) sense, 5’-

CTTCCACAGGAGGCCTACAC-3’ and antisense, 5’-GATGGTGATCACACGCTCCA-3’. The

expression of rps18 was used as the reference gene for normalization.

Statistical analysis

Data from each animal were presented as the mean ± SEM. Statistical analyses were performed

using GraphPad Prism software (v6.0; GraphPad Software Inc., San Diego, CA, USA). Com-

parisons of two groups were performed using a Mann-Whitney’s U test. The significance

threshold was assumed to be P< 0.05.

Results

Localization and characterization of NG2 cells in the adult rat stomach

In the stomach, NG2 cells were mainly found in the lamina propria of the gastric mucosa

and were absent or very rarely observed in the muscularis mucosa (Fig 1A). Many of them

appeared to have long prolongations reminiscent of telocytes (Fig 1B). Immunofluorescence

staining using NG2 and PDGFRα and/or CD34 antibodies showed that immunoreactivity

for CD34 was found in most of the NG2 cells (Fig 1C and S1A Fig), but was not observed in

a few NG2 cells in the lamina propria (Fig 1D). Likewise, many NG2 cells were also immuno-

reactive for PDGFRα (Fig 1E), whereas some NG2 cells were not immunopositive for

PDGFRα in the lamina propria (Fig 1F). To confirm the relationship between these cells, tri-

ple immunofluorescence staining was performed using NG2, PDFGRα, and CD34 antibod-

ies. Images showed that both NG2+/CD34+/PDFGRα+ and NG2+/CD34+/PDFGRα- cells

were present in the lamina propria, but NG2+/CD34-/PDFGRα+ cells were not found (Fig

1G and 1H). Based on these results, we divided the NG2+/CD34+ cells in the lamina propria

into two subpopulations based on PDGFRα expression. In addition, to investigate the char-

acterization of NG2+/CD34- cells (Fig 1D), immunostaining studies were performed using

NG2 and αSMA or PDGFRβ antibodies. NG2 cells in the lamina propria and muscularis

mucosae of gastric mucosa did not show the immunoreactivity for αSMA (S2A Fig). Mean-

while, the immunoreactivity for PDGFRβ was observed in some NG2 cells (S2B Fig). More-

over, to confirm whether PDGFRβ-expressing cells are pericytes based on their location

(wrapped around endothelial cells), double immunostaining was performed with PDGFRβ
and CD31 antibodies. Most PDGFRβ-expressing cells were located next to CD31+ endothe-

lial cells (S2C Fig).

We confirmed that the NG2-expressing cells in the mucosa of the rat stomach were telo-

cytes using immunoelectron microscopy with an antibody against NG2. The cells displaying

NG2 immunoreactivity showed a small oval-shaped cellular body and two to three long pro-

longations in young rat stomach tissues (Fig 2). From these findings, we confirmed that NG2

cells in the adult rat stomach could be defined as gastric telocytes.
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Fig 1. Localization and characterization of NG2 cells in the stomach of adult rats. (A-B) Localization of NG2 cells

in the gastric mucosa. (A) Immunofluorescent images showing staining with both monoclonal NG2 (green) and

polyclonal NG2 (red) antibodies and Hoechst (blue). (B) Magnified view of immunofluorescent images showing

staining for NG2 (red) and Hoechst (blue). (C-D) Colocalization of CD34 (green) in NG2+ telocytes (red) of the adult

stomach. Immunofluorescence staining for NG2 (red), Hoechst (blue) and CD34 (green) (a telocyte marker). (E-F)

Co-expression of PDGFRα (green) in NG2+ telocytes (red) in the gastric mucosa. Immunofluorescence staining for

NG2 (red) and PDGFRα (green) (another telocyte marker). Arrowheads show NG2+/PDGFRα+ telocytes whereas

arrows point to NG2+/PDGFRα- telocytes. (G-H) Triple immunofluorescence staining for PDGFRα (green), CD34

(red) and NG2 (blue). Arrowheads indicate NG2+/CD34+/PDGFRα+ telocytes and arrows show NG2+/CD34

+/PDGFRα- telocytes. Scale bars: 100 μm (A, C, E, G) and 20 μm (B, D, F, H).

https://doi.org/10.1371/journal.pone.0249729.g001
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Alterations in NG2 expression in the aged rat stomach at the tissue level

First, we confirmed the expression of the fLuc transgene in gastric NG2 cells of the NG2-fLuc

transgenic (Tg) rats via immunostaining prior to bioluminescence imaging. Almost all

NG2-expressing cells also showed immunoreactivity for the fLuc transgene in the gastric lam-

ina propria of the Tg rats (Fig 3). Ex vivo bioluminescence imaging was performed using both

young and aged Tg rats. The bioluminescence signals from aged rat stomach tissues exhibited

a decreasing trend compared to those from young rats (Fig 4A and 4B). Indeed, signal intensi-

ties from both young and aged stomach tissues were 3.25 ± 0.73 (n = 8) and 2.16 ± 0.67 × 107

photons/sec/cm2/sr, respectively, (p = 0.054) (n = 8) (Fig 4C). We also investigated the

Fig 2. Identification of NG2+ telocytes in rat stomach using electron microscopy. (A-C) Representative electron

micrograph of NG2-labeled gastric telocytes in the adult rat. (B-C) Magnified views of NG2 immunoreactive cell

(arrow) in panel (A). (C) Arrowheads show cellular processes, stained with the anti-NG2 antibody. Scale bars: 10 μm

(A-B) and 1 μm (C).

https://doi.org/10.1371/journal.pone.0249729.g002
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expression of NG2 using quantitative polymerase chain reaction (qPCR) to validate the results

of bioluminescence imaging. In the aged stomach, the mRNA expression of NG2 was signifi-

cantly decreased compared to that in the young stomach (p = 0.035) (Fig 5). These findings

suggested an age-related decrease in the expression of the NG2 gene in the rat stomach.

Age-related changes in NG2-expressing telocytes in the rat stomach

To date, age-related changes in gastric telocytes have not been described. At first, histological

staining showed that interstitial spaces in the aged rat stomach tended to expand compared

with those in the young rat stomach (S4 Fig). To examine the alteration of NG2-expressing tel-

ocytes in the stomach of aged rats, immunofluorescence staining was performed using an NG2

antibody. Immunoreactivity of NG2 in the aged stomach was lower than that in young rats

(Fig 6A and 6B). We showed that gastric telocytes in the rats were composed of two subpopula-

tions based on the expression of PDGFRα: NG2+/CD34+/PDGFRα+ and NG2+/CD34

+/PDGFRα- (Fig 1). To investigate age-related changes of these cells, immunostaining studies

were performed using an anti-PDGFRα antibody. The staining showed that the immunoreac-

tivity of PDGFRα decreased in the aged stomach compared with that in the young stomach

(Fig 6C and 6D). In addition, reduced immunoreactivity for NG2 was mainly found in

Fig 3. Expression of the fLuc reporter gene in NG2 cells of Tg rat stomach. (A-C) Co-expression of the fLuc transgene was observed in almost all

gastric NG2+ cells of Tg rats. Immunofluorescence images of stomach sections stained with anti-NG2 (red) and anti-luciferase (green) antibodies and

Hoechst (blue). Scale bars: 100 μm (A) and 20 μm (B-C).

https://doi.org/10.1371/journal.pone.0249729.g003
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Fig 4. Ex vivo bioluminescence imaging of rNG2-fLuc Tg rats. (A-B) Bioluminescence images of several organs

removed from young (A) and aged (B) Tg rats. The area indicated by red dashed lines includes the stomach and shows

regions of interest (ROI). Upper panels: Photographs of several organs. Lower panels: Bioluminescence images of these

organs. (C) Quantification of bioluminescence signals from the isolated stomach of young (light blue bar, n = 8) and

aged (pink bar, n = 8) Tg rats.

https://doi.org/10.1371/journal.pone.0249729.g004
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NG2+/PDGFRα+ telocytes and was little or none in NG2+/PDGFRα- telocytes in the aged rat

stomach. (Fig 6E and 6F).

Discussion

In our previous study, we suggested that NG2 cells are present in the rat stomach using biolu-

minescence imaging [22]. However, the identification and characterization of these cells have

not been clarified. Here, we showed that NG2 cells were mainly found in the lamina propria

and were absent or rarely observed in the muscularis mucosae of the gastric mucosa in rats

(Fig 1A and 1B). It has been reported that NG2 cells are present in both regions in the small

intestine and colon [19]. Thus, the localization of NG2 cells in the stomach might be different

from those in the mouse intestines. We divided the NG2 cells in adult rat stomach into two

subpopulations according to the presence or absence of CD34 immunoreactivity (Fig 1D). In

this study, NG2+/CD34+ cells were further separated into two subtypes with or without

PDGFRα co-expression: NG2+/CD34+/PDGFRα+ cells and NG2+/CD34+/PDGFRα-

cells (Fig 1E and 1H and S1B Fig). In mice intestine, PDGFRα-expressing cells consist of

PDGFRαhigh and PDGFRαlow cells based on the level of PDGFRα gene expression [26,27].

Moreover, PDGFRαhigh cells are Forkhead box L1 (FoxL1)-expressing telocytes, whereas

PDGFRαlow cells are composed of trophocytes or stromal cells based on their locations and

Fig 5. Comparison of NG2 gene expression in the stomach of young and aged Tg rats. NG2 expression in young

(light blue bar, n = 6) and aged (pink bar, n = 6) stomach of Tg rats. Data are mean ± SEM. � p< 0.05.

https://doi.org/10.1371/journal.pone.0249729.g005
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functions in the lamina propria [26]. These findings suggest that NG2+/CD34+/PDGFRα
+ cells and NG2+/CD34+/PDGFRα- cells in the rat stomach correspond to PDGFRαhigh telo-

cytes and PDGFRαlow stromal cells, respectively. Indeed, it was reported that gastric telocytes

are CD34+/PDGFRα+ in humans [28] and Chinese giant salamanders [29]. However, the

characterization of PDGFRαlow stromal cells remains to be elucidated. In the present study,

Fig 6. Age-related changes in NG2+ telocytes in the rat stomach. (A-F) Double immunofluorescence images of

young (A, C, and E) and aged (B, D, and F) rat stomach sections stained with anti-NG2 (blue, A and B) and anti-

PDGFRα (green, C and D) antibodies. (E, F) Merged images of NG2 (blue) and PDGFRα (green). Scale bar: 100 μm.

https://doi.org/10.1371/journal.pone.0249729.g006
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both NG2+/CD34+/PDGFRα+ and NG2+/CD34+/PDGFRα- cells in the rat stomach showed

typical morphological features of telocytes (S1B Fig). Future research is warranted to unveil

these points. In contrast, NG2+/CD34- cells correspond to pericytes. Indeed, immunostaining

studies showed that some NG2 cells were also immunoreactive for PDGFRβ, a marker of peri-

cytes (S2B Fig) and that PDGFRβ+ cells were located near CD31-expressing endothelial cells

(S2C Fig). Moreover, we showed that a small population of NG2 cells were also present adja-

cent to CD31+ endothelial cells, but NG2 and CD31 never co-localized in the adult rat stom-

ach (S2D Fig). These data were confirmed in a previous study [23,30]. In a previous report,

NG2 immunoreactivity was also observed in αSMA-expressing myofibroblasts and smooth

muscle cells in the muscularis mucosa of mouse intestines [19]. However, NG2 cells in the

adult rat stomach did not show αSMA immunoreactivity (S2A Fig). These data showed that

NG2 cells in the gastric mucosa are composed of two subtypes of telocytes (NG2+/CD34

+/PDGFRα+ and NG2+/CD34+/PDGFRα-) and NG2+/PDGFRβ+ pericytes. These observa-

tions are supported by a previous study [31]. At present, there are no reports describing the

presence of telocyte subtypes in the stomach. However, subtypes of telocytes have been

observed in the human urinary bladder [32] and human cornea [33]. Thus, these findings sup-

port our data that NG2-expressing telocytes consist of two subpopulations based on the

absence or presence of PDGFRα expression.

To date, age-related changes of telocytes in the stomach remain to be fully elucidated. At

the tissue level, the expression of NG2 in the aged (22–24 months old) rat stomach decreased

compared with that in the young (2–3 months old) rat stomach, in both bioluminescence

imaging and gene expression analyses (Figs 4 and 5). Correlation analysis showed that biolu-

minescence signals from the stomach were positively correlated with NG2 expression (correla-

tion coefficient > 0.5) (S3 Fig) and that each dataset could be categorized according to age

(S3 Fig).

Section staining studies showed that gastric interstitial spaces in the aged rat stomach

appeared to enlarge compared with those in the young rat stomach (S4 Fig). These changes in

the aged rat stomach have been reported [34]. At the cellular level, decreased expression of

NG2 was observed in the lamina propria of the aged rat stomach compared to young rats (Fig

6A and 6B). The declined immunoreactivity for NG2 in the aged rat stomach was mainly

found in NG2+/PDGFRα+ telocytes but was rare in NG2+/PDGFRα- telocytes (Fig 6C–6F).

NG2 is a chondroitin sulfate proteoglycan and plays a role in cell migration and cell survival

[35,36]. Therefore, the reduced expression of NG2 proteoglycan in NG2+/PDGFRα+ telocytes

might be associated with the cell survival in aged rat stomach. Previous reports showed that

structural changes in the perivascular regions are found in the aged rat stomach [34] and that

reduced immunoreactivity for NG2 is observed in the pericytes in the small intestine of mice

[37]. These findings indicated that age-related changes in the rat stomach might also be

observed in perivascular cells, including pericytes.

In the present study, we used ex vivo bioluminescence imaging techniques to assess the cel-

lular kinetics of NG2 cells in the young and aged rat stomach (Fig 4), because in vivo imaging

methods cannot accurately quantify the signal intensities of NG2 cells in the stomach [22]. In

preliminary studies, we attempted to perform in vivo bioluminescence imaging with Tg rats

under laparotomy conditions. However, it was difficult to exclude surrounding tissues (includ-

ing adipose tissue and other organs) from the stomach under these conditions, especially for

an ROI analysis. A previous study reported the expression of NG2 in adipocytes [38]. Based on

these findings, we performed ex vivo imaging studies to evaluate the cellular kinetics of stom-

ach NG2 cells in both young and aged rats. Indeed, the results obtained from ex vivo imaging

studies were supported by our gene expression data (S3 Fig), although we observed variations

for each animal, especially in the aged group (S3 Fig).
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Here we show that most NG2 cells in the rat stomach were gastric telocytes, expressing

CD34 and PDGFRα and that NG2-expressing telocytes were composed of two subtypes based

on PDGFRα expression. Expression of NG2 in the aged rat stomach decreased compared with

that in young rats, revealed with bioluminescence imaging and gene expression studies. Fur-

thermore, the decrease of NG2 expression in the aged stomach was mainly observed in NG2

+/PDGFRα+ telocytes, but was not found in NG2+/PDGFRα- telocytes. These data suggest

that age-related alterations are specifically observed in NG2+/CD34+/PDGFRα+ telocytes in

the aged rat stomach.

Supporting information

S1 Fig. Colocalization of CD34 or PDGFRα in NG2+cells in the young rat stomach. (A) Z-

stack images of immunofluorescence staining for CD34 (green) and NG2 (red). (B) Z-stack

images of immunofluorescence staining for PDGFRα (green) and NG2 (blue). Arrowheads

show NG2+/PDGFRα+ (red) and NG2+/PDGFRα- (white) cells with multiple cellular pro-

cesses, whereas arrows point to NG2+/PDGFRα+ (red) and NG2+/PDGFRα- (white) cells,

having long prolongations. Scale bars: 20 μm.

(PNG)

S2 Fig. NG2 immunoreactivity in several interstitial cells of the young rat stomach. (A)

Immunofluorescence staining for αSMA (green) and NG2 (red). (B) Immunofluorescence

staining for PDGFRβ (green), NG2 (red), and Hoechst (blue). Arrowhead shows an NG2+/

PDGFRβ+ cell and arrows point to NG2+/ PDGFRβ- cells. (C) Immunofluorescence staining

for PDGFRβ (green) and CD31 (red). (D) Immunofluorescence images of stomach sections

stained with CD31 (green) and NG2 (red) antibodies. The arrow shows NG2+ cells adjacent to

CD31+ endothelial cells. Scale bars: 20 μm.

(PNG)

S3 Fig. Correlation between bioluminescence signal intensities and NG2 expression in

young and aged Tg rats. Light blue diamonds: Young Tg rats (n = 6). Pink diamonds: Aged

Tg rats (n = 6).

(PNG)

S4 Fig. Comparison of tissue structures of young and aged rat stomach. (A-B) Images of

young (A) and aged (B) stomach sections with hematoxylin and eosin staining. Scale bars:

100 μm.

(PNG)
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