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Citation: Karpiński, R.; Krakowski,

P.; Jonak, J.; Machrowska, A.;

Maciejewski, M.; Nogalski, A.

Diagnostics of Articular Cartilage

Damage Based on Generated

Acoustic Signals Using ANN—Part I:

Femoral-Tibial Joint. Sensors 2022, 22,

2176. https://doi.org/10.3390/

s22062176

Academic Editors: Wenfeng Zheng,

Yichao Yang, Chao Liu

and Wenshuo Zhou

Received: 17 February 2022

Accepted: 9 March 2022

Published: 10 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Diagnostics of Articular Cartilage Damage Based on Generated
Acoustic Signals Using ANN—Part I: Femoral-Tibial Joint
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3 Orthopaedic Department, Łęczna Hospital, Krasnystawska 52 str, 21-010 Łęczna, Poland
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Abstract: Osteoarthritis (OA) is a chronic, progressive disease which has over 300 million cases each
year. Some of the main symptoms of OA are pain, restriction of joint motion and stiffness of the joint.
Early diagnosis and treatment can prolong painless joint function. Vibroarthrography (VAG) is a
cheap, reproducible, non-invasive and easy-to-use tool which can be implemented in the diagnostic
route. The aim of this study was to establish diagnostic accuracy and to identify the most accurate
signal processing method for the detection of OA in knee joints. In this study, we have enrolled a total
of 67 patients, 34 in a study group and 33 in a control group. All patients in the study group were
referred for surgical treatment due to intraarticular lesions, and the control group consisted of healthy
individuals without knee symptoms. Cartilage status was assessed during surgery according to the
International Cartilage Repair Society (ICRS) and vibroarthrography was performed one day prior to
surgery in the study group. Vibroarthrography was performed in an open and closed kinematic chain
for the involved knees in the study and control group. Signals were acquired by two sensors placed on
the medial and lateral joint line. Using the neighbourhood component analysis (NCA) algorithm, the
selection of optimal signal measures was performed. Classification using artificial neural networks
was performed for three variants: I—open kinetic chain, II—closed kinetic chain, and III—open and
closed kinetic chain. Vibroarthrography showed high diagnostic accuracy in determining healthy
cartilage from cartilage lesions, and the number of repetitions during examination can be reduced
only to closed kinematic chain.

Keywords: vibroacoustic signal; osteoarthritis; femoral-tibial joint; kinetic chain; artificial neural
network; multilevel perceptron; RBF

1. Introduction

Knee joint is the biggest joint in the human body; moreover, it is one of the most
important joints in daily living. Due to its location and function, it is often subjected
to injuries and development of osteoarthritis (OA). Osteoarthritis is a progressive joint
disease which leads to pain and loss of motion [1,2]. As for now, OA is incurable, and
has a progressive characteristics. The reason for that is that OA affects all joint tissues;
however, it mostly affects hyaline cartilage, which has a very limited healing potential [3].
In 2017, OA accounted for 303.1 million prevalent cases [4]. Those numbers indicate a gross
socioeconomic impact [5]. In the clinical setting, the knee joint is the most common site of
osteoarthritis and accounts for almost four fifths of the burden of OA [4]. Even though OA
is considered a disease of the elderly, it also affects younger individuals. Multiple factors
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have been shown to produce osteoarthritic changes in knee joints, including trauma, obesity
or sport activity [6,7]. Radiological symptoms of OA could be found in 8.5% of amateur
sportsman and 13% of professional sportsmen between the ages of 18 and 36 [8], which
is an important finding in regard to increased sports activity in the overall population.
Osteoarthritic changes were also apparent in active duty soldiers younger than 20 years
of age [9]. In the early stages of the disease, there were multiple methods of treatment
including surgical and conservative treatment [10–13]. Nevertheless, at the end stage of
the disease, total knee arthroplasty (TKA) is the gold standard of treatment. However,
the survivor rate of TKA in the 10-year period of time is 81–92% [14,15]. Therefore, many
researchers seek methods of prevention and early treatment of the disease [16]. Early
treatment can only be achieved if the diagnosis is established without delay. The clinical
diagnosis of osteoarthritis is often problematic because the phenotype of OA is variable and
there is only a poor correlation between clinical and imaging findings [17,18]. Routinely, OA
diagnosis is based on a conventional X-ray with the use of 0–4 Kellgren-Lawrence scale [19].
Conventional X-rays are also used for planning TKA and follow-up after surgical procedure.
Conventional X-rays evaluate the signs of OA, including the forming of osteophytes
and joint space narrowing, which appear after cartilage degeneration as a response from
overloaded bone. Therefore, conventional X-rays lack precision in the detection of early
stages of OA in knee joints [20]. Ultrasound was also proposed as a diagnostic tool in
the case of early OA [21]; however, the results of this examination are comparable with
standing AP radiographs [21]. Most commonly magnetic resonance imaging (MRI) is
introduced into a diagnostic path for the detection of cartilage lesions. Even though MRI is
the best modality available for the detection of cartilage lesions, the reported sensitivity
differs grossly in the literature and ranged from 45% up to 94% [22,23]. More recent papers
suggest that MRI underestimates the extent of cartilage damage, especially in the early
stages [24]. Moreover, MRI is a costly examination, which requires specialized radiologists
to evaluate the extent of cartilage damage and the waiting time is relatively long. Moreover,
as shown by Solivetti et al. [25], up to 20% of patients referred for MRI did not have
a detailed physical examination. Early detection of OA can be achieved by measuring
vibrations and sounds generated by the joint during motion, under the premise that smooth,
optimally lubricated cartilage surfaces move quietly relative to each other, while rough,
sub-optimally lubricated surfaces move unevenly, generating more acoustic signals and
vibrations, commonly referred to as crepitus [17,26,27]. These signals are generated by
transient elastic waves resulting from sudden stress redistribution in the material and can
be recorded from the surface of the knee [17]. Given this information it seems important to
find a diagnostic modality, which could be implemented as a screening measure for patients
with suspected OA. Such diagnostic tools should be reproducible, cheap, easy in evaluation
and accessible. Vibroarthrography (VAG) seems to fulfill these requirements [28,29]. VAG is
a measurement of vibrations or sounds generated during the movement of the joint, while
classical methods of diagnostic imaging only provide information from a static position.
In 1902, Blodgett [30] showed the correlation between sounds generated by knee joints
on auscultation with OA progression. Over the last century, multiple researchers have
engaged in the development of more accurate methods of acoustic signal analysis. Several
groups of researchers achieved over 90 percent accuracy in the detection of osteoarthritic
changes in knee joints with the use of acoustic signal analysis [31]. In recent decades,
numerous research groups have developed this method of evaluating articular cartilage on
the basis of both acoustic [32–36] and vibrational signals [37–41]. Despite the long history
of the use of vibroacoustic assessment, no clear criteria have emerged for the use of this
method in widespread clinical practice. Most of the work done to date has referred to
imaging diagnostic methods and physical examinations, but there is little work providing
detailed confirmation of the extent of damage during surgery. Therefore, the aim of this
study was to compare selected indices of acoustic signals recorded in a group of patients
qualified for surgery with intraoperative confirmation of the extent of cartilage damage
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and signals recorded in a group of healthy subjects. A procedure was carried out to select
optimal signal characteristics to create a classifier based on artificial neural networks.

2. Materials and Methods
2.1. Participants

A total of 67 patients were enrolled in the study. The study group consisted of
24 males and 43 females. The mean age of the study group was 40.84 (years). All patients
were qualified for surgical treatment based on medical history, physical examination and
radiological findings after a detailed evaluation was performed by a specialized orthopedic
surgeon. Physical examination and VAG employed in this study was performed a day prior
to the scheduled surgery; therefore, the time bias between surgery and patient evaluation
was reduced. The control group consisted of healthy volunteers without any previous
known knee pain or injury history. In the control group (HC), the signals recorded for both
knee joints were analyzed, while in the study group (OA), only the operated knee joint
was considered. The mean age of the control group was 24.10 (years). Males accounted
for 27% of the control group, and females accounted for 73%. A detailed description of
the groups is shown in Table 1. Both the control and study groups signed written consent
for participation in the study, filled out identical questionnaires and were subjected to an
identical physical examination prior to VAG acquisition. Only patients with intraarticular
lesions requiring surgical treatment were enrolled in the study. Patients with meniscal or
ligamentous lesions, but without chondral lesions, were excluded from the study. Exclusion
criteria for control group included: any previous history of trauma or joint disease, and any
positive finding on physical examination prior to VAG acquisition. The study received a
positive opinion from the Bioethics Committee of the Medical University of Lublin consent
number KE-0254/261/2019.

Table 1. Characteristics of study participants.

Study Group N Males/
Females

Age
(Years ± SD)

Heigh
(m ± SD)

Weight
(kg ± SD) BMI Tegner-Lyshom

Score

Healthy control (HC) 33 9/24 24.10 ± 5.56 1.71 ± 0.09 65.16 ± 15.10 21.95 ± 3.09 100 ± 0.0
Osteoarthrisis (OA) 34 15/19 56.15 ± 12.99 1.69 ± 0.09 89.08 ± 14.30 31.19 ± 4.83 38.59 ± 12.96

2.2. Physical Examination

Medical history was taken from all patients and healthy volunteers. Knee joints were
assessed for alignment, signs of intraarticular effusion and pain on palpation. Passive
and active range of motion (ROM) was noted. Following that joint inspection, selected
special tests were introduced such as McMurray, Apley and Thessaly [42–44] for evaluation
of meniscal lesions. Varus and valgus stress was applied for an evaluation of collateral
ligament continuity. Lever sign, pivot shift, Lachman and anterior drawer test were used
for an examination of anterior cruciate ligament (ACL) [45–48]. Physical examination was
the main determinant in excluding healthy volunteers from the control group if any test
was found to be positive.



Sensors 2022, 22, 2176 4 of 21

2.3. Surgical Treatment

All surgeries were performed by a specialized surgeon in TKA or arthroscopy accord-
ing to a standard protocol depending on the type of surgery. A standard 30-degree scope
was used for cartilage evaluation in arthroscopic procedures, with instruments intro-
duced through standard anteromedial and anterolateral portals. All TKAs were performed
through an anteromedial approach to the knee joint and visual evaluation of articular
surfaces in cases of TKA after articular surface resection. The International Cartilage Re-
pair Society (ICRS) grading score [49,50] was used for cartilage evaluation. Arthroscopic
visualization of healthy cartilage and grade IV lesions are shown in Figure 1a,b. The
intraoperative view during TKA prior and after resection of articular surfaces is shown
in Figure 2a,b.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 21 
 

 

ticular surfaces in cases of TKA after articular surface resection. The International Carti-
lage Repair Society (ICRS) grading score [49,50] was used for cartilage evaluation. Arthro-
scopic visualization of healthy cartilage and grade IV lesions are shown in Figure 1a,b. 
The intraoperative view during TKA prior and after resection of articular surfaces is 
shown in Figure 2a,b.  

 
(a) 

 
(b) 

Figure 1. Arthroscopic view of healthy articular cartilage (a) and grade IV (b) lesion in the tibio-
femoral joint. 

Figure 1. Arthroscopic view of healthy articular cartilage (a) and grade IV (b) lesion in the tibio-
femoral joint.



Sensors 2022, 22, 2176 5 of 21Sensors 2022, 22, x FOR PEER REVIEW 5 of 21 
 

 

  
(a) (b) 

Figure 2. Intraoperative view prior (a) and after resection (b) of articular surfaces of the tibio-femoral 
joint. 

2.4. Signal Acquisition  
The vibration data were acquired using a dedicated measuring system. The system 

consisted of three main subsystems—an orthesis, a measuring device and a computer. A 
dedicated orthesis with vibration transducers and a rotary encoder was placed on the pa-
tient’s knee. CM01B solid body microphones with a bandwidth from 10 Hz to 2 kHz were 
used [51]. The encoder used was a 10-bit Bourns [52] digital magnetic continuous encoder 
with 10 bit precision, giving it 1024 values per 360 degrees of rotation. The range was 
limited by hard stops between 0 and 90 degrees. Rotation data were sampled about ten 
times per second. The sensory setup was placed on a knee according to Figure 1 and con-
nected to a dedicated measurement device consisting of several subsystems, as presented 
in Figure 2. First, the signal was conditioned using a preamplifier. Afterwards, the ana-
logue signal was sampled using an 8-bit microcontroller Atmega2560 with a 10 bit ADC 
and a serial/usb interface. Additionally, it was necessary to provide galvanic isolation to 
ensure patient safety. The device uses an ADuM4160 USB 2.0 isolator chip [53] and an 11.1 
V 3 s Li-Ion battery with a step-down converter and battery management system. The 
stream of data from the device was recorded by a computer and saved as a comma-sepa-
rated value file. Measurements were taken during joint movement in an open and closed 
kinematic chain, as presented in Figure 3. A schematic showing the main modules of the 
measurement system is shown in Figure 4 while the leg motion in the open and closed 
kinematic chain is shown in Figure 5. 
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2.4. Signal Acquisition

The vibration data were acquired using a dedicated measuring system. The system
consisted of three main subsystems—an orthesis, a measuring device and a computer.
A dedicated orthesis with vibration transducers and a rotary encoder was placed on the
patient’s knee. CM01B solid body microphones with a bandwidth from 10 Hz to 2 kHz were
used [51]. The encoder used was a 10-bit Bourns [52] digital magnetic continuous encoder
with 10 bit precision, giving it 1024 values per 360 degrees of rotation. The range was limited
by hard stops between 0 and 90 degrees. Rotation data were sampled about ten times per
second. The sensory setup was placed on a knee according to Figure 1 and connected to a
dedicated measurement device consisting of several subsystems, as presented in Figure 2.
First, the signal was conditioned using a preamplifier. Afterwards, the analogue signal was
sampled using an 8-bit microcontroller Atmega2560 with a 10 bit ADC and a serial/usb
interface. Additionally, it was necessary to provide galvanic isolation to ensure patient
safety. The device uses an ADuM4160 USB 2.0 isolator chip [53] and an 11.1 V 3 s Li-Ion
battery with a step-down converter and battery management system. The stream of data
from the device was recorded by a computer and saved as a comma-separated value file.
Measurements were taken during joint movement in an open and closed kinematic chain,
as presented in Figure 3. A schematic showing the main modules of the measurement
system is shown in Figure 4 while the leg motion in the open and closed kinematic chain is
shown in Figure 5.

Examples of normalized signals for healthy and injured knees in the time and fre-
quency domain for OKC and CKC, recorded with a sensor placed on the condyle on the
lateral side is shown in Figure 6.
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Figure 6. Examples of normalized signals for healthy and injured knees in the time and frequency do-
main for OKC and CKC recorded with a sensor placed on the lateral side. Respectively: (a) HC OKC,
(b) OA OKC, (c) HC CKC and (d) OA CKC.

2.5. Signal Preprocessing

The collected raw VAG waveforms contain some artifacts that had to be eliminated
before starting further stages of data processing, so that they did not affect the obtained
results. The disturbances mainly include the registration of time series before and after
the cycles of movements and random noise or interference of the electrical network. The
first step in signal cleansing was to cut the time series before and after the movements that
were analyzed. For this purpose, the procedure of semi-automatic signal clipping based on
the data obtained from the encoder was used. Thus included automatic slope detection
procedures. The introduction of manual control at the initial stage made it possible to avoid
cutting off a part of the important signal for people suffering from OA with difficulties in
obtaining full flexion or extension due to pain—for such people the slopes at the initial and
final stages of movement are much more gentle than in the control group.

In the case of biomedical signals, it is both important and difficult to avoid the appear-
ance of artifacts in the form of random noise [54–57]. In order to reduce it, the ensemble
empirical mode decomposition EEMD procedure was used to screen out the recorded noise
and the occurring artifacts, like in [58] elaboration. The procedure for filtering signals by
empirical mode decomposition EMD was introduced by Huang [59], providing a valuable
tool for the analysis of nonlinear and non-stationary signals. It consists of another signal
shifting, separating it into a set of Intrinsic Mode Functions (IMFs) representing signal
components of high and low frequencies. The discussed procedure consists of several
stages. The first is to extract the local extremes—maxima and minima—from the signal x(t).
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On the basis of the obtained values by means of cubic spline interpolation, two envelopes
eup(t) and edow(t) are built. Then the mean of the envelope m1(t) is determined:

m1(t) =
eup(t) + edow(t)

2
. (1)

Based on the above result, the signal d1(t) is obtained:

d1(t) = x(t)−m1(t), (2)

if the number of all extremes of the signal d1(t) and the number of zero-crossings is equal to
or differs by at most one and at each point d1(t), the mean of the constructed maxima and
minima envelopes is equal to zero, it is assumed that d1(t) is an IMF. IMFs are frequency
ordered components. After extracting d1(t) as IMF, the procedure is repeated for the
remaining signal:

h1(t) = x(t)− d1(t), (3)

until the required IMF count or the stoppage criterion is reached. The monotonic signal r(t)
left after the shifting process is called the residual signal. Due to the emerging mode mixing
effect [60,61], manifested by leakage of frequency components between the obtained IMFs,
a new approach was proposed in [62], consisting of feeding the noise-assisted signal to the
input in individual samples:

yn(t) = x(t) + wn(t), (4)

for n = 1, 2, . . . N, where N denotes ensemble number. The signal yn(t) is then treated as an
input signal x(t) in the classical EMD procedure. After screening, the yn(t) signal can be
represented as:

yn(t) =
i

∑
j=1

dn
j (t) + rn

i (t), (5)

where i are the IMFs obtained in each decomposition, where dj(t) is jth IMF and ri(t) is the
residual signal obtained in the nth decomposition.

The data collected from sensors in real-time may have the variations or distortions
due to sensor drift, which is referred to as a trend. In the conducted research, in order
to reduce the quantitative and qualitative presence of artifacts, the monotonic trend r(t),
extracted in the EEMD process, was removed. This preprocessed data series was subjected
to further testing.

2.6. Feature Extraction

In the analysis of the signal it is not necessary to focus on each momentary value
change, because this is unreasonable and unattainable due to the fact that the dynamics of
changes exceeds the capabilities of human perception [63,64]. It is crucial to define signal
values that define the points that are most distinctive and of greatest importance to the
entire waveform.

A large number of signal features (parameters) called state indices are used in vibroa-
coustic diagnostics [65–68]. A summary of the parameters determined for the discrete
signals used in this paper is presented below. These measures were selected based on liter-
ature data and previous studies of the authors selection of optimal signal features [28,29].

In this work, 13 feature parameters are extracted. These are:

1. Mean value (MV)

x =
1
N

N

∑
i=1

xi (6)
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2. Straightened average value (SA)

The use of SA parameter allows to eliminate the phenomenon of approaching the
mean value to zero, especially visible for oscillating signals.

x =
1
N

N

∑
i=1

|xi| (7)

3. Root mean square (RMS)

Root mean square is defined as the square root of the mean square. It is also known
as the quadratic mean. It is a very common measure in vibroacoustic diagnostics. It is
not sensitive to sudden changes manifested as single peaks in the signal. It is a parameter
proportional to the vibration energy and the probability of vibration damage. RMS is
referred to as:

xRMS =

√√√√√ 1
N

N

∑
i=1

xi
2 (8)

4. Peak value (PV)

Unlike RMS, peak value is a parameter with a high sensitivity to rapid changes in the
state of the tested objects. It is defined as:

x̂ = max|xi| (9)

5. Peak-to-peak value (PPV)

PPV is the amplitude measured from the top-most part of the waveform to the bottom-
most part of the waveform. PPV differs from PV in that two extreme values are taken
into account—the smallest and the largest. It is also a measure of the dispersion of results,
known in statistics as the range.

xPPV = |xmax − xmin| (10)

6. Crest Factor (CF)

The purpose of the CF calculation is to give an answer of how much impacting is
occurring in a waveform. Tracked over time for vibration monitoring, CF could be an
early indicator of wear. It changes with damage development in vibroacoustic signals: as
damage develops, its high value starts to decrease. In VAG studies of joint surface damage,
it may be relevant by analogy to its promising results in detecting damage in mechanical
bearings.

xCF =
x̂

xRMS
(11)

7. Impact Factor (IF)

IF is defined in the same way as CF, except that the denominator is the mean value. Its
diagnostic properties are also similar to those of CF, but it is more sensitive.

xI =
x̂
x

(12)

8. Shape factor (SF)

In VAG analyses, SF could be an interesting indicator. Its changes are influenced by an
increase in the deviation from the mean value.

xSF =
xRMS

x
(13)
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9. Variance (VAR)

Variance is the expected value of the squared deviation of a random variable minus its
population mean. It is known as a measure of dispersion. Unlike PPV, it does not depend
only on the two extreme values in the waveform but also contains information relating to
the clustering of results around the distribution center. Values deviating from the mean
value have a greater influence on this feature. For low VAR values, it is assumed that the
results are clustered around the mean value, but for high results, they are scattered. In the
context of defining the state of knee joint damage and the characteristic impulses occurring
in HC group waveforms, it may be a promising indicator.

x2
VAR =

1
N − 1

N

∑
i=1

(xi − x)2 (14)

10. Kurtosis (KUR)

KUR is a parameter describing the degree of concentration of results in the distribution.
It provides information about the degree of similarity of data scattered around the mean in
relation to the normal distribution. The value of kurtosis for normal distribution is 3; in
cases where the analyzed distribution is more pointed, this value will be higher, and for
smaller values of kurtosis the distribution is flattened. According to [69], the appearance
of vibration pulses in the signal causes an increase in the kurtosis value. By analogy to
machine vibration diagnostics, higher values may indicate damage.

xKUR =
1
N ∑N

i=1(xi − x)4[
1
N ∑N

i=1(xi − x)2
]2 (15)

11. M6A

The M6A parameter is the sixth central moment normalized by the variance raised to
the third power. This factor is more sensitive to the presence of impulses in the signal. In
machine diagnostics it is used for differential signals. Here it was placed experimentally
for a signal subjected to preprocessing filtration.

xM6A =
1
N ∑N

i=1(xi − x)6[
1
N ∑N

i=1(xi − x)2
]3 (16)

12. M8A

An even more sensitive parameter is M8A, known as the eighth central moment,
normalized by the variance to the fourth power. In machine diagnostics it is used for the
differential signal. Here it was placed experimentally for a signal subjected to preprocessing
filtration. The feature is described as:

xM8A =
1
N ∑N

i=1(xi − x)8[
1
N ∑N

i=1(xi − x)2
]4 (17)

2.7. Selection of Optimal Signal Features

In the process of building classification models, the use of too-large sets of measures
may reduce the ability to generalize cases and unnecessarily extend the computation
process. This is particularly important in the case of small sets of recorded data. In the
presented paper, a neighborhood component analysis (NCA) algorithm was used to reject
inappropriate and redundant features.
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NCA is one of the more interesting classification techniques. It is a non-parametric
and embedded method developed based on the nearest neighbor (KNN) algorithm [70].
According to [71,72] in NCA carrying out analyses, a data set is assumed:

S = {(xi, yi), i = 1, 2, . . . , N}, (18)

where xi described d- dimensional vector, yi ∈ {1, 2, . . . , c} is its corresponding class label,
c is the number of classes and N is a observations number. Then, in terms of the weight vec-
tor w, the weighted distance between the two samples xi and xj was determined by [71,72]:

Dw
(

xi, xj
)
=

d

∑
l=1

w2
l

∣∣∣xil − xjl

∣∣∣, (19)

where wl is a weight associated with the lth feature.
To ensure the maximum accuracy of classification, the leave-one-out technique is used

on a given set of S. Randomly, a point is picked from S as a reference point and is labelled
accordingly. The reference point x is chosen from S by a probability distribution, and the
probability of xi selects xj as its reference point [71,72]:

pij =

 0, if i = j
κ(Dw(xi ,xj))

∑k 6=i κ(Dw(xi ,xk))
, if i 6= j

, (20)

where κ(z) = exp(−z/σ) is a kernel function and the kernel width σ is an input parameter
that influences the probability of each of the points being selected as the reference point.
The probability of the query point xi being correctly classified is given by [71,72]:

pi =

N

∑
j−1,j 6=i

yij pij, (21)

where

yij =

{
1, if yi = yj
0, otherwise

(22)

Thus, the approximate accuracy of the classification omitting one output can be written
as [71,72]:

F(w) =

N

∑
i=1

pi (23)

The aim of the NCA is to maximize F(w) with respect to w by introducing the regular-
ized objective term λ [71,72]:

F(w) =

N

∑
i=1

pi − λ

d

∑
l=1

wl
2 (24)

where λ > 0 is a regulation parameter which can be tuned via cross validation [71,72].

F(w) =

N

∑
i=1

N

∑
j=1,j 6=i

pijyij − λ

d

∑
l=1

wl
2 (25)
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Since the objective function F(w) is differentiable, its derivative with respect to wr can
be computed as [71,72]:

∂F(w)

∂wl
= ∑

i=1
∑
j=1

yij

 2
σ

pij

∑
k 6=i

pik|xil − xkl | −
∣∣∣xil − xjl

∣∣∣
wl

− 2λwl (26)

∂F(w)

∂wl
=

2
σ∑

i=1

pi∑
k 6=i

pik|xil − xkl | −∑
j=1

yij pij

∣∣∣xil − xjl

∣∣∣
wl − 2λwl , (27)

and finally it is obtained as follows [71,72]:

∂F(w)

∂wl
= 2

 1
σ∑

i=1

pi∑
k 6=i

pij

∣∣∣xil − xjl

∣∣∣−∑
j=1

yij pij

∣∣∣xil − xjl

∣∣∣
− λ

wl (28)

The above dependence allows for the update of the gradient equation. Obtaining the
best λ corresponds to the minimum classification loss. The mean loss in the folds of the
cross-validation depends on the choice of λ. This parameter tuning causes minimal loss of
classification and has been computed by 1/Nt, where Nt is the total number of observations
in the training set. The criteria for selecting significant features using feature weights based
on the definition of the relative threshold (T) is given by [71,72]:

T = τ ∗max(w), (29)

where τ is the tolerance fixed to 0.02 [71] and w is the updated features weight. According
to [72], the features weight greater than T counted as significant features, and the remaining
features were expelled from set S. When λ is too large, all of the feature weights approach
zeros, resulting in them all constituting irrelevant features. Hence, it is essential to tune λ
in a way that produces minimal classification loss.

2.8. Artificial Neural Networks

A neural network is a collection of properly connected neurons arranged in layers. An
artificial neuron from a technical point of view is an element whose properties correspond
to the selected properties of its biological counterpart [73]. The input signals are multiplied
by coefficients called synaptic weights. Each neuron calculates a weighted sum of its
inputs, and these are then summed up. The activation level thus determined becomes the
argument of the transition function (activation function), which calculates the output of the
neuron [74]. The input signals are multiplied by factors called synaptic weights. The values
of the weights can be changed; this allows the network to learn and adapt to the considered
task. The activation level thus determined becomes the argument of the transition function
(activation function), which calculates the output value of the neuron [74,75]. The most
common type of networks are the MLP (Multilayer Perceptron) [76,77] and RBF (Radial
Basis Function) neural networks. The number of input and output neurons depends on
the complexity of the problem being solved. One of the most popular applications of
neural networks is solving classification problems, in which ANN is a tool for assigning
the studied objects to the correct classes [78,79].

Three classification variants were considered in the study to determine the optimal
testing protocols allowing the best possible diagnoses of cartilage damage. The Statistica
13.1 package (Tulsa, OK, USA) containing modules including machine learning and artificial
neural networks was used for the calculations. In all variants, information such as age,
gender, BMI (Body Mass Index), and selected measures of acoustic signals were provided at
the inputs. Data are randomly divided into 70% training, 15% testing, and 15% validation.
A 2-stage simplified classification corresponding to cartilage damage states was proposed
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at the outputs: 1-healthy cartilage, 2-cartilage for further diagnosis and surgical treatment
(I to IV degree of damage according to the Kellgren–Lawrence scale). Variant I involved
teaching the network using selected measures of signals recorded in a closed kinetic chain
(CKC). Variant II involved selected measures of signals recorded in the open kinetic chain
(OKC). Variant III included selected signal measures for both kinetic chains (CKC and OKC).
A graphical visualization of the neural network used is shown in Figure 7.
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3. Results and Discussion
3.1. Selection of Optimal Signal Features

Due to the complex mechanics of the knee joint and significant differences occur-
ring in articular cartilage loads, as well as the different friction and lubrication param-
eters in both kinetic chains, optimal signal measures were selected separately for each
of the analyzed variants. The results of the analyses are shown in Figure 8 for variant I,
Figure 9 for variant II, and Figure 10 for variant III, respectively.
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For variant I, the following measures of acoustic signals were selected based on the
analyses performed: peak value, peak-to-peak value, impact factor, shape factor, variance,
M6A, and M8A. These measures were used as input data for variant I classification.

For variant II, the following measures of acoustic signals were selected based on the
analyses performed: mean value, straightened average value, peak value, peak-to-peak
value, impact factor, shape factor, variance, M6A, and M8A. These measures were used as
input data in the variant II classification.

For variant III, the following measures of acoustic signals were selected based on the
analyses performed: mean value, peak-to-peak value, impact factor, shape factor, variance,
M6A, and M8A. These measures were used as input data for variant III classification.
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3.2. Classification

The results for the most accurate classifiers are presented below for one case each
of multilayer perceptron (MLP) and radial basis function (RBF) networks, respectively.
The models were created using the automatic network search algorithm included in the
Statistica package. The quality results for each network are shown in Table 2.

Table 2. Quality of the MLP and RBF neural network for variant I (open kinetic chain), II (close kinetic
chain) and III (open and close kinetic chain).

Variant Network
Name

Quality
of Learning

Quality
of Testing

Quality
of Validation

Learning
Algorithm

Error
Function

Activation
(Hidden)

Activation
(Output)

I MLP 13-9-2 96.32 100.00 96.43 BFGS 45 SOS Logistic Exponential
RBF 13-43-2 89.71 96.43 96.43 RBFT Entropy Gauss Softmax

II MLP 15-12-2 94.85 92.86 92.86 BFGS 14 Entropy Linear Softmax
RBF 15-6-2 91.91 100.00 89.29 RBFT SOS Gauss Linear

III MLP 15-24-2 93.70 94.74 85.96 BFGS 13 SOS Linear Linear
RBF 15-5-2 89.63 89.47 91.23 RBFT Entropy Gauss Softmax

In Table 2, in the network name column, we present data describing the type and
structure of the network. The numerical notation following the network type describes
respectively: the first value is the number of neurons in the input layer, the second is the
number of neurons in the hidden layer while the third describes the number of network
outputs. The next three columns report the quality of the network, separately for the
learning and test data. For quality variables (classification), the relative number of correctly
classified cases (relative to the total number of cases) is given. The highest quality of
learning was obtained for the MLP network in variant I, in which the classification was
conducted only on the basis of data obtained for a closed kinetic chain. It is a network with
thirteen input neurons (thirteen variable inputs), nine neurons in the hidden layer, and
two output neurons (assigning data to one of two classes of HC and OA). The learning
algorithm used is BFGS 45 (Broyden–Fletcher–Goldfarb–Shanno), the error function is SOS
(sum of squares), the activation function in the hidden layer is a logistic function while in
the output layer it is an exponential function. The lowest quality of learning in the analyzed
variants was recorded for the RBF network in variant I. In the case of testing quality, the
highest value was observed for the MLP network in variant I and the RBF network in
variant II, the lowest for the MLP network in variant II, respectively. The highest quality
of validation was obtained for MLP and RBF networks for variant I. The information on
parameters such as learning algorithm, error function, and activation functions for each
network is presented in Table 2.

The detailed results for classification in each group and overall classification accuracy
for all three variants are shown in Table 3.

The best classification accuracy (97.75% of correctly assigned cases) in the HC group
was obtained for the MLP network in variant I and the RBF network in variant II, the
lowest accuracy in this group was obtained for the RBF network in variant III. For the OA
group, the highest accuracy was obtained for the MLP network in variant I and the lowest
accuracy was obtained for the RBF network in variant II. The highest classification accuracy
in both groups was obtained for the MLP network for variant I, with 96.32% of correctly
assigned cases, respectively. The lowest accuracy was obtained for the RBF network in
variant III and it was 89.63% correctly assigned to each class of cases.
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Table 3. Summary of classification accuracy of MLP and RBF networks for variant I, II and III.

Network Name HC OA Total

MLP 13-9-2

Total 89.00 47.00 136.00
Correct 87.00 44.00 131.00

Incorrect 2.00 3.00 5.00
Correct (%) 97.75 93.62 96.32

Incorrect (%) 2.25 6.38 3.68

RBF 13-43-2

Total 89.00 47.00 136.00
Correct 83.00 39.00 122.00

Incorrect 6.00 8.00 14.00
Correct (%) 93.26 82.98 89.71

Incorrect (%) 6.74 17.02 10.29

MLP 15-12-2

Total 89.00 47.00 136.00
Correct 86.00 43.00 129.00

Incorrect 3.00 4.00 7.00
Correct (%) 96.63 91.49 94.85

Incorrect (%) 3.37 8.51 5.15

RBF 15-6-2

Total 89.00 47.00 136.00
Correct 87.00 38.00 125.00

Incorrect 2.00 9.00 11.00
Correct (%) 97.75 80.85 91.91

Incorrect (%) 2.25 19.15 8.09

MLP 15-24-2

Total 182.00 88.00 270.00
Correct 176.00 77.00 253.00

Incorrect 6.00 11.00 17.00
Correct (%) 96.70 87.50 93.70

Incorrect (%) 3.30 12.50 6.30

RBF 15-5-2

Total 182.00 88.00 270.00
Correct 163.00 79.00 242.00

Incorrect 19.00 9.00 28.00
Correct (%) 89.56 89.77 89.63

Incorrect (%) 10.44 10.23 10.37

In mathematical statistics, the ROC curve is a graphical representation of the effective-
ness of a predictive model by plotting the qualitative characteristics of the binary classifiers
produced from the model using a number of different cutoff points [80,81]. The interpre-
tation of the Area Under the ROC (Table 4) is the probability that the predictive model
under the test will rate a random positive class element higher than a random negative
class element. The larger the AUROC, the better. The largest area under the ROC curve was
observed for the MLP network in variant I, the smallest area for the RBF network in the
same variant, respectively. A summary of the ROC curves for each classifier for all three
variants is shown in Figure 11. Information on the area under the curve and the threshold
values for each curve is summarized in Table 4.

Table 4. Area under the ROC curves and ROC threshold.

Variant I Variant II Variant III

MPL RBF MPL RBF MPL RBF

Area Under the ROC 0.996 0.960 0.989 0.977 0.977 0.974
ROC Threshold 0.603 0.571 0.647 0.505 0.645 0.529
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The analysis of the classification results obtained shows that there are no significant
differences between variants I and II involving the analysis of movements in one kinetic
chain and variant III involving the analysis for both kinetic chains together. This suggests
the possibility of simplifying the procedure and limiting the test to a procedure involving
the execution of repetitions in one kinetic chain, thus reducing the test time and computation
time. The obtained results also show that MLP-type networks perform better in solving the
studied problem.

Our study shows that examination procedure can be reduced in the number and range
of repetitions, while it shows that there is no positive correlation with the increased volume
of data (two kinematic chains). Our results show that, in the case of two sensors placed
medially and laterally on a joint line, there is no need for repetition in both kinematic
chains. The limitation of this study is a simplification of a classification model only to two
groups with healthy cartilage and cartilage lesions without distinguishing between lesion
severity grades. Future studies focused on the determination of cartilage lesion grade are
required and will be performed by the authors. Even though VAG is an emerging technique
of cartilage evaluation, our results correspond with other author’s findings, that this
diagnostic modality can be applied in an orthopaedic setting [82]. However, the best signal
processing method is still to be found and popularized by engineers and the orthopaedic
community. Different pathways have been proposed for testing protocols [34,83], showing
good diagnostic accuracy in the field of cartilage damage. The sensitivity and specificity
published by other authors range between 0.56–1 and 0.74–1 respectively [84–86]. Those
findings correspond with our own results, which show the high sensitivity and specificity
of VAG in cartilage lesion diagnostics. Nevertheless, the technique seems promising for
a wide range of results and requires further studies in order to establish a reproducible
protocol for orthopaedic testing.

4. Conclusions

Analysis of the results shows that vibroarthrography can be an effective, low-cost and
accurate diagnostic modality for the evaluation of cartilage damage in tibio-femoral joints,
and can be implemented in daily orthopedic practice. A neighborhood component analysis
(NCA) algorithm used for the detection of signals optimized the quantity of input data and
aided in the maximizing of classification accuracy in a shorter calculation time.
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69. Večeř, P.; Kreidl, M.; Šmíd, R. Condition Indicators for Gearbox Condition Monitoring Systems. Acta Polytech. 2005, 45. [CrossRef]
70. Goldberger, J.; Hinton, G.E.; Roweis, S.; Salakhutdinov, R.R. Neighbourhood Components Analysis. Adv. Neural Inf. Process. Syst.

2004, 17, 513–520.
71. Yang, W.; Wang, K.; Zuo, W. Neighborhood Component Feature Selection for High-Dimensional Data. J. Comput. 2012, 7, 161–168.

[CrossRef]

http://doi.org/10.2106/JBJS.D.02338
http://www.ncbi.nlm.nih.gov/pubmed/15866956
http://doi.org/10.1177/036354657600400206
http://www.ncbi.nlm.nih.gov/pubmed/961972
http://doi.org/10.1177/036354659202000122
http://www.ncbi.nlm.nih.gov/pubmed/1554082
http://doi.org/10.1097/00003086-198003000-00008
http://doi.org/10.1007/s00167-014-3490-7
http://doi.org/10.1177/03635465030310012601
http://doi.org/10.2106/00004623-200300002-00008
https://www.te.com/commerce/DocumentDelivery/DDEController
https://www.te.com/commerce/DocumentDelivery/DDEController
https://www.bourns.com/docs/technical-documents/technical-library/sensors-controls/publications/Bourns_SC1180_Encoder_SF_Broch.pdf
https://www.bourns.com/docs/technical-documents/technical-library/sensors-controls/publications/Bourns_SC1180_Encoder_SF_Broch.pdf
https://www.analog.com/en/products/adum4160.html
https://www.analog.com/en/products/adum4160.html
http://doi.org/10.1016/j.inffus.2021.07.001
http://doi.org/10.1016/j.bspc.2020.102337
http://doi.org/10.1098/rspa.1998.0193
http://doi.org/10.1016/j.ymssp.2010.03.003
http://doi.org/10.1016/j.sigpro.2013.09.013
http://doi.org/10.1142/S1793536909000047
http://doi.org/10.1016/j.asoc.2015.02.015
http://doi.org/10.1016/j.apacoust.2021.108070
http://doi.org/10.14311/782
http://doi.org/10.4304/jcp.7.1.161-168


Sensors 2022, 22, 2176 21 of 21

72. Raghu, S.; Sriraam, N. Classification of Focal and Non-Focal EEG Signals Using Neighborhood Component Analysis and Machine
Learning Algorithms. Expert Syst. Appl. 2018, 113, 18–32. [CrossRef]

73. Dudek-Dyduch, E.; Tadeusiewicz, R.; Horzyk, A. Neural Network Adaptation Process Effectiveness Dependent of Constant
Training Data Availability. Neurocomputing 2009, 72, 3138–3149. [CrossRef]

74. Rogala, M.; Gajewski, J.; Górecki, M. Study on the Effect of Geometrical Parameters of a Hexagonal Trigger on Energy Absorber
Performance Using ANN. Materials 2021, 14, 5981. [CrossRef]

75. Rogala, M. Neural Networks in Crashworthiness Analysis of Thin-Walled Profile with Foam Filling. Adv. Sci. Technol. Res. J. 2020,
14, 93–99. [CrossRef]

76. Taud, H.; Mas, J.F. Multilayer Perceptron (MLP). In Geomatic Approaches for Modeling Land Change Scenarios; Camacho Olmedo,
M.T., Paegelow, M., Mas, J.-F., Escobar, F., Eds.; Lecture Notes in Geoinformation and Cartography; Springer International
Publishing: Cham, Switzerland, 2018; pp. 451–455, ISBN 978-3-319-60800-6.

77. Rogala, M.; Gajewski, J.; Głuchowski, D. Crushing Analysis of Energy Absorbing Materials Using Artificial Neural Networks. J.
Phys. Conf. Ser. 2021, 1736, 012026. [CrossRef]
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