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Abstract

Background: Glycans are complex sugar chains, crucial to many biological processes. By participating in binding
interactions with proteins, glycans often play key roles in host–pathogen interactions. The specificities of
glycan-binding proteins, such as lectins and antibodies, are governed by motifs within larger glycan structures, and
improved characterisations of these determinants would aid research into human diseases. Identification of motifs has
previously been approached as a frequent subtree mining problem, and we extend these approaches with a glycan
notation that allows recognition of terminal motifs.

Results: In this work, we customised a frequent subtree mining approach by altering the glycan notation to include
information on terminal connections. This allows specific identification of terminal residues as potential motifs, better
capturing the complexity of glycan-binding interactions. We achieved this by including additional nodes in a graph
representation of the glycan structure to indicate the presence or absence of a linkage at particular backbone carbon
positions. Combining this frequent subtree mining approach with a state-of-the-art feature selection algorithm
termed minimum-redundancy, maximum-relevance (mRMR), we have generated a classification pipeline that is
trained on data from a glycan microarray. When applied to a set of commonly used lectins, the identified motifs were
consistent with known binding determinants. Furthermore, logistic regression classifiers trained using these motifs
performed well across most lectins examined, with a median AUC value of 0.89.

Conclusions: We present here a new subtree mining approach for the classification of glycan binding and
identification of potential binding motifs. The Carbohydrate Classification Accounting for Restricted Linkages (CCARL)
method will assist in the interpretation of glycan microarray experiments and will aid in the discovery of novel binding
motifs for further experimental characterisation.
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Background
As one of the four major classes of biomolecules,
carbohydrates are present in all organisms and play crucial
roles in biomolecular interactions. Organisms polymerise
simple sugars to yield oligo- and polysaccharides, which
are typically termed glycans when attached to proteins
and lipids. Glycans may be composed of several sugar
residues with various glycosidic linkages, often forming
branched structures. Consequently, there are a myriad
of glycan structures that have arisen in organisms, with
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distinct glycosylation patterns observed between evolu-
tionary clades. Glycoforms can even differ between indi-
viduals. Aberrant glycosylation is a hallmark of cancer,
and a body of research has focused on the identifica-
tion of glycan biomarkers as diagnostic and prognostic
tools for use in oncology [1, 2]. Additionally, carbohydrate
determinants are frequently involved in host–pathogen
interactions. Notable examples of this include the attach-
ment of influenza virions to host sialic acid residues and
the recognition of pathogens by mannose receptors and
anti-carbohydrate antibodies [3, 4]. The mannose recep-
tor, along with DC-SIGN, is an example of a C-type
lectin present on the surface of immune cells. Lectins
can be defined as ‘proteins that possess at least one
noncatalytic domain that binds reversibly to a specific
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mono- or oligosaccharide’, excluding enzymes (e.g. gly-
cosyltransferases) and carrier proteins [5]. Due to their
broad selectivities, lectins are also distinct from other
glycan-binding proteins that recognise specific carbohy-
drate antigens, such as antibodies and T-cell receptors.
The carbohydrate-binding properties of plant lectins have
been exploited by scientists for a number of labora-
tory techniques, including histochemical staining, affin-
ity chromatography, and identification of biomarkers.
For example, Lens culinaris agglutinin (LCA)-reactive
α-fetoprotein (a glycoform termed ‘AFP-L3’) is an FDA-
approved biomarker for the risk assessment of hepato-
cellular carcinoma [6, 7]. However, the selectivities of
lectins for glycan motifs are often poorly defined, which
undermines confidence in glycan profiling.
As complex structures, carbohydrates are often best

suited to computational analyses. Several open-access
resources exist for structural analysis of carbohydrates [8],
but relatively few for analysis of glycan motifs. Impor-
tantly, it is the branched nature of glycans that renders
them unsuitable for motif analysis techniques developed
for linear nucleic acid and protein sequences. Instead,
methods developed for analysis of graph structures are
typically used, included tree kernel methods and subtree
mining approaches. For example, a tree kernel method
was shown to reliably classify human blood glycans into
different human blood components [9]. In addition to
using glycan structures to classify cell or tissue origin,
understanding the interactions between glycan-binding
proteins and their ligands can be fundamental to a variety
of scientific inquiries, including human health and dis-
ease. The Consortium for Functional Glycomics (CFG)
conducted thousands of experiments with standardised
glycanmicroarrays and hasmade these data publicly avail-
able online [10]. However, few attempts have beenmade to
conduct meaningful analyses across these large datasets,
and glycan-specific data mining tools would aid such
work. To this end, GlycoSearch (later MotifFinder) was
developed to allow glycans fromCFG datasets to bemined
for predefined motifs [11]. While this algorithm has been
applied to a global analysis of the CFG glycan microarray
data [12], it does not allow for the discovery of newmotifs.
For the detection of characteristic binding motifs within

a set of glycans, frequent subtree mining approaches have
been employed by other researchers [13, 14]. Frequent
subtree mining is a technique that is used to find a set
of characteristic motifs (or subtrees) that are present at
a defined frequency within a set of glycans (or other
graph-like structures). Ideally, identified motifs should be
present at high frequency within a set of positive bind-
ing glycans but relatively absent within negative binders.
Hashimoto et al. developed the first frequent subtree
mining algorithm for glycans in 2008 [13], which was
later made available at the Resource for Informatics of

Glycomes at Soka (RINGS) and used to discover sulfated
structures as novel binding determinants of influenza
virions from CFG glycan microarray data [15]. The
GlycanMotifMiner (GLYMMR) followed in 2012, which
incorporates a statistical method of distinguishing bind-
ing glycans from non-binding glycans and considers both
binding and non-binding glycans when predicting motifs
[14]. Using a different approach, the Multiple Carbohy-
drate Alignment with Weights (MCAW) tool aligns gly-
cans in a analogous manner to multiple alignments of
DNA or protein sequences and has been used to identify
patterns in binding glycans from the CFG glycan microar-
ray data [16, 17]. Ultimately, these algorithms aim to
define the selectivities of lectins and other glycan-binding
proteins using existing experimental data.
In this work, we introduce a novel frequent subtree

mining approach for identifying binding motifs, Carbo-
hydrate Classification Accounting for Restricted Linkages
(CCARL), which we have tested on glycanmicroarray data
from the CFG. This approach incorporates a new method
for distinguishing binding and non-binding glycans, as
well as an adapted glycan notation, which includes restric-
tions on connecting residues. For example, a mannose
residue may form glycosidic linkages from -OH groups
on its carbon 2, 3, 4, or 6, and so any of these non-
existent linkages are denoted by a cross in place of a
residue symbol and the corresponding carbon numbers in
our modified Symbol Nomenclature for Glycans (SNFG).
Klamer et al. 2017 employed a ‘free’ modifier in their gly-
can motif syntax [18], but we refer to these as ‘restricted
linkages’ in the context of specifying motifs that do not
form particular chemically possible glycosidic linkages.
This representation allows the discrimination of termi-
nal and non-terminal motifs. As motifs are often only
binding determinants if present at the non-reducing ter-
minal of glycans, this notation enhances the performance
of prediction tools trained using these motifs. We tested
this method across a range of commonly used lectins and
were able to both identify key binding motifs as well as
accurately predict binding of a test set of glycans.

Methods
Overview
To identify key binding motifs from a glycan microarray
experiment, we represented glycans as directed acyclic
graphs with additional nodes to indicate the absence of
a linkage at particular backbone carbon positions. These
additional nodes are termed ‘restricted linkages’. Using
this directed graph representation, we extracted a large
set of possible motifs using a frequent subtree min-
ing approach, followed by feature selection to identify a
smaller set of likely motifs. Identified motifs were aug-
mented by adding information on parent edge type, mean-
ing the anomeric descriptor (α or β) at the reducing end
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of the motif, and the process of feature selection repeated
using this augmented set of features. An additional round
of feature selection was performed using logistic regres-
sion with L1 regularisation. Finally, we trained an unregu-
larised logistic regression model to predict the probability
of an unknown glycan binding to a particular protein
(Fig. 1).

Data sources
Glycan microarray data were obtained from the Con-
sortium for Functional Glycomics (CFG) (http://
www.functionalglycomics.org/; accessed 27/11/2018),
with all glycan microarray data downloaded using
custom Python scripts. CFG microarray data were only

Fig. 1Workflow for identification of key binding motifs from glycan
microarray data and construction of predictive classifier

available in Excel format, so additional data cleaning
was required to extract relevant data into a format
amenable to large-scale analysis. All scripts are available
at https://github.com/andrewguy/CCARL.

Determination of positive binding glycans from glycan
microarray data
To identify positive binding glycans from a glycan
microarray experiment, we made two key observations
from CFG microarray data. Firstly, that the Relative Flu-
orescence Unit (RFU) values for non-binding glycans are
usually approximately log-normally distributed. Secondly,
that there are usually considerably more non-binding gly-
cans than positive binders, such that the median RFU
value is close to the median for the background distri-
bution. Based on these observations, we use an outlier
detection technique based on Median Absolute Devia-
tion (MAD) scores to identify values that fall outside of
the background distribution [19]. MAD is a robust mea-
sure of dispersion, being unaffected by a small number of
large outliers. This makes it suitable for identifying out-
liers/positive binders, as the large RFU values for positive
binders will have little to no effect on the MAD calculated
for a set of data.
We firstly transformed RFU values according to:

xi = log10[RFUi − min(RFU) + 1]

where min(RFU) is the minimum RFU value observed
in that particular glycan microarray experiment. Median
Absolute Deviation was then calculated using

MAD = median(|xi − x̃|)
where x̃ is the median of the transformed data. Amodified
z-score is then calculated for each point x:

Mi = 0.6745(xi − x̃)
MAD

where the factor of 0.6745 is the approximate z-score at
the 75th percentile.
This modified z-score is analagous to a standard z-score,

except that it is calculated using the median and MAD
value rather than the mean and standard deviation.
Data points with modified z-scores above a threshold

value are assigned as outliers (i.e. positive binders). For
data arising from CFG glycan microarrays, we have used
a threshold of Mi > 3.5 to assign positive binders, and
1.5 < Mi < 3.5 to assign intermediate binders. All inter-
mediate binders were ignored for the purposes of motif
identification and classifier training, as it is unclear if these
belong to the negative or positive class and we wished
to avoid contaminating either the positive or negative
binding classes.
Importantly, we note that MAD is relatively insensitive

to large numbers of outliers, making it suitable for this
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sort of task. In practice, this method peforms well for
most CFG glycan microarrays, with the only exceptions
being cases in which the positive class contains roughly
half (or more) of the data points. These occur infrequently
enough that we suggest a manual assignment of bind-
ing thresholds (using domain-specific knowledge), if these
situations arise.

Generation of training and test datasets
For each glycan binding microarray being examined, pos-
itive, negative, and intermediate binding classes were
assigned using the MAD outlier detection method. Data
points with intermediate binding were discarded, and the
remaining data points split into training and test datasets
(80%/20% split). This ratio was chosen to maximise the
amount of training data while ensuring sufficient posi-
tive data points were present in the test set for effective
method evaluation. Data were stratified during this pro-
cess to ensure a consistent ratio of positive to negative
binders in each dataset. The training dataset was used for
selection ofmotifs and training of a final classifier. The test
dataset was only used for evaluation of the final classifi-
cation model. The test and training datasets used for this
study are provided in Additional file 6.

Representing glycans as directed graphs with restricted
linkage nodes
Standard approaches to motif detection from glycan
microarray data usually involve finding some frequent

subtrees that are present at high frequency in a posi-
tive binding set but are relatively absent in a negative
binding set. Within these approaches, glycans are typ-
ically represented as directed graphs (or rooted trees)
with sugar residues represented as nodes and linkage
types represented by edges. We propose a modifica-
tion to this approach in which additional informa-
tion on the presence/absence of connecting residues is
included (see Additional file 2 for an example). This
is indicated by the presence of a restricted linkage
node at any position that doesn’t have a connecting
residue, but is capable of supporting a connection (i.e.
there are other glycans in the dataset that contain
that linkage). This allows identification of motifs that
are dependent on subtree location (e.g. at a terminal
position).
As a motivating example, we consider the peanut

lectin (PNA), which binds to the T antigen disaccha-
ride (terminal Galβ1-3GalNAc). This lectin does not
bind when the disaccharide is sialylated on the galac-
tose residue, as in the case of the sialyl T anti-
gen (Neu5Acα2-3Galβ1-3GalNAc). A standard motif
finding approach has difficulty identifying a subtree
which is present in Galβ1-3GalNAc but not its sia-
lylated form (Fig. 2). Addition of restricted linkage
nodes to indicate the absence of a connection at par-
ticular backbone positions allows easy discrimination
between sialylated and asialylated forms of the T antigen
disaccharide.

Fig. 2 Addition of restricted linkage nodes improves selection of candidate motifs for glycan binding data. In this illustrative example, there is a single
glycan (Galβ1-3GalNAc) capable of binding to a candidate lectin (e.g. PNA), while sialylation of the galactose residue (Neu5Acα2-3Galβ1-3GalNAc
and Neu5Acα2-6Galβ1-3GalNAc) restricts binding. Generation of subtrees from these three glycans yields a set of potential motifs that could be
used to discriminate between binders and non-binders. Note that one of these subtrees contains a ’restricted linkage’ node, to indicate the absence
of a connection at positions 3 and 6 on the terminal galactose; there are connections at these positions within the non-binding set. This restricted
linkage node is indicated by an X. Without consideration of restricted linkage nodes, there are no subtrees that are unique to the binding set.
However, with addition of restricted linkage nodes, there is a single subtree from the binding set that adequately discriminates between binding
and non-binding glycans. This candidate motif is marked with an asterisk. All glycan motif structures are shown in SNFG [51], modified with restricted
linkages. Each restricted linkage, with corresponding carbon numbers, terminates in a cross in place of a residue symbol, according to the key
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Frequent subtree mining to generate a pool of possible
motifs
Each glycan within a microarray was represented as a
directed graph, with additional restricted linkage nodes
to indicate lack of a connection at a particular back-
bone position. To minimise computational complexity,
if several restricted linkage nodes are present on a sin-
gle residue, these were merged into a single restricted
linkage node whose edge value contains all empty con-
nection positions (e.g. Fig. 2). Using a frequent subtree
mining approach, we then generated all possible sub-
trees that meet a minimum support threshold of 5% for
a given set of glycans. In the context of frequent sub-
tree mining, the support for a particular subtree refers
to the overall percentage of graphs which contain that
subtree. Accordingly, the minimum support threshold is
the threshold above which a subtree will be considered
to be frequent. While a number of algorithms exist to
extract frequent subtrees from a set of graphs, gSpan is
one approach that is both efficient and deterministic [20].
We have used an implentation of gSpan called gBolt that
is both faster and more memory efficient compared to
the original gSpan implementation (https://github.com/
Jokeren/gBolt) [21]. During method development, it was
noted that somemotifs occured at high frequencies within
the positive binding set, but below the minimum sup-
port threshold of 5% used for selecting subtrees from the
entire set of glycans. As such, we also selected additional
frequent subtrees from the positive binding set, using
a relatively high minimum support threshold of 40%. A
higher threshold is used when selecting frequent subtrees
from the positive binding set as there tends to be more
commonality between glycans within the positive binding
set. It is noted that these thresholds have been chosen as
a tradeoff between computational run-time and ability to
retrieve low-frequencymotifs. These thresholdsmay need
to be optimised for other glycanmicroarray systems, how-
ever the above thresholds were used for all microarrays
analysed in this manuscript.

Motif identification
Feature selection usingmRMR
Generation of frequent subtrees yielded a large set of
subtrees (e.g. there are 4121 subtrees for CFG microar-
ray version 5.0 at a 5% minimum support threshold).
To reduce this to a small set of distinguishing motifs,
we performed feature selection using a state-of-the-
art algorithm termed minimum-redundancy, maximum-
relevance (mRMR) [22]. ThemRMR algorithm selects fea-
tures which both maximise mutual information between
class labels and selected features (maximum relevance),
while also minimising mutual information between
selected features (minimum redundancy). We have used
an implementation of mRMR called fast-mRMR [23],

accessed at https://github.com/sramirez/fast-mRMR. For
mRMR, input features were derived from the frequent
subtrees identified in the previous step (i.e. each subtree
is an individual feature). The mRMR algorithm also uses
the class labels from the training dataset to determine the
final set of selected features. mRMR is a filter method for
feature selection, and hence requires the user to select the
total number of features to be extracted. For this work,
a total of 10 features were selected using fast-mRMR, as
this was considered an adequate number of features to
describe glycan binding properties.

Motif augmentation
Following generation of candidate motifs using mRMR,
the set of potential motifs was extended by adding new
motifs that include information on parent edge type (i.e.
the anomeric descriptors at the reducing end of the motif,
either α or β). This was motivated by the observation that
some glycan binding motifs are dependent on the type of
glycosidic linkage present on the reducing end of themotif
(e.g. ABA lectin recognises Galβ1-3GalNAcα). Impor-
tantly, the residue at the reducing end of the motif may
or may not include the anomeric desciptor, depending on
the motif in question. For example, a motif may specify
that a particular residue is α-linked but that the linked
residue does not determine binding. Likewise, a parent
edge type that is either α- or β-linked (α/β) simply indi-
cates that a linked residue is required for binding, and that
the glycosidic linkage does not determine binding. Fol-
lowing generation of these new features, another round of
feature selection with mRMR was performed using both
the original set of motifs and motifs with information on
anomer type at the reducing end of themotif. This process
allows identification of motifs with finer specificity.

Feature selectionwith logistic regressionwith L1
regularisation
As the mRMR algorithm selects a defined number of fea-
tures, it is possible that some of these selected features
are uninformative. We therefore performed an additional
round of feature selection using logistic regression with L1
regularisation, which encourages sparsity in model coeffi-
cients. Additionally, because of the imbalanced nature of
the dataset, we incorporated class weights proportional
to the number of samples in each class. The final cost
function to be minimised is:

cost(w) = −C
N∑

n=1
{α1tn ln yn+α0(1−tn) ln (1 − yn)}+‖w‖1

where α0 and α1 are class weights inversely proportional
to the number of samples in each class, tn = 1/(1 +
exp(−wTxn)), w is the vector of model coefficients, yn ∈
(0, 1), and xn is the feature vector for sample n. The reg-
ularisation parameter C was selected using 5-fold cross

https://github.com/Jokeren/gBolt
https://github.com/Jokeren/gBolt
https://github.com/sramirez/fast-mRMR
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validation, with C selected to maximise average Matthews
Correlation Coefficient (MCC) across all folds. C was
selected from a set of 100 evenly spaced (in the log
domain) values between 10−4 and 104. Features with non-
zero coefficients were selected for inclusion in a final
logistic regression model with L2 regularisation.
Additionally, to remove features with perfect colinear-

ity, we calculated variance inflation factors (VIF) for each
feature in the model. Features with infinite VIFs were
removed in a step-wise manner, recalculating VIFs for
remaining features at each step.

Logistic regression model
For classification of glycan binding, we chose a logis-
tic regression model, both to minimise the likelihood of
overfitting and to enable straightforward interpretation of
model coefficients (as compared to a neural network, for
example). A logistic regression model was trained using
the final set of features, with a small amount of L2 regu-
larisation and class weights inversely proportional to the
number of samples in each class, with a cost function:

cost(w) = −C
N∑

n=1
{α1tn ln yn+α0(1−tn) ln (1 − yn)}+‖w‖2

where C = 100.
Model performance was assessed using the test set.

Receiver operating characteristic (ROC) curves were gen-
erated for each glycan microarray (for both test and train-
ing sets), and final model performance assessed using the
area under the curve (AUC) value.

Software and analysis tools
The Python PyParsing package was used to build a parser
to turn CFG glycan strings into a graph format. All
graph manipulation was performed using the Python Net-
workX package. Additional Python libraries used include
Scikit-learn, Pandas, Numpy and Scipy. The Statsmod-
els Python library was used for calculation of variance
inflation factors [24]. All frequent subtreemining was per-
formed with gBolt. All code and methods are available at
https://github.com/andrewguy/CCARL.

Method comparison
To further validate our method, we compared compo-
nents of our pipeline with pre-existing methods. The
first aspect of our pipeline involves determining positive
and negative binding glycans from a microarray experi-
ment. We compared the MAD-based method used here
for distinguishing binding from non-binding glycans with
the ‘Universal Threshold’ described by Wang et al. [25],
and the z-score (p-value <0.15) method incorporated into
the GLYMMR algorithm [14]. All available concentra-
tions in the CFG database were collated for each of the

lectins examined, as both the methods of Wang et al.
and Cholleti et al. use information from a range of lectin
concentrations.
Secondly, we compared our motif identification pipeline

to existing motif identification tools, including GLYMMR
[14], the Glycan Miner Tool [13] hosted on RINGS
(https://rings.glycoinfo.org/), and MotifFinder [18]. We
assessed GLYMMR at a range of minimum support
thresholds (20%, 30%, 40% and 50%), reporting both the
mean AUC value across all thresholds and the best AUC
for each sample. All other parameters were set to the
defaults described in Cholleti et al. [14] (m = 3, no
negative threshold, no additional filtering of substruc-
tures). The Glycan Miner Tool was run with param-
eters alpha = 0.8 and a minimum support of 20%.
Motifs obtained from both GLYMMR and the Gly-
can Miner Tool were used to generate a classification
model using L2-regularised logistic regression (using the
same parameters as those used for the CCARL method).
Performance was assessed using stratified 5-fold cross
validation, with mean AUC values calculated across all
folds. To ensure consistent evaluation between tools, we
used the same assignment of positive and negative bind-
ing glycans for all tools (using the MAD-based method
described earlier).
For a comparison to MotifFinder, we used the train-

ing datasets generated previously to generate contiguous
motifs (one to four nodes in length) with MotifFinder.
We then built a lectin model with the MotifFinder
tool using the training dataset, before predicting glycan
RFU values on the test dataset. Predicted RFU values
were then used to calculate AUC values for MotifFinder.
Note that only a single test-training split was used
to assess MotifFinder as this tool does not support
programmatic access.

Results
To assess the performance of our motif identification and
glycan classification method, we selected a number of
plant- and fungi-derived lectins with well characterised
binding motifs that are commonly used in experimental
settings. These include peanut agglutinin (PNA), con-
canavalin A (Con A) and Ricinus communis agglutinin I
(RCA I/RCA120).We also selected three examples relevant
to host–pathogen interactions, namely haemagglutinins
(HA) from two strains of influenza, and human DC-
SIGN (see Table 1 for a full list). To ensure consistency
between datasets and to maintain underlying data quality,
we used glycan microarray data from experiments with
Lara Mahal as the principal investigator [25] and lectins
sourced from Vector Laboratories, wherever possible. As
each lectin was typically analysed at a range of concen-
trations, we selected data from 10μg/ml of lectin, except
when there was clearly better separation between positive

https://github.com/andrewguy/CCARL
https://rings.glycoinfo.org/
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and negative classes at a different concentration (as judged
from a histogram of RFUs), or when experimental data
was not available at 10μg/ml.

Identification of key bindingmotifs for PNA
Peanut agglutinin is a legume-derived lectin used in cell-
based assays [26]. Following feature selection by mRMR
and sparsity-promoting logistic regression with L1 reg-
ularisation, two motifs were selected for inclusion in
a final model for PNA. The motif with the highest
coefficient in the final logistic regression model was a
Galβ1-3GalNAc motif, with restricted linkages on the
non-reducing galactose residue (Fig. 3c). This agrees well
with published reports of PNA binding specificity [27].
The Galβ1-3GalNAc motif is otherwise known as the
tumour-associated (T) antigen, and its galactose residue
is commonly sialylated to yield the sialyl T antigen. The
motif retrieved in our model would restrict sialylation at
the terminal galactose residue, which is supported by crys-
tal structures of PNA binding to the T antigen [28]. The
T antigen was also returned by the Glycan Miner Tool,
but not by GLYMMR, and neither specifies the restricted
linkage at the terminal galactose residue (Additional file

8). Within the bound structure, the terminal galactose
residue is heavily involved in interactions with amino acid
residues in the binding site of PNA (Fig. 3d). The final
logistic regression model gave good classification per-
formance, with AUC values of 0.908 and 0.909 for the
training and test sets, respectively (Fig. 3b).
We note here that while interpretation of coefficients

from a logistic regression model is relatively straightfor-
ward when there is little correlation between features,
there are additional complexities to consider when fea-
tures are highly correlated. For uncorrelated features,
model coefficients can be interpreted as the change in
the log-odds of glycan binding when that particular fea-
ture/motif is present. However, when features are highly
correlated, there can be significant interplay between
coefficients for correlated features. Therefore, interpre-
tation of model coefficients for highly correlated motifs
should be treated with a degree of caution. To assess the
level of collinearity for each feature, we have calculated
variance inflation factors for each set of predictive motifs
(Additional file 3). Motifs with high variance inflation fac-
tors should be treated with caution—while these may still
be important motifs, the model coefficient values may not

Fig. 3 Predicted carbohydrate-binding motifs of PNA from CFG glycan microarray data. a Distribution of RFUs and classification of non-binding
(blue), intermediate binding (orange), and binding glycans (red). b ROC curves for the test (n=143) and training (n=428) sets. The ratio of negative to
positive samples was 9.0. c Logistic regression coefficients for identified motifs. d The intermolecular hydrogen bonding interactions (shown in
green) between the T antigen (carbon backbone shown in yellow) and the carbohydrate-binding domain of peanut agglutinin (PNA) (carbon
backbones shown in grey). Carbon 3 of the Gal monomer is labelled to indicate where the sialic acid is linked in the sialyl T antigen. Reproduced
from an X-ray crystal structure at 2.5 Å resolution available at the PDB (PDB: 2TEP) [28]. See Additional file 1 for a detailed notation key
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be indicative of the true importance of that feature as a
binding motif.

Identification of key bindingmotifs for Con A
Con A is another widely available L-type lectin and is used
extensively in lectin affinity chromatography [29]. Using
glycan microarray data for Con A, we identified terminal
α-linked mannose residues as the motif with the second
highest model coefficient (Fig. 4c). This motif does, how-
ever, allow linkages from the carbon 2 of the mannose
residue, which describes the non-branching linkages of
mannose residues in oligomannose N-glycans. Interest-
ingly, terminal mannose was not specified as a motif by
either GLYMMR or the Glycan Miner Tool (Additional
file 8), which fail to describe ConA’s high affinity for oligo-
mannose N-glycans. A co-crystallised structure of Con A
with a mannose disaccharide (Fig. 4d) explains Con A’s
affinity for α-linked mannose residues, in agreement with
themotifs identified by our approach. The other identified
motifs describe the Manα1-3 arm of the N-glycan core.
This is in agreement with the reported broad selectivity of

Con A for N-glycans [30]. There is also crystallographic
evidence of Con A binding to the pentasaccharide core of
N-glycans, although this suggests a higher affinity for the
Manα1-6 arm [31]. While both GLYMMR and the Glycan
Miner Tool captured the specificity of Con A for the N-
glycan core, the motifs identified by these tools are larger,
and don’t solely specify the mannose core as the main
binding determinant. When using the motifs identified
by CCARL as features for a logistic regression classifier,
we observed high AUC values of 0.989 and 0.987 for the
training and test sets, respectively (Fig. 4b).

Identification of key bindingmotifs for RCA I
RCA I is an R-type lectin often used in histochemical
staining [32]. Using CFG glycan microarray data, gly-
can structures terminating in β-linked galactose residues
were predicted as potential binding motifs for RCA I
(Fig. 5c). These motifs are consistent with the pub-
lished selectivity of RCA I from chromatographic studies,
including a preference for Galβ1-4GlcNAc over Galβ1-
3GlcNAc and reduced affinities for galactose residues

Fig. 4 Predicted carbohydrate-binding motifs of Con A from CFG glycan microarray data. a Distribution of RFUs and classification of non-binding
(blue), intermediate binding (orange), and binding glycans (red). b ROC curves for the test (n=141) and training (n=421) sets. The ratio of negative to
positive samples was 4.1. c Logistic regression coefficients for identified motifs. d The intermolecular hydrogen bonding interactions (shown in
green) between 2α-mannobiose (carbon backbone shown in yellow) and the carbohydrate-binding domain of Concanavalin A (carbon backbones
shown in grey). Reproduced from an X-ray crystal structure at 1.2 Å resolution available at the Protein Data Bank (PDB: 1I3H) [52]. See Additional file 1
for a detailed notation key
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Fig. 5 Predicted carbohydrate-binding motifs of RCA I from CFG glycan microarray data. a Distribution of RFUs and classification of non-binding
(blue), intermediate binding (orange), and binding glycans (red). b ROC curves for the test (n=125) and training (n=372) sets. The ratio of negative to
positive samples was 4.4. c Logistic regression coefficients for identified motifs. d The intermolecular hydrogen bonding interactions (shown in
green) between β-galactose (carbon backbone shown in yellow) and the carbohydrate-binding domain of the B chain of ricin (carbon backbones
shown in grey). Reproduced from an X-ray crystal structure at 2.5 Å resolution available at the PDB (PDB: 3RTI) [39]. See Additional file 1 for a detailed
notation key

with linkages from the 3-, 4-, or 6-OH, and for N-
acetylglucosamine residues with 3-OH linkages [33].
While linkages from the 6-OH reduce the binding affin-
ity of RCA I, the second motif listed in Fig. 5c does
not preclude these as binding glycans. This is con-
sistent with the observation that RCA I tolerates the
addition of an α2-6-linked sialic acid to the galactose
residue [34]. This affinity was also captured by the Gly-
can Miner Tool, but not by GLYMMR (Additional file 8).
When using these motifs for a logistic regression classi-
fier, we observed high AUC values of 0.952 and 0.962 for
the training and test sets, respectively (Fig. 5b), further
supporting the validity of the identified motifs. Although
there are no crystal structures available for RCA I on
the PDB, the carbohydrate-binding B chain of heterote-
trameric RCA I shares a high sequence homology with
that of the toxin ricin (RCA II or RCA60), which also
derives from the castor bean (Ricinus communis) [35]. As
such, the co-crystallised structure for the lectin chain of
ricin also supports β-galactose as a binding determinant
(Fig. 5d).

Bindingmotifs identified for haemagglutinins from
different strains of influenza
Lectins are commonly found on the surfaces of microbes
and are involved in host–pathogen interactions. As an
example of a lectin that does not derive from legumes
and is relevant to a human disease, we analysed gly-
can micoarray data from influenza haemagglutinins. The
specificity of these haemagglutinins for α2-6-linked sialic
acid residues, or α2-3-linked in the case of non-human
strains [36], is well characterised and is reflected in the
motifs identified by our pipeline (Fig. 6c, f ). Accord-
ingly, α2-6-linked (Fig. 6c) and α2-3-linked (Fig. 6f ) sialic
acid were identified as top motifs for the haemagglu-
tinins from a human strain and an avian strain, respec-
tively. However, Neu5Acα2-6Galα1-4GlcNAc was ranked
as the third motif for the human strain. This highlights
the importance of human synthesis of the top motifs in
gaining a cohesive understanding of binding specifici-
ties. It is noted that classifier performance is not as good
as that of Con A and RCA I, with test set AUC val-
ues of 0.912 and 0.945 for HA from human and avian
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Fig. 6 Predicted carbohydrate-binding motifs of two haemagglutinins from a human and an avian strain of influenza from CFG glycan microarray
data. a Distribution of RFUs and classification of non-binding (blue), intermediate binding (orange), and binding glycans (red) for A/Puerto Rico/8/34
(H1N1) HA. b ROC curves for the test (n=138) and training (n=412) sets for A/Puerto Rico/8/34 (H1N1) HA. The ratio of negative to positive samples
was 26.5. c Logistic regression coefficients for identified motifs for A/Puerto Rico/8/34 (H1N1) HA. d Distribution of RFUs and classification of
non-binding (blue), intermediate binding (orange), and binding glycans (red) for A/harbor seal/Massachusetts/1/2011 (H3N8) HA. e ROC curves for
the test (n=145) and training (n=433) sets for A/harbor seal/Massachusetts/1/2011 (H3N8) HA. The ratio of negative to positive samples was 11.4. f
Logistic regression coefficients for identified motifs for A/harbor seal/Massachusetts/1/2011 (H3N8) HA. See Additional file 1 for a detailed notation
key

strains, respectively (Fig. 6b, e). This may be partly due
to the smaller number of positive binding glycans within
the human HA data, with only 5 positive binders in
the test set.

Evaluation of method performance over a wide range of
glycan microarrays
To assess the performance of this pipeline over a large
set of glycan-binding proteins, we compiled a list of
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lectins that are commonly used in an experimental setting
(Table 1, see Additional file 7 for known lectin speci-
ficities). We assessed model performance using stratified
5-fold cross-validation, calculating average Area Under
ROC curves (AUC) across all iterations. Considerable
variation in the performance of this pipeline between dif-
ferent glycan microarrays was observed, which is to be
expected given the diverse range of binding modes and
specificities between different lectins. Performance varied
between close to perfect (e.g. a mean AUC of 0.97 for Con
A) through to relatively poor (e.g. a mean AUC of 0.72 for
MAL-II), although good classification performance was
observed for the majority of lectins examined. Over all
lectins examined, the median AUC value was 0.887 (IQR
= 0.865–0.954) (Fig. 7a, b). The full list of motifs and
associated model coefficients is supplied in Additional file
3.

Comparison to other methods for motif identification from
glycan microarray data
We compared the predictive performance of our pipeline
to that of two other frequent subtree mining tools: the
Glycan Miner Tool [13] hosted on RINGS (https://rings.
glycoinfo.org/), and the GLYMMR algorithm [14] previ-
ously hosted on GlycoPattern (not available at the time
of writing) (Fig. 7c, Table 2). The GLYMMR algorithm
employs a frequent subtree mining approach, with some
additional filtering to select motifs that are enriched
within the positive binding set of glycans. GLYMMR
requires the user to set a number of parameters, including
a threshold parameter which is equivalent to a minimum
support threshold. With the datasets we used for this
comparison, we were unable to find a single minimum

support threshold that yielded a similar number of motifs
for all data—with a minimum support threshold of 20%,
the number of returned motifs ranged from one to sev-
eral thousand. As such, we assessed GLYMMR at a range
of minimum support thresholds (20%, 30%, 40% and 50%)
and for each sample report both the average AUC value
across all thresholds as well as the AUC for the best
threshold. The Glycan Miner Tool employs an alpha-
closed frequent subtree mining approach, and has two
user-defined parameters, alpha and minimum support.
For this analysis, we chose alpha = 0.8 and a minimum
support of 20%. These parameters were chosen as they
yielded between 5 and 25 motifs across the range of gly-
can arrays tested, similar to the approach described in
Ichimiya et al. [15]. A classification model (L2-regularised
logistic regression) was built using the motifs obtained
from both GLYMMR and the Glycan Miner Tool and
performance was assessed using the same stratified 5-
fold cross validation approach outlined previously. The
motifs generated by both GLYMMR and the GlycanMiner
Tool are available in Additional file 8. The classifier built
using motifs from the Glycan Miner Tool had a median
AUC of 0.862 (IQR = 0.845–0.898). Similarly, the motifs
generated using the GLYMMR tool yielded a median
AUC of 0.807 (IQR = 0.747–0.854) when selecting the
best AUC across all minimum support thresholds and a
median AUC of 0.732 (IQR = 0.655–0.798) when taking
the mean AUC across all minimum support thresholds.
Classification of glycan binding with CCARL was com-
pared to MotifFinder, another tool for the prediction of
glycan binding [18]. MotifFinder had a median AUC of
0.818 (IQR = 0.681–0.882). We note that MotifFinder
requires the use of a prebuilt library of motifs, making

Fig. 7 Classification performance across a range of different lectins. a Receiver-operator characteristic (ROC) curves across a number of different
glycan microarray experiments. Individual ROC curves are shown in light blue. The median ROC curve is shown in black, with shading representing
25th-75th percentiles. The dashed line indicates an uninformative (random) classifier. b Area Under the Curve (AUC) values for all glycan microarray
experiments examined. See Table 1 and Additional file 5 for a full list of lectins examined. c Classification performance of CCARL compared to
existing glycan motif tools. Area Under the Curve (AUC) values were calculated across a number of different glycan microarray experiments using
stratified 5-fold cross-validation (with the exception of MotifFinder, which was evaluated using a single fold). Motifs were extracted using GLYMMR,
MotifFinder, the Glycan Miner Tool and CCARL, and assessed using a logistic regression model (with the exception of MotifFinder, which outputs
predicted RFU values). Motifs from GLYMMR were extracted at several minimum support thresholds, and both the mean AUC value and best AUC
value reported for each microarray experiment. Median and interquartile range are indicated by solid and dashed grey lines respectively

https://rings.glycoinfo.org/
https://rings.glycoinfo.org/
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the detection of novel/unusual motifs difficult, which may
explain the poor performance of MotifFinder on some
datasets. Overall, the CCARL method presented here
has improved performance compared to GLYMMR, the
Glycan Miner Tool and MotifFinder (Fig. 7c).
We also compared different methods of thresholding

to categorise binding vs. non-binding glycans. Overall,
our MAD-based method for distinguishing binding from
non-binding glycans proved to be less conservative than
either the Universal Threshold described by Wang et al.
[25] or z-score method incorporated into the GLYMMR
algorithm [14], capturing larger positive binding sets of
glycans (see Additional file 4).

Discussion
In this work, we have developed a classification tool for
glycan microarray data, which can also be used to sug-
gest likely binding motifs. This tool employs a frequent
subtree mining approach, and includes information on
‘restricted linkages’, allowing specific identification of ter-
minal motifs that can only bind if present at the non-
reducing end of glycans. We have assessed this tool across
several commonly used lectins, using publicly available
data from the CFG. Overall, this tool had good classifi-
cation performance for a range of lectins and was able to
identify keymotifs for each lectin. Thesemotifs are mostly
consistent with reported binding selectivities. However,
our results further challenge the often incorrectly cited
exclusive affinity of MAL II for α2-3-linked sialic acids
[37] (see Additional file 3). However, these AUC values are
low (0.758 and 0.859 for the test and training sets, respec-
tively), and so more investigation would be required to
predict actual binding determinants of MAL II. Addition-
ally, we were unable to capture the reported selectivity of
PHA-E for asialylated terminal galactose on the Manα1-6
arm of bisected N-glycans [38], and nor was this apparent
upon manual examination of the positive binding set.
One challenging aspect of dealing with large-scale anal-

ysis of glycan microarrays is the automatic assignment of
positive binding glycans, as both the location and spread
of background RFUs can vary considerably between dif-
ferent analytes and their concentrations. This made it dif-
ficult to assign a single RFU as a defining positive binding
threshold. While we explored several existing approaches
for assignment of positive binders [14, 25], we ultimately
used a technique based on modified z-scores, derived
from Median Absolute Deviation (MAD) scores. MAD
scores are robust to outliers and are hence resilient to a
significant population of positive binders, unlike standard
parametric approaches, such as z-scores based on esti-
mates of standard deviation. The use of a MAD-based
method is supported by the excellent classification per-
formance obtained across several glycan microarrays (e.g.
an AUC of 0.99 for Con A), which would not be expected

with an inappropriate threshold for identification of pos-
itive binders. Additionally, MAD performed favourably
compared with both the Universal Threshold and the
unmodified z-scores incorporated into GLYMMR, captur-
ing larger positive binding sets. This is particularly advan-
tageous in mining for secondary motifs, whose RFUs can
be dwarfed by highly homologous primary motifs. While
we did not explore MAD-based assignment of positive
binders with other glycanmicroarray platforms, we expect
this technique to have broad applicability outside of the
CFG microarray data. We also note that the intermedi-
ate binding set presents another opportunity to mine for
secondary motifs. However, we did not incorporate the
intermediate binding set into these analyses, so as to avoid
Type I errors. We leave it to the user’s discretion as to
whether the intermediate binding set should be consid-
ered in each analysis, but caution that measures should be
taken to prevent Type I errors, such as the use of higher
thresholds.
One of the major contributions of this work, in com-

parison to other frequent subtree mining approaches for
motif identification, is the addition of restricted linkage
nodes. These indicate the absence of a connection at a par-
ticular position within a motif. This enables identification
of terminal residues as potential motifs. For example, we
identified the T antigen (Galβ1-3GalNAc) as a candidate
binding motif for peanut agglutinin (PNA), excluding any
forms with additional residues connected to the galactose
residue (Fig. 3). In support of this observation, PNA has
been shown experimentally to bind to terminal T antigen
but not to sialyl T antigen (Neu5Acα2-3Galβ1-3GalNAc)
[27]. Additionally, the binding mode for T antigen to
PNA, as observed by X-ray crystallography, would exclude
sialylation of the non-reducing galactose. The utility of
restricted linkages was also demonstrated by the iden-
tification of terminal β-linked galactose as a potential
binding motif for RCA I, which is supported by crystal
structures of the highly homologous ricin B chain [35, 39]
(Fig. 5).
Previous work by Klamer et al. introduced the con-

cept of a ‘free’ modifier with respect to glycan motifs
[18] and incorporated this into MotifFinder. MotifFinder
does not perform frequent subtree mining, and is primar-
ily used with a library of motifs, which may explain the
overall performance gap compared to our pipeline. While
in some cases the use of a prebuilt library may perform
better than frequent subtree mining, a frequent subtree
mining approach is likely to be more suited to identifica-
tion of unusual or novel motifs from glycan microarray
data. We also compared CCARL to other existing tools
for motif identification, with CCARL performing better
than both GLYMMR and Glycan Miner Tool. The Glycan
Miner Tool generally performed well, with only a small
difference in median AUC values compared to CCARL.
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In general, the motifs returned by the Glycan Miner Tool
were similar to those returned by CCARL, although often
larger, whereas the motif returned by CCARL are smaller
and seem to capture the core binding determinant. For
example, the motifs returned by CCARL for Con A cap-
ture the specificity for core mannose residues, whereas
those returned by the Glycan Miner Tool also include
residues surrounding the mannose core (Additional file
8). While both GLYMMR and Glycan Miner Tool employ
a frequent subtree mining approach, neither tool consid-
ers restricted linkages, and the improved performance of
CCARL over these other tools validates the inclusion of
restricted linkages in motif mining tools.
One limitation of a subtree mining approach for motif

detection is the limited ability to accurately detect struc-
tural constraints that may impact on glycan binding.
These constraints include steric hindrance effects from
other parts of the glycan structure or situations in which
the potential motif is inaccessible for binding due to
arrangement on a protein or microchip surface. When
constructing glycan microarrays, various linkers are used
to conjugate glycans to the surface of the microarray.
On the CFG glycan microarrays, linkers are amino acids
and amino-functionalised organic molecules, which allow
covalent coupling to the N-hydroxysuccinimide-activated
glass slides [10]. However, the Carbohydrate Microarray
Facility of Imperial College London produces lipid-linked
glycan microarrays, which better simulate in vivo bind-
ing interactions of glycolipids [40]. There is considerable
evidence that linker type has an impact on recognition of
motifs on glycan microarrays, with Grant et al. demon-
strating that this can be explained by glycan orientation
relative to the microchip surface, which can restrict pro-
tein binding to an otherwise complementary motif [41].
Similarly, motif location within the overall glycan can have
a large impact on binding affinity. While we attempted
to capture some of these phenomena with the inclusion
of restricted linkages, there are likely to be other steric
constraints that are not captured by this approach. For
example, when applying our classifier to the ABA lectin, it
was noted that many of the false positive binders included
a bisecting N-acetylglucosamine residue from the man-
nosyl core. ABA recognises terminalN-acetylglucosamine
residues as well as T antigen [42], which were both
identified as motifs by our method (Table 1 and Addi-
tional file 3: Figure S1). It is likely that steric hindrance
from the branches either side of a N-acetylglucosamine
residue that bisects the trimannosyl core prevents bind-
ing of ABA to the residue. However, our classifier fails to
distinguish non-bisecting, terminal N-acetylglucosamine
residues from bisecting N-acetylglucosamine residues.
Similarly, we identified core mannose residues as motifs
for Con A binding; Con A is therefore predicted to bind to
any N-glycan. However, more highly branched N-glycans

(e.g. tetra-antennary) have been shown to restrict Con
A binding to core mannose residues [43]. As such, a
method accounting for the spatial environment of poten-
tial motifs may improve prediction performance, and this
is a potential avenue for future work.
Glycan classification and motif identification tools can

be used to extend the effective coverage of existing exper-
imental glycan microarrays. While the number of glycans
included in glycan microarrays has steadily increased over
time, there are still many glycans not covered by existing
microarrays; the number of glycans in the human glycome
is estimated to be approximately 9,000 [44], while there are
only 609 glycans in the most recent CFG glycan microar-
ray. This highlights a potential role for classification tools
(such as the one described in this paper) in predicting
lectin binding to the large number of glycans not included
in current microarrays. It is also important to consider
the types of glycans included in a microarray. The CFG
glycan microarrays are biased toward mammalian and,
particularly, human structures, and so are less helpful for
evaluating non-mammalian glycan ligands. In these set-
tings, a glycan microarray customised for the organism
of interest could be used for classifier training to ensure
more accurate binding predictions [45, 46].
Ideally, any prediction of binding gained from glycan

microarray experiments should be validated by other
methods, such as affinity chromatography, X-ray crystal-
lography, and in vivo assays [47]. However, the use ofmotif
prediction tools can serve to narrow down the number of
potential motifs that need to be investigated and validated
with traditional wet-lab techniques. For example, Ichimiya
et al. used the glycan miner tool available at the RINGS to
search for novel binding determinants of influenza [15].
Although, the sulfated structures posited as determinants
in this study were not captured as topmotifs in our results,
and we suggest more experimental evidence, such as crys-
tallographic data or a customised glycan microarray, is
required to verify these binding determinants.
While CCARL aids in the identification of glycanmotifs,

a manual interpretation of the top motifs is often still
required to gain a complete understanding of predicted
binding determinants. For example, the top motif identi-
fied for LCA isManα1-3Manα (see Table 1 andAdditional
file 6: Figure S9), which may appear strange for a lectin
reported to bind to core fucoses. However, closer inspec-
tion of the remaining top motifs reveals α1-6-linked core
fucose as a key motif. This makes sense upon examina-
tion of the literature, which reports α-linked mannose
oligosaccharides as themain binding determinant of LCA,
and the addition of core fucoses to enhance binding
[48]. Wholly manual interpretations of glycan microar-
ray data have previously led to important discoveries. A
custom microarray of glycans from human milk was used
to discover Galβ1-3GlcNAcβ1-3Galβ1-4Glc as a binding
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determinant of a neonatal strain of rotavirus [49], which
was later validated as a co-crystallised protein structure
[50]. However, manual identification of binding motifs
becomes more difficult with a greater number and variety
of glycans included on a microarray, making automated
pipelines for identification of binding motifs and predic-
tion of glycan binding essential.

Conclusions
We present here an automated method for the iden-
tification of candidate motifs from glycan microarray
data, which allows accurate classification of glycans
with unknown binding behaviour. We have termed this
approach ‘Carbohydrate Classification Accounting for
Restricted Linkages’ (CCARL). This method extends fre-
quent subtree mining approaches of glycan microarray
data by allowing identification of terminal motifs, distin-
guishing these from otherwise identical motifs present
elsewhere within glycan structures. Using a set of gly-
can microarray data from the CFG, we demonstrate that
our classification pipeline successfully identifies binding
motifs of well characterised lectins, in agreement with
their published selectivities and with generally excellent
classification performance. CCARL will aid in the iden-
tification of motifs from the ever-increasing number of
glycan microarrays, supporting research to improve our
understanding of human-, plant-, and pathogen-derived
glycan-binding proteins.
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