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Abstract

We have proposed a Bayesian approach for functional parcellation of whole-brain FMRI

measurements which we call Clustered Activity Estimation with Spatial Adjacency Restric-

tions (CAESAR). We use distance-dependent Chinese restaurant processes (dd-CRPs) to

define a flexible prior which partitions the voxel measurements into clusters whose number

and shapes are unknown a priori. With dd-CRPs we can conveniently implement spatial

constraints to ensure that our parcellations remain spatially contiguous and thereby physio-

logically meaningful. In the present work, we extend CAESAR by using Gaussian process

(GP) priors to model the temporally smooth haemodynamic signals that give rise to the mea-

sured FMRI data. A challenge for GP inference in our setting is the cubic scaling with respect

to the number of time points, which can become computationally prohibitive with FMRI mea-

surements, potentially consisting of long time series. As a solution we describe an efficient

implementation that is practically as fast as the corresponding time-independent non-GP

model with typically-sized FMRI data sets. We also employ a population Monte-Carlo algo-

rithm that can significantly speed up convergence compared to traditional single-chain

methods. First we illustrate the benefits of CAESAR and the GP priors with simulated exper-

iments. Next, we demonstrate our approach by parcellating resting state FMRI data mea-

sured from twenty participants as taken from the Human Connectome Project data

repository. Results show that CAESAR affords highly robust and scalable whole-brain clus-

tering of FMRI timecourses.

Introduction

The brain is generally assumed to consist of interconnected functional modules. This principle

takes central stage in connectomics research, referring to the study of the properties of these

connection patterns [1]. Hence, connectomics presupposes some definition of nodes to be

connected. This node definition can be linked to different scales, ranging from single neurons

to brain regions. To a large extent, the scale of node definition is dictated by the measurement
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method employed to probe network architecture. In the case of functional magnetic resonance

imaging (FMRI), the smallest accessible scale is given by the voxel size.

Given the large numbers of voxels in whole-brain analyses, it is usually more convenient to

group voxels into functionally coherent regions. This begs the question of how to accomplish

this. The simplest approach is to use a predefined atlas, warped to individual participants’

brains [2]. A better approach is to parcellate the brain based on functional signals. This way,

regions are formed that represent functionally coherent modules, which is important for sub-

sequent functional analyses [3]. A number of approaches have been suggested for clustering

FMRI data, including K-means [4], hierarchical clustering [5], spectral clustering [6–8],

boundary based segmentation [9] and more (e.g. [10–13]).

Generally, extant parcellation approaches require the user to select the number of clusters

in the parcellation. Non-parametric Bayesian clustering approaches, like those presented in

[11–13], are one way of remedying this issue by estimating the number of clusters along with

the parcellation. We recently showed that such an approach can be used to provide a robust,

meaningful parcellation of the striatum [13].

A common tactic in parcellation approaches is to base the parcellation on the voxel-wise

functional connectivity, usually measured with the Pearson correlation coefficient. The main

advantage of this approach is one of scaling. Such methods can operate on a group-average

correlation-matrix, hence they scale independent of the number of timepoints and partici-

pants. The disadvantage is that they do not model the cluster timecourses directly, hence they

do not provide an estimate of these. This is usually solved by going back to the data and com-

puting a mean timecourse.

A more elegant approach would be to include this estimation in the model formulation,

this way one need only apply the model once and the output would consist of both a set of clus-

ters and their corresponding timecourses. Such a formulation also allows the incorporation of

assumptions on the cluster timecourses. Given that the blood-oxygen-level dependent (BOLD)

signal is assumed to represent neuronal signal after convolution with the haemodynamic

response function [14], incorporating a smoothness assumption should improve the estima-

tion of cluster time courses and, through this, the parcellation. The approach presented in [15]

is an example of a model that incorporates temporal assumptions about time courses. The

model aims to decompose the data in a set of spatial maps and associated time courses, similar

to principal/independent component analysis (PCA and ICA respectively). However, like ICA,

this is not strictly a parcellation approach, because the resulting components can have spatial

overlap as well as negative weights.

In this paper, the model presented in [13], which we call Clustered Activity Estimation with

Spatial Adjacency Restrictions (CAESAR), is extended to include assumptions about temporal

smoothness. This is achieved by assuming a Gaussian process prior to model the temporally

smooth haemodynamic signals that give rise to the measured FMRI data. We addressed the

computational challenges that emerge from this extension and show that the resulting

approach allows efficient and robust estimation of whole-brain parcellations from FMRI

timecourses.

Materials and Methods

We proceed by describing the different building blocks of CAESAR, as summarized in the

graphical model shown in Fig 1. For the sake of consistency, we use ‘nodes’ to refer to the ele-

ments being clustered, be they voxels or mesh nodes (for volumetric and surface-mapped data

respectively). A Matlab implementation of CAESAR is provided in S1 Code and maintained at

https://github.com/ccnlab/ddCRP.
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We are interested in the posterior distribution

pðπjY; θÞ ¼ Z� 1pðYjX; π; θÞ
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

observation model

pðXjπ; θÞ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{
timecourse prior

pðπjθÞ
|fflfflffl{zfflfflffl}

parcellation prior

; ð1Þ

where π represents a parcellation, θ denotes the hyperparameters, Y is the data and Z = p(Y|θ)

is the normalization term. Our model consists of three components: the observation model,

the timecourse prior and the parcellation prior. In short, the observation model encodes the

assumption that FMRI data are noisy observations of the underlying cluster timecourses.

These timecourses are modelled in the timecourse prior as a Gaussian Process (GP) with a

smoothness-promoting covariance function, in order to describe autocorrelations in BOLD

fluctuation. The parcellations are drawn from a non-parametric prior that allows us infer the

number of clusters as well as enforce spatial contiguity of those clusters. The following sections

describe each of these components in more detail.

Observation model

Let us assume that we have collected a N × T FMRI data matrix Y, where N is the number of

nodes and T the number of time points. Given a partitioning π = [π1, . . ., πN]T of the nodes

into K clusters, and a K × T matrix X of unobserved cluster timecourses, we model the

observed data as

pðYjX; ϕ; t; πÞ ¼
YN

n¼1

YT

t¼1

N ðyn;tjxpn;t
; ðt�tÞ

� 1
Þ; ð2Þ

where πn 2 {1, 2, . . ., K} indicates the cluster assignment of node n, τ is an overall noise preci-

sion parameter, and ϕt models time-specific deviations from the overall noise level caused, e.g.,

by measurement errors or other confounds. We implement an outlier-robust Student-t obser-

vation model by assigning independent gamma priors 2ϕt * Gamma(ν/2, ν/2) to the time-

specific noise precisions and fixing the degrees of freedom parameter to ν = 4. Assuming the

Fig 1. Graphical representation of the model. Y denotes the observed data, the red nodes represent the

clustering prior, green nodes form the Gaussian process model and gray nodes designate variables in the

noise model. Put together, X, Y and the noise model form the observation model.

doi:10.1371/journal.pone.0164703.g001
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observations are normalized to unit variance, we choose an uninformative prior for τ by set-

ting τ * Gamma(a0, b0) with a0 = 1 and b0 = 0.01.

When analysing multiple datasets, the observation model is simply the product of Eq (2)

over datasets with fixed π.

Cluster timecourse prior

The observed FMRI timecourses are known to be generated by smooth and relatively slowly

varying haemodynamic signals that are confounded by more broadly distributed noise during

the measurement process [16]. To incorporate this background knowledge into our model, we

first rewrite the cluster timecourses from Eq (2) as xk,t = xk(t) to emphasize that we are con-

structing a prior for functions of time. Next, we construct priors p(xk(t)) that promote smooth,

slowly varying cluster timecourses, because they are used in the observation model Eq (2) to

group together node signals that are generated by similar underlying signals. To this end, we

place independent, smoothness-promoting Gaussian-process priors on the unobserved clus-

ter-timecourses.

A standard zero-mean GP, denoted by xkðtÞ � GPð0; kðt; t0ÞÞ, is defined by choosing a suit-

able covariance function κ(t, t0) = Cov(xk(t), xk(t0)) that encodes our prior assumptions on the

smoothness properties of the unknown function xk(t) [17]. For T unobserved function values

xk = [xk(t1), . . ., xk(tT)]T associated with time points t1, . . ., tT, this formulation results in a T-

dimensional multivariate normal prior distribution for each xk:

pðxkjcÞ ¼ N ð0;KÞ; ð3Þ

where the T × T covariance matrix K defines the prior covariances between each component

pair of xk: Kt,t0 = Cov(xk(t), xk(t0)) = κ(t, t0). The vector ψ contains the hyperparameters of the

covariance function that control the overall scale and smoothness properties of the unknown

function xk(t).
For our clustering model, we choose the Matérn class covariance function which is given by

kðt; t0jcÞ ¼ knðrÞ ¼ s2
m

21� n

GðnÞ
ðZrÞnKnðZrÞ; ð4Þ

where r = t − t0, Z ¼
ffiffiffiffiffi
2n
p

=l and Kn is a modified Bessel function of order ν. We denote the free

GP hyperparameters with c ¼ fs2
m; lg, where s2

m is the magnitude parameter that controls the

overall prior scale (or variance) of xk, and l ¼
ffiffiffiffiffi
2n
p

=Z is the characteristic length-scale parame-

ter that controls how rapidly xk can vary with respect to t: the smaller l, the faster xk can vary.

Different Matérn-class priors are obtained by adjusting ν: the larger the value, the stronger

the smoothness assumption (for details, see [17]). We set ν = 3/2, which results in a stochastic

process that can be represented as a second-order stochastic differential equation [18]. This

process is smooth, yet is not overly conservative with respect to that property. Note that if we

instead choose kðt; t0jcÞ ¼ s2
mdðrÞ, where δ(r) = 1 if r = 0 and δ(r) = 0 otherwise, the tempo-

rally-independent model of [13] is recovered.

We set s2
m ¼ 0:1 to reflect our assumption of a SNR of 0.1/0.9, whereas l = 3.6 approximates

the autocorrelation of the default haemodynamic response function (HRF) provided in the

SPM software package (SPM8; http://www.fil.ion.ucl.ac.uk/spm/).

Cluster assignment prior

The Chinese restaurant process (CRP) is a commonly used construction to implement Dirich-

let process mixture priors for random cluster partitions (see, e.g. [19, 20]. The traditional CRP
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forms a prior for random partitions, p(π), by sequentially assigning πn to one of the existing

clusters or to a new cluster for each n = 1, . . ., N conditioned on the previous assignments

π1:n−1. Regular Gibbs sampling with the CRP prior attempts to update each πn separately con-

ditioned on π−n, which often results in slow convergence especially with large N (see, e.g.,

[21]). Improving convergence or incorporating spatial constraints would require additional

split-merge updates with sequential allocation. Instead of these modifications, we use an alter-

native construction known as the distance-dependent CRP (dd-CRP) that automatically

implements split-merge steps via regular Gibbs sampling and allows straightforward and flexi-

ble definition of constraints that ensure spatially connected partitions [13, 21].

In contrast to the regular CRP which works directly with cluster assignments πn, the dd-

CRP prior associates each node n with exactly one other node m by generating a link λn = m
from node n to m with probability

pðln ¼ mjDÞ / f ðdn;mÞ; ð5Þ

where λn 2 {1, 2, . . ., N}, matrix D contains some appropriate distance measures dn,m = [D]n,m

between nodes n and m, and f(d) is a non-increasing decay function that satisfies f(d)� 0 and f
(1) = 0 [21]. The key difference to regular CRPs is that the prior probability of λn depends

only on the distance measures D and not on the cluster assignments π. The partition π(λ) is

formed indirectly by the links λ. That is, all the nodes that are interconnected via their link

assignments form a cluster.

In the case of volumetric FMRI-data, dn,m could be set to the Euclidean distance between

the midpoints of voxels n and m. When dealing with surface-mapped data, one would ideally

use the geodesic between nodes n and m to determine the distance. A convenient approxima-

tion of this is the shortest path length between nodes in the surface mesh. We define the decay

function such that nodes can only connect to their immediate neighbours, which, in the case

of surface-mapped data, corresponds to

f ðdÞ ¼

(
1 if d � 1

0 otherwise:
ð6Þ

This results in a neighbourhood of at most six possible link assignments for each node in a

mesh. If we collect all the weighted distances into a sparse N × N matrix A so that An,m =

f(dn,m), we can write our prior for the links as

pðλjAÞ ¼
YN

n¼1

pðlnjAÞ

¼
YN

n¼1

YN

m¼1

An;m
PN

i¼1
An;i

 !½ln¼m� ð7Þ

with [�] being the Iverson bracket. This prior formulation enables convenient implementation

of various distance weighting schemes and spatial constraints.

In Eq (5) we assume that dn,n = 0 and that f(0) defines the probability that node n links to

itself. This corresponds to the concentration parameter in a traditional CRP, which controls

the probability of starting new clusters. Note that in the ddCRP, having λn = n does not neces-

sarily put that node in a singleton cluster, as other nodes might still be linked to it. As such, the

influence of the value chosen for f(0) is limited towards encouraging smaller parcels in the case

of large values. This is perhaps best illustrated by considering the most extreme settings for

this parameter.
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Suppose the parameter is set to infinity, then nodes will almost surely all link to themselves,

resulting in only singleton clusters. Hence, large values encourage smaller clusters, as in a tra-

ditional CRP. In contrast, if the parameter is set to zero in a CRP, we would almost surely get

one cluster containing all nodes, whereas the ddCRP is free to make any partition with the

constraint that clusters contain at least two nodes. This is due to the fact that if we represent

customer links as a graph, the number of clusters is defined by the number of cycles and the

smallest possible cycle without self-linking is a two cycle.

Certain questions might be best resolved at a certain scale, hence it might be desirable to be

able to provide stricter constraints on the scale of the clustering. Therefore, we introduce an

improper prior on cluster size. We chose to constrain size rather than number of clusters in

order to obtain clusters with comparable sizes. This is achieved by multiplying Eq (1) with

pðsjd;wÞ ¼
YK

k¼1

(
exp � ðd� skjÞ

2

2w2

� �
if sk < d

1 otherwise;

where s = [s1, s2, � � �, sK] is the vector of cluster sizes, d is a lower bound on the cluster sizes and

w controls the strength of this constraint.

Bayesian Posterior Inference

We use Markov chain Monte Carlo (MCMC) methods to obtain samples from Eq (1). The

main Gibbs sampling procedure is described in S1 Inference, together with an additional pop-

ulation Monte Carlo framework that can be used to run multiple Gibbs chains in parallel and

to combine them after each iteration to speed up convergence.

The most time consuming part of the sampling procedure is the Gibbs sampling run over

the link assignments λ1, . . ., λN using the conditional posterior

pðlijλ� i ;Y; θ;AÞ / pðYjλ; θÞpðlijAÞ ;

where the K × T dimensional latent variable X is integrated out to obtain the marginal likeli-

hood: p(Y|λ,θ) =
R

p(Y|X, λ, θ)p(X|λ, θ)d X. This averaging over X is essential for an efficiently

converging sampling procedure since the dimension of X changes constantly as clusters are

being split apart and merged together. Integrations over X scale as OðT3Þ, because the size of

the multivariate GP prior covariance K defined in Eq (3) increases with the number of obser-

vations T. In practice, this can become prohibitively expensive since typical FMRI datasets can

contain thousands of time points.

In S1 Inference we also describe a batch method for conditional inference on X which

assumes that the hyperparameters ψ remain fixed during the Gibbs sampling of the links λ and

computes all OðT3Þ scaling matrix operations only when the hyperparameters are changed.

The batch method is most efficient for data sets with roughly T< 10000.

Alternatively, if T is very large, one can transform the GP prior Eq (3) into an equivalent

state-space form as described by [18]. Using the resulting linear dynamical system, the mar-

ginal likelihood and the conditional posterior of X can be computed by Kalman filtering and

smoothing, which scales linearly in T. However, with our implementations and data sets, the

batch method was at least an order of magnitude faster compared to the filtering approach.

Hence, in the following we report only the results obtained with the batch approach.

Using Temporal Information in CAESAR for Parcellating FMRI Data
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Experiments

The clustering model was validated using simulated experiments and subsequently applied to

resting state FMRI (rsFMRI) data for empirical validation.

Simulation study. To validate CAESAR and the GP-extension, we simulated realistic

FMRI data from a spatially constrained cluster structure.

Fig 2 illustrate the simulation process. First, the number of clusters K was fixed to some

desired value and then the nodes of a two-dimensional 15 × 15 grid were randomly partitioned

into K clusters by setting the cutoff distance in the dd-CRP decay function Eq (6) to 1 pixel,

which allows within-cluster connections only to the four nearest neighbours for each node.

Fig 2A illustrates a resulting partition with K = 10. The actual clusters were generated by simple

region growing using K randomly selected starting nodes meaning that the partition was not

generated from a dd-CRP prior. This way we can verify that the modelling framework can

learn general partitions following some known distance constraints.

For each cluster, the node measurements were simulated by first generating a neuronal

timecourse with a sampling frequency of 200 Hz, indicated by the red line in Fig 2B that repre-

sents the unobserved local field potentials associated with each functional cluster. These time-

courses were drawn from a Matérn-class GP prior with hyperparameters ν = 1/2, s2
m ¼ 1, and

l = 2, which corresponds to an Ornstein-Uhlenbeck process with mean reversion rate

Z ¼
ffiffiffiffiffi
2n
p

=l ¼ 0:5. The spectral density of the process decays proportional to 1/(η2 + (2πf)2),

which makes it a reasonable approximation for synaptic activity [22]. The state variable ~xðtÞ of

the equivalent stochastic differential equation representation of the process is one-dimensional

corresponding to a first order autoregressive model, and the transition density is given by

pð~xðt þ DtÞj~xðtÞÞ ¼ N ðFt~xðtÞ;QtÞ, where Ft = exp(−ηΔt), Qt ¼ s2
mð1 � exp ð� 2ZDtÞÞ and

Δt = 1/200 s (for details, see [18]). From this simulated neuronal signal, BOLD signals were

obtained by filtering the neuronal signal with the canonical haemodynamic response function,

as indicated by the black line in Fig 2B. Finally, simulated FMRI measurements (the red line in

Fig 2C) were formed by down sampling the BOLD signal to 0.5 Hz (black circles in Fig 2C)

and adding independent Gaussian noise. The variance of this noise was adjusted according to

the desired signal-to-noise ratio (0.1/0.9 in Fig 2C).

In our experiments, we compare the dd-CRP solution using either a temporally indepen-

dent Gaussian timecourse prior, pðxkjs
2
mÞ ¼ N ð0; s2

mITÞ (IT-model), or a temporal Matérn-

class GP prior defined by Eqs (3) and (4). As using the GP-model amounts to low-pass tempo-

ral-filtering (a common preprocessing step) we also apply the IT-model to data that was low-

Fig 2. Illustration of the simulation procedure. Panel A: Generate a random partition for a two-dimensional grid using spatial

constraints. Panel B: Generate a neuronal timecourse (sampled at 200 Hz) for each cluster and filter it using the canonical

haemodynamic response function. Panel C: Down sample the HR signal to 0.5 Hz and draw the node timecourse by adding Gaussian

noise according to the desired signal-to-noise ratio.

doi:10.1371/journal.pone.0164703.g002
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pass filtered with a 0.1 Hz cut-off. We set s2
m ¼ 1 for the IT-model. Our preliminary results

indicated that the GP-based model was not found to be sensitive to the hyperparameter values

but with the independent model the number of estimated clusters was found to vary more

with different values of s2
m. In addition, we compared both variants of CAESAR to the one pro-

posed by Baldassano, Beck and Fei-Fei [11], which was applied to the correlation matrix of the

filtered data. Parameter settings were as follows: α = 1, μ0 = 0, κ0 = 0.0001, ν0 = 1, s2
0
¼ 0:1.

Parameters settings for μ0, κ0 and ν0 correspond to those suggested by the authors. The con-

centration parameter α was set to match our choice in prior. As the authors did not mention a

principled way of choosing s2
0
, it was tuned for optimal performance on a dataset with N = 625

nodes, K = 20 clusters, T = 15 min of data and a SNR of 0.1/0.9.

Because the Gibbs sampler for the dd-CRP was found to converge quickly with all simulated

data sets that have a true underlying cluster structure, the population Monte Carlo algorithm

from S1 Inference was not required for the simulated experiments of this section. With both

priors, the sampling was done using the same random number sequence and the same ran-

domly initialized partition with 20 clusters. The first 50 samples were discarded as burn-in and

the co-assignment matrices, whose non-zero elements indicate that two nodes are assigned to

the same cluster, were estimated as the mean of the co-assignments of the next 100 samples.

To obtain the final cluster timecourse estimates, first a fixed partition was generated by joining

together nodes whose mean reassignment exceeded 0.9, and then another 50 samples were

taken for the cluster timecourses and all the hyperparameters with that fixed partition.

FMRI data. To empirically validate CAESAR as a whole-brain parcellation approach,

rsFMRI datasets for 38 participants (the 40 unrelated participants set) were obtained from the

Human Connectome Project (HCP) database [23]. Each dataset consists of four runs of

15-minute rsFMRI recordings. A complete description of data acquisition, including informed

consent and ethical approval, and preprocessing steps has been reported elsewhere [24, 25].

Briefly, task-free FMRI data was acquired with 2 mm isotropic voxels and a repetition time

(TR) of 0.72 s. Both T1- and T2-weighted images were used to reconstruct the cortical surface

and these were registered to the Conte69 cortical-surface [26]. Functional data was mapped to

the participant’s cortical surface and transformed from there to the Conte69 surface.

With such a short TR, modelling the temporal dependencies is especially useful as it allows

the model to characterise the measurement noise more accurately. Using surface-mapped data

also simplifies the computations for a ddCRP model as the node neighbourhood is generally

smaller than in a volume representation. Moreover, it also precludes direct connections

between opposite banks of a sulcus, which would be considerably more difficult to exclude

otherwise.

Datasets were split into two groups, the first 20 participants forming the first group and the

remainder in the second group. For each of the groups we examined runs 1 and 2, for a total of

four group-level datasets. Analyses were restricted to the first 250 data points (3 min) from

each participant in order to reduce computational time. In addition, we performed this analy-

sis both with and without the cluster-size prior. The parameters for the size prior were d = 200

and w = 5. This soft bound results in a manageable number of clusters, while still allowing the

model some freedom in determining cluster sizes and, through this, the number of clusters.

Due the size and richness of the FMRI datasets, the posterior landscape is difficult to

explore with single chain MCMC. For this reason, posterior inference was performed using a

population MC approach [27]. In short, the approach consists of the following steps:

1. Initialize J MCMC chains.

2. Take N steps for all chains save the final state as sample

Using Temporal Information in CAESAR for Parcellating FMRI Data
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3. Randomly pick samples (with replacement) from these samples to reinitialize the J chains.

4. Repeat steps 2 and 3 until sufficient samples have been obtained.

The probability of selecting the jth sample to reinitialize a chain is proportional to the

importance weight of that sample, which is proportional to its posterior probability divided by

the product of transition densities for all update steps since the last reinitialization. The under-

lying idea is that, at each step, the chains can search the local space independent of each other

and the algorithm uses the best of these to start the next search. A full description of our imple-

mentation is given in S1 Inference.

We used 50 parallel chains, with each chain performing one sweep over hyperparameters

and 11 sweeps over the link assignments before resampling. The first link-assignment sweep

was done at a temperature of 1000 (i.e. all log assignment-probabilities were multiplied by

0.001) to encourage exploration of the search space, the remainder of the sweeps were done

with a temperature of one. We collected 100 samples for both hemispheres and took the sam-

ple with the highest posterior probability as an approximation to the maximum a-posteriori

solution.

In order to examine CAESAR’s performance on empirical data, we compared reproducibil-

ity and explained variance with spatially-constrained Ward-clustering on low-pass-filtered

data (0.1Hz cut-off). The reason we stray from the comparison with the connectivity-based

model is due to their running times when applied to the�30K nodes in a hemisphere. We

chose spatially-constrained Ward-clustering as it was found to be the best among several com-

monly used approaches [28]. Ward-clustering starts with only singleton clusters and iteratively

merges the two clusters with the lowest squared Euclidean distance between them. Clusters

were merged until the number of clusters matched the corresponding result from CAESAR.

Results

In this section we will first describe CAESAR performance on simulated data, followed by

results obtained with rsFMRI data. In comparisons between temporally-independent and tem-

porally-dependent priors, we will refer to these as IT- and GP-model respectively.

Simulations

Accuracy, robustness and efficiency of the GP-model variant of CAESAR were examined and

compared to that of the IT-model as well as the connectivity-based model from [11] to assess

performance. While there are a large number of alternative approaches to compare with, we

chose to limit ourselves to this model because it is closely related to CAESAR and it outper-

forms the alternatives.

Accuracy. Fig 3 shows an illustrative experiment with a 15 × 15 grid corresponding to

N = 225 nodes, K = 10 clusters, and SNR equal to 0.1/0.9. The true cluster structure is shown in

Fig 2A and the corresponding true co-assignment matrix in Fig 3A. The mean co-assignments

with TI- and GP-models are shown in Fig 3B and 3C. The IT-model recovers only 4 clusters

merging together all the smaller ones with their neighbours. The GP-model recovers 12 clus-

ters, which, aside from placing two individual nodes in their own singleton clusters, corre-

sponds to the ground truth. Neither model shows any uncertainty in their estimation.

Fig 3D and 3E show the cluster timecourses estimates for the HR simulated in Fig 2B and

the corresponding cluster is indicated with an arrow in Fig 3A. In order to isolate the effects of

choice in prior on timecourse recovery, the true cluster assignments were used for both mod-

els. With the IT-model, the timecourse estimate is clearly not smooth because of the confound-

ing effects of the observation noise. Timecourse estimates deteriorate as the SNR or the
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number of nodes in a cluster decrease. In contrast, the GP-model’s estimate is smooth and the

marginal 95% credible interval includes the true cluster timecourse. This example cluster

includes only 16 nodes which makes it harder to estimate the exact timecourse. With the larger

clusters consisting of roughly 30 nodes or more, almost perfect reconstruction can be recov-

ered. This example clearly shows that more accurate cluster reconstructions can be obtained

by incorporating prior knowledge about the smoothness of the cluster timecourse.

Robustness. To examine the robustness of CAESAR thoroughly, we repeated the above

described simulation process five times with four different data generation conditions. The dif-

ferent conditions were generated by varying N, K, T, and σ one at a time while keeping all

other variables fixed. The accuracies of the cluster and timecourse estimates for each condition

are summarized in the columns of Fig 4. Accuracy of cluster assignments is measured with

adjusted mutual information (AMI) [29], which is scaled so that one corresponds to perfect

reconstruction and zero corresponds to the trivial solution where all nodes are put in the same

Fig 3. Comparison of timecourse priors in CAESAR. Temporally-independent Gaussian prior (IT-model) is compared with a Matérn-class GP prior (GP-

model) using simulated data from Fig 2 with attributes N = 225, K = 10, and SNR = 0.1/0.9. The true partition is shown in Fig 2A and the corresponding co-

assignment matrix is shown here in panel A. Panels B and C show the respective posterior mean estimates using the IT-model and the GP-model. Note that

while neither model shows uncertainty in their parcellation estimate, the GP-model is superior in recovering the true cluster structure. Illustrated in panels D

and E are the posterior mean and 95% credible interval estimates of the cluster timecourse from an example cluster, which is indicated with an arrow in panel

A. The true cluster assignment was used here to specifically illustrate the difference in timecourse recovery.

doi:10.1371/journal.pone.0164703.g003
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cluster. Accuracy of the cluster timecourse estimates is measured using root mean squared

error (RMSE).

The first column of Fig 4 shows that the IT-model clearly fails when the average number of

nodes is too small for a given SNR and data is not filtered. In contrast, temporal filtering, either

beforehand or within the model, results in perfect cluster reconstructions using our timecourse

based models. Notably, performance of the connectivity-based model declines on either end of

the spectrum, suggesting parameter sensitivity. In all experiments the variance of the noisy

FMRI data was scaled to one, which means that the noise level s ¼ 0:949 ¼
ffiffiffiffiffiffiffi
0:9
p

corresponds

to a SNR of 0.1/0.9. This setting is already quite challenging, but we see this as fairly realistic,

as our experiments with real FMRI data showed similar noise estimates with the same model

assumptions. As can be expected, decreasing the number of nodes N with fixed K, results in

less accurate cluster timecourse estimates in all cases, as fewer node timecourse observations

are obtained from each cluster. In terms of timecourse reconstruction, using the GP model on

unfiltered data appears to be slightly better than filtering beforehand. The second column of

Fig 4 illustrates the same behaviour from a slightly different viewpoint as K is increased while

N and SNR are kept fixed. In either case, i.e. when varying N or K while keeping the other

fixed, the salient change is actually the number of nodes per cluster.

The third column of Fig 4 demonstrates that the GP-model remains very stable at different

data lengths T and is able to recover (near) perfect cluster assignments for all chosen values of

T. The independent model, on the other hand, cannot properly combine the information

across different time points and fails to recover the correct cluster structure with all settings

Fig 4. Accuracy of dd-CRP based methods using simulated data. CAESAR with independent Gaussian likelihood used with and without temporal filtering

beforehand (red and blue respectively), CAESAR with temporal GP likelihood (green) and the functional connectivity model proposed in [11] (yellow).

Accuracy of cluster assignments is measured using adjusted mutual information (AMI; top row). Accuracy of the cluster timecourse estimates is measured

using root mean squared error (RMSE; bottom row). Accuracy was measured as a function number of nodes N (column 1), number of clusters K (column 2),

number of time-points T (column 3), and noise level σ (column 4) while keeping all other variables fixed and simulating five different data sets for each

combination. The shaded areas illustrate the minimum and maximum performance among these random data sets.

doi:10.1371/journal.pone.0164703.g004
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except when operating on filtered data, in which case performance is on par with the GP-

model. The same holds for the connectivity-based model. Notably, the timecourse estimation

of the prefiltered data is worse than that of the GP model under low to moderate noise levels.

We have also examined the effect of TR, by fixing either the number of samples or the time

span. These results are presented in S1 Fig and demonstrate a small, TR-dependent advantage

of the GP-model in reconstructing timecourses and cluster recovery.

Finally, the fourth column of Fig 4 shows that, on its own, the IT-model fails to learn the

cluster structure when σ becomes too large, i.e., when the SNR gets too low. Filtering helps a

great deal here as well, as all models are able to achieve perfect cluster reconstructions at all but

the highest noise levels.

Running time. Fig 5 shows the running times for the different data generation conditions.

The fourth condition is not shown, because running time is unaffected by SNR. Note that

exactly the same number of posterior samples were drawn with all conditions, hence these fig-

ures also illustrate per-sample scaling of the proposed approach.

The first panel of Fig 5 shows that computational burden increases approximately linearly

with the dimensionality of the clustering problem with both timecourse priors. This linearity is

Fig 5. Empirical running times of dd-CRP models. Independent Gaussian priors (IT-model; blue), time-dependent

GP priors (GP-model; green) and the connectivity-based model. All models were applied to the same simulated data

sets as in the first three columns of Fig 4.

doi:10.1371/journal.pone.0164703.g005
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due to the truncation of the decay function, i.e. a hard spatial constraint, as this limits the pos-

sible link assignments to a fixed number, regardless of the total number of nodes.

The second panel of Fig 5 shows that, with fixed N, increasing the number of clusters K also

slightly increases computational costs. This is probably due to the fact that as K increases, aver-

age cluster size decreases, which leads to fewer “internal” nodes. When updating a node, the

number of required cluster-likelihood evaluations is equal to the number of clusters in the

neighbourhood (including the node itself) after removing that node’s link. Hence, nodes on

the borders of clusters are more costly to update. In addition, decreased cluster size also results

in more of them potentially being present in a border node’s neighbourhood.

The third panel of Fig 5 shows that inference with the GP-based model gets slower as T
increases, and from theory we know that pre-computing all the required auxiliary variables

defined in S1 Inference scales as OðT3Þ. However, since these variables need to be updated

only once for each GP hyperparameter configuration, the practical speed of our batch method

is very close to the independent model with typically sized FMRI data sets. The accuracy com-

parisons from the third column of Fig 4 also suggest that inference with the GP-based model

could possibly be sped up by restricting to an interesting segment of the actual measurement

to reduce the number of data points.

Resting state FMRI

Next, CAESAR was applied to rsFMRI data using the population MC framework. Data from

the first run of the group of 20 participants were used to obtain a group parcellation. For each

hemisphere, the sample with the highest importance weight served as the maximum a posteri-

ori (MAP) parcellation estimate. The resulting parcellation is shown in Fig 6 and contains

2391 and 2429 clusters for left and right hemisphere respectively. The distribution of the num-

ber of nodes in a cluster is shown in Fig 7. Note that there are no singleton clusters, the smallest

cluster consisted of three nodes and 95% of clusters contained at least 7 nodes. Performing a

second level clustering, i.e. using these clusters and their timecourses as nodes in a second

application of CAESAR, resulted in little or no further clustering.

Using the cluster-size prior, we obtain a more manageable 220 and 224 clusters in the left

and right cortical hemispheres respectively, with the parcellations shown in Fig 8. The cluster-

size distribution, shown in Fig 9, demonstrates the soft constraint on cluster sizes. The model

is still free enough to settle on a variety of clusters.

As the cluster-size prior resulted in a manageable number of clusters, we focused on exam-

ining reproducibility and generalisability by applying CAESAR, with these settings, to the

remaining three datasets. Over the four datasets the number of clusters ranged from 217 to

220 for the left hemisphere and 211 to 224 for the right. While the number of clusters found

was quite consistent, that alone does not say anything about reproducibility of the structure.

This was therefore assessed by computing the AMI between all pairs of parcellation estimates

based on each of the four datasets. For comparison, we used spatially-constrained Ward-clus-

tering on each of the datasets and cut the trees to match the number of cluster that CAESAR

found for that dataset. The average values for within and between group AMI for Ward-clus-

tering and CAESAR are presented in Table 1. Across all comparisons, CAESAR consistently

scored higher than Ward.

Another measure of performance is the amount of variance explained by the cluster time-

courses. Because the models were applied filtered and unfiltered data, we looked at variance

explained in the unfiltered data. Timecourses for the Ward-clustering were obtained by taking

the mean of filtered voxel-timecourses. For CAESAR, we used the group-level parcellations

obtained with the cluster-size prior. Timecourses were estimated with the IT-model on pre-
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filtered data and the GP-model on unfiltered data, while holding the parcellation fixed. By

using the IT-model on filtered data, we can get an idea of the effect of the parcellation itself.

Any improvement by the GP-model beyond this can then be attributed to the timecourse esti-

mation itself.

The mean explained-variances are presented in Table 2. These results show that not only is

our model better at explaining the data that was used for the parcellation, it also generalises

considerably better. Although the IT-model consistently explained more variance than Ward-

clustering, the major improvement comes from the use of the GP-model in estimating

timecourses.

Discussion

As the simulations show, the GP-model is a marked improvement over the IT-model in terms

of both the parcellation obtained and the quality of time-course reconstruction. Although sim-

ilar performance can obtained by temporal filtering beforehand, the GP-model appears to be

slightly more robust at estimating timecourses, especially in the case of more favourable SNRs.

This is probably due to the GP-model utilising information from all voxels in a cluster and it

Fig 6. Group parcellation based on 20 participants.

doi:10.1371/journal.pone.0164703.g006
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becomes more salient as TR increases. Importantly, as running times show, this comes at virtu-

ally no cost in computational time.

Applied to the FMRI data, this model shows that the HCP data is rich enough to support a

fine-grained parcellation. Attempting a second level parcellation, i.e., use the cluster time-

courses as input to the GP-model, resulted in mostly singleton clusters. This suggests that the

large number of clusters is not due to variations in SNR. If this were the case, Z-scoring the

estimated cluster timecourses would correct for this and allow for more mergers in the sec-

ond-level clustering. This high-resolution parcellation might be a useful way to perform data

reduction, especially given the high-quality of estimated timecourses, while maintaining some

level of spatial specificity.

The cluster-size prior may be viewed as a step back, as the point is to estimate the number

clusters from the data. The necessity of this compromise is illustrated in the extremely large

number of clusters obtained without such a prior. Even worse, tweaking the parameters of the

GP-prior significantly affects the parcellation estimate. A similar effect can be seen in [11],

where they manipulate the number of clusters using a parameter of the likelihood function.

These parameter tweaks destroy interpretability in terms of the assumptions that are made.

We decided to include a prior on cluster sizes, because this offers the user a clearly interpret-

able dial to turn. The soft constraint is still an improvement over fixing the number of clusters,

as we can still estimate the number of clusters. Moreover, we would argue that setting the

scale, i.e. the size of clusters, of the desired parcellation is what one is trying to achieve by

selecting the number of clusters and our cluster-size prior is a more direct way of doing this.

In their simulations, [11] showed superior performance for their model as compared to

other approaches, including local similarity [9] and Ward clustering. In terms of robustness to

Fig 7. Distribution of cluster sizes in the 20-participant parcellation.

doi:10.1371/journal.pone.0164703.g007

Using Temporal Information in CAESAR for Parcellating FMRI Data

PLOS ONE | DOI:10.1371/journal.pone.0164703 December 9, 2016 15 / 21



noise, our approach performs slightly better than that of [11], although it should be noted that

the GP-model operates on unfiltered data. In terms of parameter sensitivity, CAESAR is con-

siderably more robust.

The model proposed in [11] is related to CAESAR in that they have the same prior on parti-

tions. An important difference is that their approach clusters connectivity profiles, a popular

tactic in the parcellation literature. The advantage of operating on connectivity, as opposed to

the underlying timecourses themselves, is that group analyses can easily be performed simply

by averaging connectivity. We chose to model the timecourses themselves, because our objec-

tive is not only to provide a parcellation, but also to provide the corresponding functional sig-

nal, which can be used in a secondary analysis.

Fig 8. Group parcellations with a soft constraint on minimum cluster size. The first and second row visualise the parcellation based on runs 1 and 2

respectively for group 1. Similarly for the third and fourth rows w.r.t. group 2.

doi:10.1371/journal.pone.0164703.g008
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Operating on the connectivity matrix means that computational cost is independent of the

number of timepoints, whereas the cost for our model scales linearly in that regard. On the

other hand, when clustering the connectivity matrix, sweeps over the link assignments in λ
scale cubically in the number of nodes, as opposed to linear scaling when clustering time-

courses. Hence, in many situations our model would be faster. In theory, CAESAR could also

be applied to correlation profiles (preferably after a Fisher transformation), which would

replace the linear scaling in both N and T with quadratic scaling in N, or less if one only con-

siders a subset of the profile.

Parameter sensitivity is an important aspect of any model. In the simulations, CAESAR’s

performance, given theoretically-justified parameter-choices, is quite consistent regardless of

the data conditions. This is contrasted by a sensitivity to number of nodes per cluster of the

connectivity-based model. On the other hand, GP parameter choices do influence the number

Fig 9. Distribution of cluster sizes in the size-constrained parcellations.

doi:10.1371/journal.pone.0164703.g009

Table 1. Reproducibility, as measured with AMI.

Within group Between group

Ward CAESAR Ward CAESAR

Left 0.76 0.82 0.76 0.80

Right 0.76 0.82 0.75 0.80

Overall 0.76 0.82 0.75 0.80

Within-group similarity is the average AMI between parcellations of pairs of runs within groups. Between-group similarity is the average AMI between

parcellations of pairs of runs across groups.

doi:10.1371/journal.pone.0164703.t001
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of clusters returned for empirical data. A possible future extension might include placing a

prior on the parameters of the covariance function, or on the function itself [30], to circum-

vent the strong influence of these parameters. Nevertheless, these parameters have a clear

enough interpretation that we can justify their choice.

Spatially-constrained Ward-clustering has been shown to be the best among several of the

most commonly used parcellation approaches [28]. While the improvements over prefiltering

are modest in the simulations, the improvements over spatially-constrained Ward-clustering

are considerable in terms both variance explained and reproducibility on empirical data. Strik-

ingly, while CAESAR’s parcellation estimate on its own increased the explained variance by

about 2% (0.19 ± 0.03 percentage points), additionally employing the GP-model to estimate

the posterior timecourse resulted in a 22% (2.05 ± 0.04 percentage points) increase of

explained variance. This illustrates the gain in the quality of timecourses when using CAESAR.

In this work we used Gibbs sampling in a population MC framework to perform posterior

inference. This approach requires sampling several chains in parallel for each hemisphere,

which results in long running times. CAESAR could benefit greatly from alternative forms of

posterior inference that would speed up the process, Variational Bayes, which uses approxi-

mate distributions in order to speed up the search for the posterior mode, is such an alterna-

tive. While this technique is generally used in parametric models, non-parametric applications

have also been developed [31, 32]. However, [31] is not applicable to ddCRPs and [32] is only

applicable to sequential ddCRPs (models where the order of the nodes matter), with no clear

way of generalizing to non-sequential ddCRPs.

CAESAR represents a principled approach to parcellate whole-brain FMRI data and obtain

high quality time-courses for the constituent clusters. The parcellations are highly reproducible

and generalisable, even given a modest amount of data. While not pursued in this paper, the

probabilistic nature of CAESAR also enables the propagation of uncertainty in parcellation, as

well as timecourses, to connectivity estimates and beyond [33, 34].

Table 2. Percentage of variance explained.

CAESAR

Ward IT-model GP-model

Within run

Left 9.50% 9.72% 11.58%

Right 9.47% 9.69% 11.57%

Overall 9.49% 9.70% 11.58%

Within group

Left 9.37% 9.56% 11.40%

Right 9.34% 9.52% 11.39%

Overall 9.36% 9.54% 11.40%

Between run

Left 9.29% 9.45% 11.29%

Right 9.25% 9.41% 11.27%

Overall 9.27% 9.43% 11.28%

Within-run explained-variance is the average over datasets of variance explained by the parcellation

obtained from that dataset. Within-group explained-variance is the average over pairs of runs within groups

where the parcellation based on one dataset is used explain variance in the other. Between-group

explained-variance is the average over pairs of runs across groups.

doi:10.1371/journal.pone.0164703.t002
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