
Internet Interventions 33 (2023) 100657

Available online 8 August 2023
2214-7829/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Automatic patient functionality assessment from multimodal data using 
deep learning techniques – Development and feasibility evaluation 

Emese Sükei a,*, Santiago de Leon-Martinez a,b,c, Pablo M. Olmos a,d, Antonio Artés a,e 

a Department of Signal Theory and Communications, Universidad Carlos III de Madrid, Av. de la Universidad 30, Leganés 28911, Madrid, Spain 
b Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic 
c Kempelen Institute of Intelligent Technologies, Bratislava, Slovakia 
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A B S T R A C T   

Wearable devices and mobile sensors enable the real-time collection of an abundant source of physiological and 
behavioural data unobtrusively. Unlike traditional in-person evaluation or ecological momentary assessment 
(EMA) questionnaire-based approaches, these data sources open many possibilities in remote patient monitoring. 
However, defining robust models is challenging due to the data’s noisy and frequently missing observations. 

This work proposes an attention-based Long Short-Term Memory (LSTM) neural network-based pipeline for 
predicting mobility impairment based on WHODAS 2.0 evaluation from such digital biomarkers. Furthermore, 
we addressed the missing observation problem by utilising hidden Markov models and the possibility of 
including information from unlabelled samples via transfer learning. We validated our approach using two 
wearable/mobile sensor data sets collected in the wild and socio-demographic information about the patients. 

Our results showed that in the WHODAS 2.0 mobility impairment prediction task, the proposed pipeline 
outperformed a prior baseline while additionally providing interpretability with attention heatmaps. Moreover, 
using a much smaller cohort via task transfer learning, the same model could learn to predict generalised anxiety 
severity accurately based on GAD-7 scores.   

1. Introduction 

1.1. Background 

The ubiquity of mobile devices and their advanced sensors have 
allowed the passive collection of physiological and behavioural data in 
real-time, such as step count, location, sleep, and phone usage, which 
has opened new avenues for mental health research (Froehlich et al., 
2007; Cornelius et al., 2008; Kukkonen et al., 2009). By monitoring 
physical activity, social interactions, and mental health biomarkers, 
mobile sensing enables continuous, unobtrusive evaluation of patients’ 
functions and well-being, providing opportunities to improve care 
timeliness, treatment adherence, and health outcomes while minimising 
participant burden and recall bias (Noah et al., 2018). 

To establish reliable frameworks for collecting, processing, and 
analysing behavioural sensor data, recent research has focused on 
monitoring and diagnosing data sources and developing robust models 

for accurate and effective predictions (Jara et al., 2013; Mohr et al., 
2014; Sakr and Elgammal, 2016). Various health monitoring systems 
can be built based on mobile sensing and wearable data sources, such as 
human activity and posture monitoring, general well-being, fall moni-
toring in the elderly, and Parkinson’s disease management, to name a 
few (Miranda et al., 2022). Mobile phone-based interventions have also 
been proposed as early-prevention approaches for reducing the disease 
burden associated with mental illness (Goldberg et al., 2022). 

Such frameworks would be extremely valuable for passive follow-up 
of the evolution of patients’ mobility impairment. Mobility impairment 
is a limitation in a person’s ability to move and perform physical ac-
tivities independently. It can be caused by various factors, such as 
ageing, chronic illnesses, and injuries. Mobility impairment can signif-
icantly impact an individual’s daily life, leading to a decline in physical 
and mental health, reduced social interaction, and increased healthcare 
costs. Predicting mobility impairment using various approaches such as 
machine learning, statistical modelling, and clinical assessments can be 
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found in the literature. However, the main focus group is usually the 
elderly (Demiris et al., 2004; Van Grootven et al., 2020). Moreover, the 
existing methods are obtained from data collected in a smart home 
environment. 

Our prior work (Sükei et al., 2022) examined the feasibility of pre-
dicting patient functionality outcomes based on the World Health 
Organisation Disability Assessment Schedule (WHODAS 2.0), utilising 
passively collected digital biomarkers as model inputs to regression 
models. We performed feature engineering by extracting statistical 
measures (minimum, maximum, mean, median, standard deviation, 
IQR) from 30-day long time-series data sequences, followed by a simple 
linear regression for simplicity and interpretability of the biomarker 
features as predictors. Deep learning models have proven successful in 
many prediction tasks (LeCun et al., 2015), including mobile sensing 
(Servia-Rodríguez et al., 2017; Yao et al., 2017; Bahador et al., 2021), 
and could be employed for mental health outcome prediction. 

1.2. Aims 

Our objective is to develop a comprehensive deep-learning frame-
work that predicts functional mobility impairment by integrating digital 
biomarkers and socio-demographic data. Due to the noisy and missing 
nature of mobile sensed data, we will employ appropriate time-series 
models and imputation techniques to capture underlying patterns in 
the data. Furthermore, including socio-demographic data can signifi-
cantly enhance the model’s performance by providing information 
strongly correlated to the individuals’ functionality. Based on the shared 
behavioural patterns of patient groups, this data can effectively capture 
the complexity of human mobility. 

Additionally, we suggest a simple task transfer learning approach 
that fine-tunes the model for predicting anxiety outcomes. Anxiety can 
significantly impact an individual’s behavior, emotions, and thoughts, 
affecting their daily activities (Al-Lawati et al., 2000; Roemer and 
Orsillo, 2002). It can also lower motivation and prevent individuals from 
participating in physical activities (Otto and Smits, 2011; W. H. Orga-
nization, 2022). Therefore, we hypothesise that mobility descriptor 
variables can effectively predict anxiety outcomes. 

Our contributions consist of the following:  

• a hidden Markov model (HMM)-based method for handling the 
missing observations without resorting to classical imputation 
techniques,  

• a deep neural network model that combines the self-attention 
method with long short-term memory (LSTM) networks to obtain 
patient embeddings over time,  

• and a general multimodal pipeline to model questionnaire outcomes 
that can be trained using transfer learning techniques 

2. Materials & methods 

2.1. Data set 

2.1.1. Study participants 
The data used in this study were collected from two ongoing studies 

(Barrigón et al., 2017; Berrouiguet et al., 2018) involving passive 
smartphone monitoring of clinical outpatients. The studies received 
approval from the Institutional Review Board at the Psychiatry 
Department of Fundación Jimenez Diaz Hospital. All participants pro-
vided written informed consent. 

2.1.2. Eligibility criteria 
The study recruited patients who were at least 18 years old and were 

clinical outpatients diagnosed with mental disorders or attending ther-
apy groups at the institutions mentioned above. To participate, patients 
had to own a smartphone with either Android or iOS operating systems, 
which they used to connect to a Wi-Fi network at least once a week. Only 

patients who provided written informed consent were included, and 
they did not receive payment for their participation. 

2.1.3. Data sources 
Passive data of participants was collected using eB2 Mindcare (eb2 

evidence-based behaviour, n.d.; Bonilla-Escribano et al., 2019; Carre-
tero et al., 2020), an eHealth platform validated for clinical use. The app 
runs in the background of the individual’s smartphone, providing an e- 
diary for mental health. The data consisted of 48 half-hour daily sum-
maries of four observations collected passively, namely step count, 
distance travelled, time spent at home, and exercise time. The data used 
in this work was collected from January 2016 to April 2022 from 2348 
individuals, resulting in 516,604 entries, of which 31.5 % were collected 
in 2019. However, the final dataset had many missing observations, 
with overall missingness percentages of over 60 % for each variable (see 
Supplementary Figs. A.1 and A.2 for details). Missingness can be caused 
by varying sampling frequencies of sensors or sensor non-collection due 
to technological and behavioural factors, such as forgetting to charge the 
phone, disabling GPS, or uninstalling the study application. 

On patient enrolment, socio-demographic information, such as age, 
gender, cohabitation status, and employment status, and initial 
completion of the functionality evaluation questionnaires and resulting 
scores were recorded using the MeMind tool (Barrigón et al., 2017; 
Muñoz-Navarro et al., 2017). The follow-up scores were recorded 
biannually at an in-person appointment or via a phone call (Fig. 1A). The 
two health outcomes that we focus on are the World Health Organisation 
Disability Assessment Schedule 2.0 (WHODAS 2.0) (McKibbin et al., 2004) 
and the Generalised Anxiety Disorder Assessment 7-item (GAD-7) (Spitzer 
et al., 2006) scores. 

The WHODAS 2.0 questionnaire consists of 36 items that assess 
disability in 6 domains: cognition, mobility, self-care, getting along, life 
activities, and participation. Patients are asked to report difficulties 
experienced in the past 30 days while performing tasks in each domain 
and rate the difficulty level. Scores range from 0 to 100 %, with higher 
values indicating higher disability levels. Functional impairment cate-
gories can be defined at different cut-offs, as explained in (de Pedro- 
Cuesta et al., 2013). The GAD-7 screening tool is a 7-item question-
naire that assesses the severity of generalised anxiety disorder, with 
scores ranging from 0 to 21. The cut-off points for mild, moderate, and 
severe anxiety are 5, 10, and 15, respectively, and a score of 10 or 
greater indicates a need for further evaluation (Spitzer et al., 2006); 
therefore, we consider this cut-off value to dichotomise the GAD-7 
outcome. 

A subgroup of 2011 patients from the two studies had clinical eval-
uations for the outcomes of interest. Table 1 provides an overview of the 
distribution of socio-demographic information at baseline and the 
mental health outcome scores in the two study groups. 

In Study group A, 417 patients have two or more entries, 161 have 
one change in the score, and 2 have two changes over the study period. 
In the dichotomised case, this translates to 54 patients having a single 
change. 

2.2. Data preprocessing 

2.2.1. Input data 
To build the input data set for the classification task, we cropped a 

30-day window of the data sequences for each target label entry 
(Fig. 1B). For the baseline score, due to it being registered at enrolling in 
the study, we consider the next 30 days of observations because no 
previous mobile sensed data was collected. For follow-up scores, usually 
collected bi-annually, we centred a 30-day window on encapsulating the 
most complete observation sequence around the score. 

In the case of the socio-demographic covariates, the categorical data 
were one hot encoded. At the same time, the patient age was binned into 
ten categories, then one hot encoded. We introduced an additional 
category to indicate missingness for covariates that were not reported. 

E. Sükei et al.                                                                                                                                                                                                                                    



Internet Interventions 33 (2023) 100657

3

2.2.2. Output data 
We dichotomise the WHODAS 2.0 mobility and GAD-7 scores to 

create the target outcomes. For the WHODAS 2.0 mobility scores, the 
cut-off for the negative label is set at 25 % of the overall domain score. In 
contrast, for the GAD-7 score, a cut-off at 10 is considered. In both cases, 
there is an imbalanced distribution between the two categories: for the 
WHODAS 2.0 mobility impairment outcome, in Study A, there are 1394/ 
2233 0-labels, while in Study B, 165/283, and for the GAD-7 score 176/ 
283, respectively (see the distributions in Supplementary Fig. A.3). 

2.3. Proposed pipeline 

This section introduces our proposed pipeline for leveraging the 
passively sensed time-series sequences and the socio-demographic data 
in functionality estimation. Fig. 2 shows the framework of our approach, 
consisting of an HMM for data imputation, the LSTM- and self-attention- 
based temporal encoder, coupled with a dense layer acting as a logistic 
regressor on the temporal embeddings concatenated with the static 
covariates. The code used to produce the results presented in this paper 
is available at the following GitHub repository: https://github.com 
/mlfpm/functionality_prediction. 

2.3.1. Dealing with missing data 
Missing observations form a common problem with data collected 

from wearable devices and smartphones. They can occur due to varying 
degrees of compliance behavior, sensor failure, or non-collection (Kiang 
et al., 2021). Given the high percentage of missing data, imputation 
using statistical measures such as the mean, median, or even interpo-
lation is insufficient, as they underestimate the variance and ignore the 
relationship between variables (Jäger et al., 2021). The imputed values 
would not generalise to wearable characteristics or participant behavior, 
can reduce variability in the data set, and introduce bias. Probabilistic 
generative models, such as hidden Markov models (HMMs) (Rabiner, 
1989) can learn the underlying distributions in a data set by adjusting 
the model parameters to best account for the data to maximise the ev-
idence, even in the presence of missing data (Speekenbrink and Visser, 
2021). 

HMMs are commonly used generative models in time-series analysis, 
characterised by observable sequences and a set of discrete states, which 

are assumed to have been generated by a first-order Markov chain 
process. The learnable parameters of an HMM comprise an initial state 
probability distribution, a state transition probability distribution, and a 
symbol emission probability distribution. They can be trained unsu-
pervised using the expectation-maximisation (EM) (Moon, 1996) algo-
rithm and marginalisation to deal with the missing data. 

Only those 48-slot daily patient sequences with at least 80 % of ob-
servations were considered for HMM training. It is important to note 
that the sequential data is fully leveraged for the HMM, and we do not 
just restrict the sequences to the 30-day windows. After this elimination 
process, 91,047 sequences were used to train the HMMs with different 
numbers of hidden states n = {2,3,…23}. The best model was selected 
using the Bayesian and Akaike information criteria (Dridi and Hadzagic, 
2018) on a randomly selected subset of 10,000 sequences with varying 
missingness. Given this model, we imputed the missing observations 
repeatedly during the mini-batch stochastic gradient descent. Every time 
a new batch of data was generated, the sequences were decoded using 
the Viterbi algorithm (Forney, 1973), and the missing observations were 
imputed by samples generated from the corresponding most probable 
state. 

2.3.2. Predictive model 
Our proposed pipeline is illustrated in Fig. 2. It performs feature 

encoding for the daily information by applying Time2Vec (Kazemi et al., 
2019), followed by two LSTM (Hochreiter and Schmidhuber, 1997) 
encoders with self-attention (Vaswani et al., 2017) for the 30-day input 
sequence. A feed-forward layer on top of the second attention layer’s 
outputs concatenated with the socio-demographic data is then used to 
get the predictions. 

Time2Vec gives a model-agnostic vector representation for time. 
Consisting of a periodic activation function and a linear term, it can 
capture the periodicity of time series signals and the non-periodic pat-
terns that depend on time. Mathematically, for a given scalar notion of 
time τ, Time2Vec of τ, denoted as t2v(τ), is a vector of size k + 1 defined 
as t2v(τ)[i] = ωiτ + ϕi if i = 0, and t2v(τ)[i] = F(ωiτ + ϕi) if 1 ≤ i ≤ k. 
Here t2v(τ)[i] is the ith element of t2v(τ), F is a periodic activation 
function and the ωi and φi parameters are learnable. 

The LSTM layers encode the input sequences into a fixed-length in-
ternal representation. In contrast, the attention layers learn to pay 

Fig. 1. Outline of the data collection process and input sequence selection. Notation: Di - the ith day in the study for a given patient, XDi - the extracted 30-day mobile 
sensing data sequence around an evaluation. 
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selective attention to the inputs and relate them to items in the output. 
While this increases the computational burden of the model, it results in 
a more targeted and better-performing model. In addition, the model 
can also show how attention is paid to the input sequence when pre-
dicting the output. 

Understanding the relationship between input and output, which 
within-day and within-month temporal patterns contribute to correct 
predictions for the model, is complicated due to the multitude of non- 
linear operations involved. Therefore, we used the self-attention 
weights to interpret the importance of the input signals in the func-
tionality assessment task. We visualised self-attention as heat maps to 
understand the overall significance of features and time. Besides un-
derstanding which temporal patterns contribute to the outcome, these 
self-attention weights can provide insights into relevant changes over 
time, which is paramount to determining the worsening of a patient’s 
state. 

3. Experiments 

The data from Study A was used for cross-validation and testing in all 
experiments except the one described in Section 3.5. We kept the data 
from Study B as a held-out test set. Therefore we refer to the results of 
models trained and evaluated on the same dataset as in-distribution and 
those tested on a different dataset as out-of-distribution (OOD). All 
models were trained using an Adam optimiser with a learning rate of 
1e − 3 and batch size of 64. 

We evaluated prediction performance using accuracy, area under the 
receiver operating characteristic curve (AUROC), and area under the 
precision-recall curve (AUPRC) scores (Saito and Rehmsmeier, 2015) to 
gain valuable insights into the classification performance on the 
imbalanced problems. We report the average score and the corre-
sponding standard deviation from the cross-validation for all evalua-
tions unless mentioned otherwise. Furthermore, we report the 
performance on the unseen OOD data set, except for the experiment 
described in Section 3.5. 

3.1. Defining the baseline 

We started by re-using the pipeline defined in (Sükei et al., 2022) as a 
baseline for prediction performance. We applied sequential forward 
selection (SFS) and logistic regression with L2-regularisation on the 
manually extracted statistical summary features (count, minimum, 
maximum, mean, standard deviation, IQR) from the sequences for each 
variable and combined them with the socio-demographic information. 
After the feature extraction, there were ~20 % missing values in the 
dataset (24.49 % in the step count, 11.13 % in the distance travelled, 
52.58 % in the time at home and 6.51 % in the time at exercising 

Table 1 
The study cohorts.  

Variable Value Study group 

A 
N = 1728 

B 
N = 283 

Socio-demographic 
information at baseline    
Age (years), mean (SD)  43 (15) 42 (14) 
Gender, n (%) Male 526 

(30.44 %) 
102 
(36.04 %) 

Female 1184 
(68.52 %) 

179 
(63.25 %) 

Not known 18 (1.04 
%) 

2 (0.71 %) 

Cohabiting, n (%) No 177 
(10.24 %) 

50 (17.66 
%) 

Yes 1517 
(87.79 %) 

216 
(76.34 %) 

Not known 34 (1.97 
%) 

17 (6.00 
%) 

Family status, n (%) Single 620 
(35.88 %) 

115 
(40.64 %) 

Separated 231 
(13.37 %) 

55 (19.43 
%) 

Widowed 42 (2.43 
%) 

7 (2.47 %) 

Married or cohabiting 
for >6 months 

822 
(47.57 %) 

104 
(36.75 %) 

Not known 13 (0.75 
%) 

2 (0.71 %) 

Employment status, n 
(%) 

Employed, student or 
homemaker 

811 
(46.94 %) 

122 
(43.11 %) 

Unemployed without 
subsidy 

272 
(15.74 %) 

45 (15.90 
%) 

Unemployed with 
subsidy 

149 (8.62 
%) 

14 (4.95 
%) 

Permanently 
incapacitated 

106 (6.14 
%) 

26 (9.19 
%) 

Temporarily 
incapacitated 

286 
(16.55 %) 

55 (19.43 
%) 

Retired 92 (5.32 
%) 

15 (5.40 
%) 

Not known 12 (0.69 
%) 

6 (2.12 %) 

Clinical information, 
median (IQR)    
WHODAS 2.0 mobility 
score [%]  

19 (6, 44) 13 (0, 38) 

GAD-7 score  – 9 (6, 12) 
Entry statistics, median 

(min, max)    
No. entries per patient  1 (1, 4) 1 (1, 1) 
No. score changes per 
patient 

WHODAS 2.0 mobility 0 (0, 2) 0 
GAD-7 – 0  

Fig. 2. The overall structure of the designed pipeline.  
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feature), which we imputed using simple mean imputation. These values 
occur because we do not discard sequences with a single measurement in 
the features to be able to compare the results directly. 

3.2. Nested cross-validation 

We first performed model hyper-parameter optimisation and model 
selection using a nested cross-validation approach (Krstajic et al., 2014). 
As such, a k-fold cross-validation procedure for model hyper-parameter 
optimisation is nested inside a k-fold cross-validation procedure for 
model evaluation and model selection for testing on the OOD dataset. 
This way, the risk of the search procedure overfitting the original data 
set is reduced, and we gain insight into the average model performance. 
By randomly sampling possible model architecture candidates from a 
pre-defined search space of possible hyper-parameter values (Bergstra 
and Bengio, 2012), we try to discover a set of hyper-parameters that 
perform well on the data set in the sense of the AUPRC score. 

We used k = 5 for the hyper-parameter search and tested 10 random 
combinations of model hyper-parameters from a pre-defined search 
space (see Table 2). Nested cross-validation with k = 5 folds in the outer 
loop would fit and evaluate 250 models. We trained the models for 50 
epochs. The final model is configured by applying the outer loop to the 
entire data set. This model trained on the complete in-distribution data 
is then used to predict on the unseen OOD data. 

3.3. Ablation study 

When creating a complex machine learning model, it is helpful to 
understand the impact of each component separately (Meyes et al., 
2019). Therefore, we defined an ablation study, systematically elimi-
nating parts of the model, and analysed its effect on overall model 
performance. We used 3-fold cross-validation to estimate how the 
models are expected to perform when used to make predictions on data 
not seen during training and to find the optimal number of epochs to 
train the model to avoid overfitting. The models were then trained on 
the entire Study A data set for the found number of epochs and evaluated 
on the held-out test set (Study B) in each case. 

3.4. Temporal encoder pre-training 

Given the limited labelled sample size, we propose using a transfer 
learning approach for the temporal encoder. First, we pre-train the 
temporal encoder weights to perform a generic task, such as predicting 
the average mobility biomarkers of the next day based on the previous 
30 days. Then we use the model fit on this auto-regressive task as the 
starting point for a model in the functionality prediction setting, such 
that it would lead to better general embedding of the time series se-
quences regardless of the target label of interest. We extracted 20,272 
30-day sequences with 7-day overlap, for which observations were 
collected for all the features. The pre-training was run for five epochs. 

We compare two pre-training approaches: feature extraction and 
fine-tuning. In the first setting, we freeze the weights of the temporal 
encoder part; hence we solely use it for temporal feature extraction, and 

we train the classification layer of the network. The second approach 
consists of training the whole model on the task-specific dataset and 
adjusting the weights of the temporal encoder. By slightly changing the 
temporal encoder weights, we expect the network to adapt better to the 
specific 30-day periods around the evaluation. 

3.5. Task transfer learning 

The core symptom of general anxiety disorder is chronic, excessive, 
and uncontrolled worry (Rowa and Antony, 2008), which is reflected in 
individuals’ behavioural patterns. Previous studies have shown the 
positive impact of regular activity on patients’ anxiety-related outcomes 
(Anderson and Shivakumar, 2013; Aylett et al., 2018). Therefore, it is 
reasonable to expect that we can apply the above-defined pipeline to 
predict GAD-7 outcomes from the same behavioural biomarkers. How-
ever, in this case, we are facing a significantly smaller labelled sample 
size, which makes it difficult for such complex models to learn to 
generalise well to unseen OOD data instead of simply overfitting the 
training set. Therefore, we propose fine-tuning the model trained on the 
WHODAS 2.0 outcome prediction task to predict the GAD-7 scores. This 
way, the new task can be learned by transferring knowledge from a 
related task that has already been learned (Olivas et al., 2009). 

4. Results 

4.1. Finding the model architectures 

After analysing the elbow points of both the AIC and BIC information 
criteria, we found that five hidden components best captured the data’s 
underlying patterns. Therefore, we used that HMM in the following 
experiments to infer the most probable state sequence for each daily 
data sequence and impute the missing observations from samples 
generated from the corresponding state each time a mini-batch is 
loaded, as described in 2.4.1. 

The hyper-parameter tuning resulted in the following architecture:  

• Time2Vec with embedding dimension 4 and sine activation  
• 2-layer uni-directional LSTM blocks with 64 recurrent units each, 

incorporating 0.1 recurrent dropout rate in each block 

4.2. Baseline, ablation and temporal pre-training 

In Table 3, we summarise the model performance results of the 
baseline approach along with the ablation and transfer learning exper-
iments. The DL pipeline outperformed the baseline approach in the in- 
distribution AUROC score but achieved slightly worse performance in 
AUPRC scores. On the OOD test set, the DL model outperformed the 
baseline in AUPRC. 

We will now examine the results of the ablation study in reference to 
the entire DL pipeline. Removing the attention layer but keeping the 
Time2Vec layer led to a significant performance decrease on the in- 
distribution test, with an increase only in AUROC in the OOD test. 
Removing the Time2Vec block led to lower AUROC and slightly higher 
AUPRC for the in-distribution test, while in OOD test provided the best 
performance. The model without the Time2Vec and self-attention layer 
provided the best AUROC of the ablation variants and the best overall 
AUPRC in-distribution; however, while OOD did improve upon the 
entire model, it performed worse than the former model. Ablation, in 
general, led to lower AUROC in-distribution, but this trade-off could be 
desirable, particularly in the case of the removal of Time2Vec. Removing 
Time2Vec from the pipeline allowed for a more stable model with lower 
in-distribution standard deviation and relevant improvements in all 
areas except the formerly mentioned. 

Pre-training the temporal encoder block of the entire model using all 
the available data sequences and then freezing led to a slight decrease in 
the model performances except in-distribution AUPRC. With the fine- 

Table 2 
The search space for the model hyper-parameters.  

Hyper-parameter Search space 

Time2Vec  
Embedding dimension {4, 6, 8, 10, 12} 
Activation function {sin, cos} 

LSTM  
Hidden dimension - Block 1 {x + 8 | x ∈ N ∩ [32, 128]} 
Hidden dimension - Block 2 {x + 8 | x ∈ N ∩ [64, 256]} 
Bidirectional {True, False} 
Number of layers {1, 2, 3} 
Dropout {0.1, 0.2, 0.3}  
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tuning approach, the in-distribution performance increased to 0.558 
AUPRC, as opposed to the 0.532 AUPRC achieved without pre-training. 
In contrast, the model only reaches 0.545 average AUPRC after training 
with the feature extraction approach. Nonetheless, the feature extrac-
tion approach reaches a slightly higher AUPRC on the OOD test. 

As Fig. 3 shows, more attention is paid on average to the activity in 
the evening hours (slots 36–47), very low attention weights are associ-
ated with late-night activity, and varying patterns can be seen during the 
day in both cohorts. As for the monthly sequences, the attention weights 
are fairly uniform over the 30-day interval in both groups, with occa-
sionally more attention being assigned to the last days of the period. 

When analysing the attention weights at the patient level (Fig. 4), we 
can see different patterns arise based on mobility impairment and 
possibly individual-level differences. In the case of the healthy patient, 
the larger daily attention weights consistently appear in the second half 
of the day. In contrast, some days, more attention is paid to the late night 
hours for the patient with mobility difficulty. Finally, we also analysed 
but did not find a clear correlation between the data missingness and the 
attention weights, which indicates that the weights are assigned in the 
function of the observation values rather than driven by the missingness 
factor. 

4.3. Task transfer learning 

Table 4 shows the dichotomised GAD-7 classification performance 
scores with and without transfer learning, respectively. As expected, the 
model overfitted the training data when we tried learning the GAD-7 
prediction task from scratch since the sample size was relatively small. 
The achieved performance is slightly better than random, and the 

Table 3 
Model performance comparison for the binary WHODAS 2.0 mobility impair-
ment prediction task trained on study A. The highest achieved performance is 
indicated with boldin each setup. Notation: SD = standard deviation. AUROC =
area under the receiver operating characteristic curve, AUPRC = area under the 
precision-recall curve.  

Experiment Model In-distribution test - 3- 
fold mean (SD) 

Out-of-distribution 
test - all held-out 

AUROC AUPRC AUROC AUPRC 

Baseline Random 0.500 
(0.000) 

0.369 
(0.000)  

0.500  0.411 

SFS + LR ( 
Sükei et al., 
2022) 

0.684 
(0.028) 

0.553 
(0.032)  

0.603  0.536 

DL pipeline 0.693 
(0.023) 

0.532 
(0.051)  

0.586  0.542 

Ablation study DL pipeline 0.693 
(0.023) 

0.532 
(0.051)  

0.586  0.542 

No self- 
attention 

0.666 
(0.035) 

0.528 
(0.062)  

0.596  0.541 

No Time2Vec 0.677 
(0.021) 

0.538 
(0.037)  

0.605  0.570 

No Time2Vec 
& self- 
attention 

0.681 
(0.040) 

0.539 
(0.066)  

0.591  0.552 

Encoder pre- 
training 

DL pipeline (no 
pre-train) 

0.693 
(0.023) 

0.532 
(0.051)  

0.586  0.542 

Feature 
extraction 
approach  

0.674 
(0.029) 

0.545 
(0.055)  

0.575  0.538 

Fine-tuning 
approach  

0.675 
(0.027) 

0.558 
(0.075)  

0.579  0.533  

Fig. 3. Daily and monthly average attention weights for 80 randomly selected patients from each mobility difficulty.  
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variance between splits is relatively large. 
For transfer learning, weights were copied from the trained WHO-

DAS DL pipeline without pre-training, as encoder pre-training was not 
helpful for performance, then both transfer learning approaches were 
applied. Overall, the transfer learning was successful as both approaches 
improved the baseline. A significant performance increase was reached 
when we fine-tuned the model trained on the mobility impairment 

classification task. This process works because the features are suitable 
for both base and target tasks, and the significantly larger dataset A 
covers a broader range of covariates. Hence the starting weights of the 
network are more representative. It could be argued that there is 
insufficient data to train a sophisticated model from scratch. However, 
even with a small amount of data, this baseline pipeline still outperforms 
the simpler sequential feature selection and logistic regression. This 
comes at the cost of higher variance, which is also improved upon in the 
transfer learning approaches. The pre-trained model is leveraging the 
additional information for improvements, which confirms the relation-
ship between the tasks of WHODAS 2.0 prediction and GAD-7 prediction 
and between the datasets of study A and B. It can be said that the overall 
model performance still leaves room for improvement, but it is impor-
tant to recognise the difficulty of the problem of GAD-7 prediction with 
such a small dataset. 

5. Discussion 

5.1. Principal results 

This work tackled common problems in modelling mental health 
outcomes from passively sensed digital biomarkers. In this case, the data 
was passively collected with mobile phones, which have inherent limi-
tations in sensor technology (they are not designed for research quality), 
leading to noisy and missing data. However, they are the ideal device for 
data collection, as most people carry a mobile phone throughout their 
day. Thus, if these limitations can be overcome, it provides a promising 
way to passively collect data without any subject interaction, which is 
better for retention and provides more ecological data (i.e. 

Fig. 4. Daily and monthly attention weights for 2 randomly selected patients with different mobility difficulty levels. We indicate with 1 the presence of a sample, 
while with 0, its missingness. 

Table 4 
Model performance comparison for the binary GAD-7 anxiety prediction task 
trained on study B, with and without transfer learning. The highest achieved 
performance is indicated with boldin each setup. Notation: SD = standard de-
viation. AUROC = area under the receiver operating characteristic curve, 
AUPRC = area under the precision-recall curve.  

Experiment Model In-distribution test score 5- 
fold mean (SD) 

AUROC AUPRC 

Baseline Random 0.500 
(0.000) 

0.392 
(0.011) 

SFS + LR (Sükei et al., 
2022) 

0.505 
(0.077) 

0.450 
(0.068) 

DL pipeline 0.518 
(0.143) 

0.463 
(0.148) 

Transfer & pre- 
training 

DL pipeline (no pre-train, 
no transfer) 

0.518 
(0.143) 

0.463 
(0.148) 

Feature extraction 
approach  

0.530 
(0.107) 

0.504 
(0.148) 

Fine-tuning 
approach  

0.603 
(0.121) 

0.556 
(0.148)  

E. Sükei et al.                                                                                                                                                                                                                                    



Internet Interventions 33 (2023) 100657

8

representative of real life). We present a method to overcome this lim-
itation by gathering large amounts of data (data mining) and then 
applying machine learning techniques to fill in missing values and 
capture the relevant information for predicting the desired task, in this 
case, psychiatric target prediction. 

One of the main difficulties we faced was dealing with the large 
amounts of missing data meaningfully. We used HMMs trained on the 
48-half-hour time slot sequences describing patients’ daily activities, 
which were then used for imputation. This allowed for marginalising the 
missingness by repeated imputations from the distributions best 
describing each feature in the sense of likelihood. 

Deep learning techniques automatically learned the underlying 
patterns in the monthly patient sequences to predict mobility difficulty 
and generalised anxiety outcomes. We showed that the proposed 
transfer learning methods could improve the performance of target 
outcome estimation, especially in the case of data sets with few samples. 
Our results proved that even though the binary classification perfor-
mance varies on each split, which is expected partly due to the non- 
uniform representation of certain socio-demographic features in the 
data set, the variance was not especially significant; hence the models 
are quite robust to the data shifts. 

Applying a pre-training/transfer learning step for the temporal 
encoder block of the model helped with a more meaningful initialisation 
of the model weights for the classification task of GAD7. However, it was 
unhelpful in the case of predicting WHODAS 2.0 mobility impairment. 
Pre-training can be viewed as beginning gradient descent from a 
different initialisation on the objective space, and thus improvements 
are due to reaching better optima that minimise the loss. In the case of 
the WHODAS 2.0 mobility scores, it was clear that this initialisation led 
to a finding of poorer optima, while in GAD-7 prediction, it led to 
significantly better optima. Finding a worse optimum is primarily due to 
either being stuck in a worse local optimum or descending the objective 
space slower. The pre-training initialisation is based on predicting the 
average next-day mobility markers, and this can be generally helpful 
when there is a lack of data. However, with more data, the optimisation 
problem solved in the predictive task strays further and further away 
from the one defined in the pre-training. Moreover, as the data set from 
study A covered a more comprehensive range of socio-demographic 
representations, that might have helped to avoid covariate shifts be-
tween training and test sets in the task transfer set-up on the much 
smaller data set of study B. 

The self-attention heatmaps showed different general within-day and 
within-month patterns emerging in the healthy versus mobility- 
impaired cohorts. Additionally, when paired with a relevant time- 
point, the heatmaps can be used to analyse the different emerging pat-
terns concerning certain events, for example, the beginning or discon-
tinuation of a prescribed treatment or comparing patterns between 
visits. These simple visualisations provide a helpful tool for clinicians to 
gain insights into the individuals’ activity patterns and what led to an 
improvement, and even more importantly, what led to a decline. This 
can provide invaluable information when deciding to trigger proper 
interventions to help slow down or reverse the decline. 

5.2. Strengths and limitations 

The strength of this work lies in the novelty of a pipeline for passively 
determining patient functionality scores. We focus on psychiatric tar-
gets, but this idea could be extended to many areas. Not only is the idea 
and implementation novel to the domain of passive mobile psychiatric 
evaluation but also this work presents a way to deal with the limitations 
of passively sensed mobile data in any domain to achieve reasonable 
results. Despite high percentages of missing values and low variability in 
labels, the model captured patient outcomes. 

This study shows that it is feasible to set up machine learning pipe-
lines for passive patient evaluation, and there are ways to address 
problems in mobile sensed data. With the work presented here and 

future improvements, the limitations of passive data collection from 
mobile phones can be mitigated, leaving researchers and clinicians with 
a data collection tool that is almost always carried by subjects, collects 
data in real-time, requires no patient interaction, and can gather mul-
tiple data per day across modalities. 

Although our approach showed promising results, it faces additional 
challenges and leaves room for improvement in future work. A common 
limitation in health applications is the relatively small labelled sample 
size. A larger patient cohort and multiple different valued labels per 
patient could help train more robust models and even allow for a data- 
driven personalisation, thus accounting for inter- and intra-individual 
differences in behavioural patterns. Secondly, to help address the 
missingness problem, we introduce another limitation in finding the 
least missing containing a 30-day window for each label, which can 
include days after questionnaire completion. However, it is not an un-
reasonable assumption that the patient’s state would not change within 
a few days or weeks of questionnaire completion. This assumption is 
further supported by the data’s lack of within-individual label 
differences. 

Moreover, we interpreted the temporal patterns found significant by 
the model via visualising the self-attentions; however, such interpreta-
tion only explains the variation of the behavioural patterns regarding 
the outcome of interest. This work could further be extended to bring 
more interpretability to the decision-making, providing better insights 
for clinicians. 

6. Conclusion 

Previous work on the topic used manually extracted features from 
the mobile sensed sequences, avoiding the missingness and intra-day 
variations. In this work, we investigated using a deep learning model 
with multimodal inputs, complemented by a hidden Markov model for 
missing value imputation, for the prediction tasks. This pipeline results 
in better predictions and interpretability of intra-day and intra-month 
variations concerning the outcome of interest, thanks to the self- 
attention layers. Moreover, our transfer learning approach shows 
promising results in efficiently diversifying the prediction tasks, even to 
smaller data sets. 
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