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Pulse signal analysis plays an important role in promoting the objectification of traditional Chinese medicine (TCM). Like elec-
trocardiogram (ECQG) signals, wrist pulse signals are mainly caused by cardiac activities and are valuable in analyzing cardiac diseases. A
large number of studies have reported ECG signals can distinguish gender characteristics of normal healthy subjects using entropy
complexity measures, consistently showing more complexity in females than males. No research up to date, however, has been found on
examining gender differences with wrist pulse signals of healthy subjects on entropy complexity measures. This paper is aimed to fill in
the research gap, which could, in turn, provide a deeper insight into the pulse signal and might identify potential differences between
ECG signals and pulse signals. In particular, several complementary entropy measures with corresponding refined composite multiscale
versions are established to perform the analysis for the filtered TCM pulse signals. Experimental results reveal that regardless of entropy
measures used, there is no statistically significant gender difference in terms of entropy complexity, indicating that the pulse signal holds
less gender characteristics than the ECG signal. In view of these findings, wrist pulse signals could be likely to provide different pieces of
information to ECG signals. The present study is the first to quantitatively evaluate gender differences in healthy pulse signals with
measures of entropy complexity and more importantly; we expect this study could make contribution to the ongoing pulse intelligent
diagnosis and objective analysis, further facilitating the modernization of TCM pulse diagnosis.

1. Introduction

In general, there are four major diagnostic methods of
traditional Chinese medicine (TCM), i.e., looking, listening,
asking, and feeling the pulse. Among them, pulse diagnosis
refers to placing the doctor’s three fingers on the wrist radial
artery to analyze the health condition [1-4]. For thousands
of years, pulse diagnosis has played an indispensable role in
TCM as well as in traditional Indian/Korean medicine. Even
in today’s disease diagnosis, pulse diagnosis is still very
competitive due to its convenient, inexpensive, and non-
invasive advantages. Furthermore, TCM has also been in-
creasingly adopted in the West by medical practitioners as a
supplementary and alternative medical treatment [5].

The basic principle behind wrist pulse-based diagnosis
relies on the fact that when blood flows through the organs
of the whole body, the disease of which will be eventually
reflected in the pulse fluctuation pattern [6]. It is held in
TCM theory that pulse conditions are closely tied to the
heart beating, blood patency and adequacy, and deficiency of
Qi and blood [2, 7]. However, the practice of TCM pulse
diagnosis is highly subjective, extremely depending on the
experience of the practitioners which usually require years of
training. In this case, diagnosis results may be not so ob-
jective and reliable. To overcome these limitations, objective
analysis and interpretation of the wrist pulse signal, known
as computational pulse signal analysis, has been developed in
the last few decades [8-13].
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Being a physiological signal, the wrist pulse signal is the
same as the electrocardiogram (ECG) signal, mainly driven
by cardiac contraction and relaxation [14, 15]. Analysis
approaches derived from the nonlinear dynamic system
have been extensively explored in the study of the charac-
teristics of cardiovascular dynamics [16]. For healthy indi-
viduals, a large number of studies have reported that there is
a significant gender difference in ECG signals in terms of
various complexity measures, such as [17-21]. Since pulse
signals can also reflect the heart condition and the vascular
system, it is a natural and reasonable assumption for the
pulse signal obtained from the subject’s superficial artery
also to be an indicator of gender differences. On the other
hand, gender differences are also considered as an important
intrinsic factor in wrist pulse assessment in TCM.

For physiological signal processing, analysis methods
can be linear or nonlinear. Several previous works have
already applied linear methods in time-domain [22, 23] and
frequency-domain [23] to investigate the gender difference
in the pulse signal from healthy people. Based on their
findings, it has been confirmed that gender differences can
be characterized by some features in the pulse signal.
Nevertheless, linear analysis techniques may provide less
information about the integrated dynamic characteristics of
pulse signals. For this reason, it is imperative to examine the
gender dependency of the pulse signal with widely used
nonlinear dynamics indices.

As one of the nonlinear dynamics indices, some nonlinear
complexity entropies, such as approximate entropy [24] or
sample entropy [11, 25, 26], have been proposed for compu-
tational pulse diagnosis. As expected, signal entropy is distinct
between normal people and patients with respect to complexity
measures. In view of this, the available studies are primarily
focusing on extracting the entropy feature to perform classi-
fication on different patients or healthy people and patients. To
our best knowledge, there is no report on distinguishing the
gender of healthy subjects based on entropy complexity
measures. This paper makes an attempt to fill this gap. Spe-
cifically, we utilize four kinds of complementary entropy
statistics to seek gender difference characteristics embedded in
the pulse signal of normal people, which will probably provide
additional valuable information related to dynamical changes
of the pulse signal. Furthermore, the study presented in the
paper might identify potential differences between ECG signals
and pulse signals in terms of entropy complexity.

Entropy, as a complexity measure, has been widely
applied for different time series analyses, such as industrial
fault diagnostic systems [27] and biological signal analyses
[28]. Over the years, many different entropy algorithms have
been introduced in the literature. For a more comprehensive
analysis, our research covers two large families: one is based
on Shannon’s entropy and the other is based on embedding
[29]. As far as entropy measures are concerned in the paper,
sample entropy (SaEn) and its improved variant-fuzzy en-
tropy (FuEn) belong to the former group, while permutation
entropy (PeEn) [30] and dispersion entropy (DiEn) [31] are
the representatives of the latter family [29]. For detailed
comparative analysis, both single and multiscale entropy
algorithms are implemented.
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Approximate entropy (ApEn) is the first widely used
entropy measure developed for nonlinear time series anal-
ysis [32]. It is however biased resulting from self-matching
included when calculating the occurrences of similarity. To
address this issue, SaEn is proposed as an extension of ApEn
[33] and has been verified to be superior to it [34, 35].
Therefore, in this paper, we first choose the SaEn measure
instead of the ApEn measure to analyze the pulse signal.
Unfortunately, the SaEn performance is very sensitive to the
tolerance since the hard threshold is used. FuEn with the
smooth threshold function is then introduced to improve
the robustness of SaEn [36, 37]. Irrespective of healthy
people or patients, FuEn has not been applied to compu-
tational pulse signal analysis yet. This paper also tries to
evaluate the performance of the FuEn measure for healthy
people.

Despite the popularity of SaEn or FuEn, there are still
some problems. First, both ApEn and FuEn ignore the
temporal order of the values in a time series. In addition,
SaEn, including FuEn, is sensitive to signal amplitude
changes. Instead of calculating the entropy with respect to
the amplitude, PeEn takes into count the analysis of ordinal
patterns by estimating the relative frequencies in time series
[30]. Since only ordinal patterns are considered, the am-
plitude of the signal is practically irrelevant, resulting in
structural robustness to the noise. Furthermore, it has the
quality of simplicity, robustness, and very high calculation
efficiency. Therefore, permutation entropy is also used as an
analysis index. On the other hand, PE solely considers the
order of the amplitude values, and hence, some crucial
information may be missed. To tackle these problems, re-
cently Rostaghi and Azami [31] proposed a new method,
termed dispersion entropy (DiEn), which also considers the
mean value of amplitudes and differences between ampli-
tude values. They show that the DiEn method considerably
outperforms PeEn to discriminate different groups of each
dataset. In addition, the computation time of DiEn is sig-
nificantly less than that of PeEn. For a comprehensive
comparison, we also include the DiEn measure to charac-
terize ordinal patterns of the pulse signal.

In practice, time series derived from physiological and
complex nonlinear dynamic systems contain multiple
temporal scale structures [38]. It is found that traditional
entropy measures, like SaEn, may lead to misleading results
due to their single-scale-based measures. To prevent this,
Costa et al. [38] propose a new entropy complexity measure,
known as multiscale entropy measure (MSE), which takes
different scales of a time series into account. To be specific,
the multiple scales of input data are first derived and the
associated entropy measures are subsequently calculated for
each scale separately. Based on this novel idea, a large
number of corresponding MSEs have been successfully
applied in the biomedical research field [39-42]. It is worth
noting that, compared to other physiological signals, pulse
data recording is shorter (several thousand in general). As a
result, for traditional MSE algorithms, the coarse-grained
procedures can reduce the length of a time series, which may
induce an inaccurate estimation of entropy or undefined
entropy. Wu et al. [43] have demonstrated that the refined
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composite MSE (RCMSE) algorithm, which is independent
of the data length, is more reliable and better than traditional
MSE algorithms. This paper, therefore, incorporates the
refined composite multiscale architecture [44-46] into the
used four entropy measures.

The primary objective of this work is to comprehensively
and systematically examine gender differences of wrist pulse
signals from healthy people in terms of various entropy
measures with a refined composite multiscale framework. To
do this, the remainder of the paper is organized as follows.
Section 2 describes the acquisition of wrist pulse data and the
necessary preprocessing process for pulse signals, followed
by the brief review of four kinds of entropy measures and the
refined composite multiscale framework in Section 3. Ex-
perimental results and analysis with different entropies and
scales are presented in Section 4. Section 5 compares the
difference between the pulse and ECG signals in dis-
tinguishing the healthy people’s gender, investigates other
existing related pulse work, and at last states limitations of
our work. The conclusion is finally drawn in Section 6. We
believe that in terms of entropy measures, new findings
regarding gender differences in our work may advance
guidelines for improved pulse diagnosis or analysis and
further provide some insights into the modernization of
traditional pulse diagnosis.

2. Materials and Preliminaries

2.1. Research Subjects. The volunteers are all adult college
students of Zhengzhou University. All participants have
good health without clinical evidence of any disease. Anyone
taking any medicine or unable to complete pulse mea-
surement is excluded, especially women who are in men-
struation. In order to measure the wrist pulse signal as
accurately as possible and prevent interference from other
factors, participants are informed not to consume caffeine or
alcohol and vigorous exercise the day before the pulse-
taking. The same activities as well as eating and smoking are
not allowed within 2 hours before the test.

In order to ensure data quality and balance, from the
collected data, a total of 200 right-handers are equally di-
vided into two groups of 100 males and 100 females to study
gender differences. Table 1 lists their physical conditions
including height, age, and weight expressed as mean =+
standard deviation (SD). From the table, we can figure out
that the female group is lower in weight and height than the
male group, but almost the same in age.

2.2. Wrist Pulse Signal Acquisition. By far, a number of
sensors, such as pressure, photoelectric, and ultrasonic
sensors, have been developed for acquiring pressure pulse
signals. Compared with photoelectricity and Doppler ul-
trasonic sensors, the operating principle of the pressure
sensor is more consistent with the TCM theory [47]. In this
study, the ZM-300 intelligent TCM pulse pressure detector
(made by Shanghai University of Traditional Chinese
Medicine, Shanghai, China) is used to collect the wrist ulna
pulse signal (at the chi position) in both the left arm and

TasLE 1: Physical conditions of the subjects examined in this study.

Variable Men Women p value
Age (year) 20.45 + 0.63 20.39 £ 1.03 0.38

Height (cm) 177.36 + 4.63 162.86 + 4.25 <0.001
Weight (kg) 65.46 + 8.28 55.14 = 5.62 <0.001

right arm, respectively. The pulse signal acquisition system
used in this work is illustrated in Figure 1.

2.3. Experimental Setup. This study is conducted in a very
quiet room and follows relevant guidelines and regulations.
All subjects rested for 10 minutes to stabilize the resting
heart rate prior to taking the pulse. During the signal ac-
quisition process, subjects sit in a relaxed and comfortable
way and keep their back straight. Pulse collectors have been
trained by professional doctors and wrap the pressure sensor
in the radial arteries of the wrist in order of right arm to the
left arm.

For each volunteer, pulses are monitored for 10 seconds
at a sampling rate of 200 Hz; therefore, 2000 samples in total
are captured. Pulse manifestation signals under different
pressures are obtained by imposing 6 different pressures on
each hand and the optimal pulse signal is picked for pro-
cessing and analysis.

2.4. Pulse Signal Preprocessing. 'The sampling frequency we
used is high enough to prevent pulse waveform distortion.
However, the pulse signal is inevitably corrupted by
background noise and baseline drift. Before subsequent
signal processing, these interferences need to be elimi-
nated to obtain a clean pulse signal. For the preprocessing,
we adopt the robust signal preprocessing framework
proposed in [48], which first denoises the pulse and then
removes baseline drift with a wavelet-based cascaded
adaptive filter [49].

Generally, the frequency range of the pulse signal is
between 0Hz and 10Hz, not exceeding 40 Hz [50]. The
background noise is mainly caused by high-frequency in-
terference such as environment disturbance and electricity
interruption. Therefore, the noise can be filtered out by a
low-pass filter with a cut-off frequency of 40 Hz. As for the
baseline drift, various solutions have been proposed to
correct it in physiological signals, among which the wavelet-
based cascaded adaptive filter method stands out [49]. In the
filter, the pulse signal is decomposed and its baseline drift
level is detected by computing its energy ratio. According to
the given threshold, the pulse is then filtered with a discrete
Meyer wavelet filter followed by cubic spline estimation.

Figure 2 shows a snapshot of pulse waveform pre-
processing. As we can see, the raw pulse waveform is greatly
enhanced so that the accurate extraction of pulse interval can
be assured in the following step.

After preprocessing, some pulse signals are excluded by
visual inspection due to technical artifacts. Furthermore, we
remove incomplete cycles and normalize the pulse further
for ensuring precise and validated entropy computing [24].



FIGURE 1: Wrist pulse signal acquisition.
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3. Methods

Entropy measure is widely used to evaluate the complexity of
physiological signals in many research fields. In this section,
the basic ideas underlying the definition of these selected
entropy measures are briefly reviewed; the reader is rec-
ommended to refer to [30, 37, 44, 45] and references therein
for more details.

3.1. Sample Entropy Measure. For the wrist pulse signal
x(i)(1<i<N), given the embedding dimension m and
tolerance r, the SaEn of time series can be computed as
follows:

(1) First, construct the template vectors X" (1<i<N
-m + 1) as follows:

X" ={x@),x(+1),....,.x({+m-1)}. (1)

Vector sequences X" represent m consecutive x (7).

(2) Second, for each X", the distance between X" and
X7 is calculated by using the infinite norm, defined
as

dj; =

k:gfﬁ_l(lx(”k)‘x(ﬂk)l). (2)

(3) Third, with the Heaviside function ® (x), the number
of vector matches is counted as a tolerance r in the
following way:

Cl'(r) = N o(r-dj), (3)

where j#1i excludes self-matches. Based on this, the
probability that two vectors of length m match with
tolerance r is then

N-m
) = >, 1nC 0. (4)
Similarly, repeat the above process for vectors of
length m + 1:
1 1N 1
m+ — m+
=gy 2 e(r—dit)
j=lj#i
(5)
¢m+1 Cm+1
W 2

(4) Finally, the SaEn is calculated with the following
equation:

SaEn(m,r,N) =In(¢" (r)) - ln( s (r)) (6)

The calculation of SaEn requires two parameters to be
determined in advance: (i) the embedding dimension m,

describing the length of vectors to compare; and (ii) the
tolerance threshold r, the distance threshold for two tem-
plate vectors. The data length is preferred in the range be-
tween 10" and 20™ [51]. The tolerance is usually
recommended between 10% and 20% of the standard de-
viation ¢ of the signal’s amplitudes [38]. In what follows the
values of m = 3 and r = 0.15 ¢ have been used.

3.2. Fuzzy Entropy Measure. In SaEn, the pattern similarity
is determined by the Heaviside function © (d; — ) given in
equation (3). To counter this discontinuity, FuEn employs a
fuzzy membership function to compute the similarity degree
between two patterns. Essentially, the computation of FuEn
is only modified with a new distance measure.

Typically, the similarity degree is determined using a
family of an exponentially decaying function:

m dii\"
Dj; (n,r) = exp(«(T) >, (7)

where n defines the membership function shape. In this
paper, we use n =2 as proposed in [36, 37]. Then, the
equations for the match counts are

1 Nz—:m
Cl'(r) = —— D} (n,1),
l N-m-1,4z,, "
(8)
™ (r) = o sz D} (n,7).
! N-m-1
] 1]#1

Under given tolerance r, the matching probabilities of
vectors of lengths m and m + 1 are calculated the same as
SaEn, and finally, FuEn is estimated as

FuEn(m,2,7,N) =In(¢" (r)) - In

(#™'®).  ©

3.3. Permutation Entropy Measure. The concept of PeEn is to
map a continuous time series onto a symbolic sequence,
where the statistics of the symbolic sequences are called
permutation entropy. The specific calculation process is as
follows:

(1) First, for given embedding dimension m, the phase
space X' (1<i<N -m+1) of a time series wrist
pulse signal x (i) (1<i< N) can be constructed as

X" ={x(i),x(i+1),....,x({+m-1)}. (10)

Furthermore, each sequence X' is sorted in as-

cending order with a permutatlon pattern 7" and

there will be m! possible permutations 7 for an m—
tuple vector.

(2) Based on the probabilities of all permutations, the
PeEn is defined as follows:

Zp

H,(m) = )n p(n"), (11)



where p(n]") is calculated as

. #{jlj =1L....N-m+ l;XThastyperr?‘}
p(m") = :
N-m+1
(12)
(3) It is clear that PeEn values are between in the range
[0, log m!]. For convenience, the normalized per-
mutation entropy is computed as

0<PeEn =

H,(m)
log(m!)sl. (13)

The maximum (minimum) value of PeEn is 1 (0), in-
dicating that each ordinal pattern has the same probability or
the time series is very regular. In brief, the smaller the value
of PeEn, the more regular the time series.

The evaluation of the appropriate permutation distri-
bution relies on the embedding dimension m. To achieve
reliable statistics, PeEn requires that the length N of the time
series satisfies N > m! [52]. In practice, it is suggested to
work with 3 <m <7 [30]. In our study, we set m = 3 in order
to maintain consistency with the aforementioned two en-
tropy measures.

3.4. Dispersion Entropy Measure. Dispersion entropy orig-
inates from permutation entropy and is also related to the
embedding dimension 1 and the time delay. In practice, it is
recommended d = 1 [31]; thus, for clarity, the specific cal-
culation process of DiEn is as follows:

(1) First, for the given pulse signal, employ the normal
cumulative distribution function (NCDF) to map
x(i) into y = {y,, ¥, ..., yy} from 0 to 1. The new
time series y; is assigned each to an integer from 1 to
¢ with the following linear algorithm:

z5 = round(c*yj + 0.5), (14)
where 2} shows the jth member of the classified time
series and roun d is the integer function.

(2) Next, for given embedding dimension m, compute
the phase space reconstruction z** (1<i<N —-m +
1) for the time series z°¢,

me
z, =

c

{Z?’Zﬁ-l" : "Zf-v—(m—l)}' (15)

Each time series z/*° is mapped to a dispersion

pattern T ey where
c _ ¢ _ ¢ -1
Z{ = V025 = Vi > Ziy o1y = V1 and the num-

ber of all possible dispersion patterns is ¢™.
(3) For each of ¢™ potential dispersion patterns, the
relative frequency is obtained as follows:
#{ili <N - (m-1)d,z/* hastypen
p(n’vomvm,l) - N — (m _ l)d

Voo V1 }

(16)
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(4) Finally, based on Shannon’s definition of entropy,
the dispersion entropy is computed as

Hd (m) = - Z P(ﬂvovl.“vm,l)ln(p(ﬂvovlu.vm,l))' (17)
=1

Clearly, DiEn values range in [0, log(c™)]. For conve-
nience, the normalized dispersion entropy is computed as
H

0<Difn = 4™ (18)
log(c"™)
For the practical purpose of DiEn, we choose ¢ = 6, just
as recommended in [31]. Again, the embedding dimension
m is set 3 as in the PeEn.

3.5. RCMSE Framework. Traditional MSE may produce
incorrect entropy estimates and lead to uncertain entropy
because coarse-grained processes will greatly reduce data
length on a large scale. To address these drawbacks, the
RCMSE algorithm is employed in this paper, with specific
procedures summarized as follows:

(1) First, construct multiple coarse-graining series. For
time sc{ale 7, there are k Toarse—grained time series

y = ylifl),ylifz),...,ylg , which is defined as
follows:
1 JjT+k—1 N
==Y x, 1<js—1<kst (19)
T T
i=(j-1)1+k

(2) For SaEn or FuEn, the number of matched vector
Paris nZ’:I and . is computed for all 7 coarse-
grained series. RCMSE is then defined as the loga-
rithm of ration mean number of matched vector

Paris [43, 44].

ﬁmﬂ T nm+1
RCMSE(x, 1,m, 1) = —ln< ,k,,f > = —ln<%)‘
My v ket Mhr

(20)

For calculating the matching template, using dif-
ferent distance metrics will produce corresponding
refined composite multiscale entropy. In this paper,
we refer to the refined composite multiscale version
of SaEn and FuEn as RC, g and RCypg in respective
order.

(3) For refined composite multiscale permutation en-
tropy (abbreviated as RCypp) [45] and refined
composite multiscale permutation entropy (abbre-
viated as RCypp) [46], the calculation is slightly
different, which is computed as

RCyppye (X, 7,m, L) = - Z p"” (”i)ln<p(ﬂi))’ (21)
m=1
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where p™ (m;) = 1/tY;_, p,ET) (7;) with ka) (7;) represent-
ing the relative frequency of the permutation pattern or
dispersion pattern 7; in the time series y,ET).

4. Experimental Results

In this section, we conduct a series of comparative exper-
iments. Comprehensive analyses of multiscale entropy
values between male and female groups in the left and right
hands are presented, respectively, and then the statistical
difference analysis is adopted to evaluate the statistical
significance of gender difference.

For each entropy measure, the mean + SD of the MSE
results is presented across all male and female subjects. The
normality of the entropy results distributions is determined
by the Shapiro-Wilk test. It is shown in subsequent analysis
that for each entropy measure, the values in each group
comply with normal distribution. On this basis, an inde-
pendent two-sample ¢-test is conducted to determine the
significance of differences among male and female groups.
All statistical analyses are conducted using the MATLAB
software, and without loss of generality, statistical signifi-
cance is set to be p <0.05.

4.1. RCyqr Results. Figure 3 shows the results of RCygp
measured in the left and right hands. Roughly speaking, as
the scale increases, a general trend of increase regardless of
the gender is revealed in the entropy values and thus the
complexity of the wrist pulse signal for both hands.
Moreover, the higher the scale is, the higher the complexity
and variability are. A closer look at Figure 3 indicates that in
the left hand, the interquartile range of entropy values for
males is larger than that of females, whereas the opposite is
true for the right hand. Although the actual entropy value is
numerically small and the gap is very little, the median of the
right hand in each group is still slightly larger than that of the
left hand across all scales. Therefore, it can be concluded that
compared to the left hand, the gender is more distin-
guishable using the right hand. However, there are some
outliers found in the measurements, probably due to the
hard threshold function in the computation of the SaEn.
Statistical indicators are evaluated in Table 2 for further
quantitative comparison, where data are expressed as mean
+ SD. We can see that there is no significant difference
between genders across all scales1, although the right hand is
demonstrated to be more effective than the left hand.

4.2. RCyypp Results. Similarly, the results of RCy g, in the left
and right hands are illustrated in Figure 4, showing the same
trend as RCypp in both complexity and variability. Fortu-
nately, the FuEn is more stable than the SaEn because of the
more smooth growth on the scale without any outliers. The
reason is that the soft and continuous boundaries used in
FuEn computation enable stronger relative consistency. This
confirms the FuEn measure is a better choice in follow-up
pulse analysis and diagnosis research. Table 3 tabulates the
statistical indicators as well. These observations are con-
sistent with the SaEn’s.

4.3. RCypp Results. Figure 5 shows the results of RCypp in
the left and right hands. In contrast, the PeEn is more robust
than the two above entropy measures with a smaller fluc-
tuation range and thereby can be provided as an alternative
in subsequent diagnosis and analysis. The results of statis-
tical analysis are shown in Table 4. Consistent with those
obtained in previous studies, there is no observation of
significant gender differences.

4.4. RCyypp Results. Figure 6 shows the results of RCypg in
the left and right hands. As seen from the bars, the entropy
fluctuation range is smaller, especially the left hand, and
thus, the DiEn is most robust among the four entropy
measures. This also confirms that the dispersion entropy is
more robust in the study. Thereby, dispersion entropy
should be the first choice in subsequent diagnosis and
analysis, among TCM practitioners. The results of statistical
analysis are shown in Table 5. Again, consistent with those
obtained in previous studies, there is no observation of
significant gender differences.

As can be seen, the results obtained with these four
entropy measures are in good correspondence. In summary,
two important facts can be determined. (a) For both genders,
the values of the right hand exhibit slightly higher than that
of the left hand, but the gap is very small with no statistical
difference between left and right hands. (b) No matter which
entropy measure is used, there are no overall significant
gender differences over all scales. Further comparison with
normal ECG signals and previous researches related to
gender differences of pulse signals will be discussed in depth
in the next section.

5. Discussion

In the present study, we assess gender differences in healthy
Chinese male and female groups with four complementary
entropy measures. For detailed comparative analysis, both
single and multiscale sample entropy algorithms are
implemented. In contrast to the previous conclusion drawn
in ECG, the primary findings are that the observed difference
in terms of entropy measure between males and females is
not significant overall.

As stated in the Introduction, the entropy measure has
also been used to distinguish between normal and control
groups (different patients). Due to the different groups
involved, this study cannot be directly compared. Instead,
the following analysis and comparison of the research results
will be discussed from three aspects: (1) the gender difference
of ECG signals in normal people with respect to entropy
measure, (2) the gender difference of pulse signals in existing
studies, and (3) the limitations of this study. Unless oth-
erwise specified, men and women mentioned below refer to

healthy adults.

5.1. Comparison with Gender Difference in ECG Signals.
For long-term ECG analysis, it is generally accepted that
gender differences are statistically found in healthy people
with respect to entropy measures. With ApEn measures,
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FIGURE 3: RCy; under different scales for the left hand (a) and right hand (b). The boxes show the data between the 25th and 75th
percentiles, and the middle line inside each box is the median MSE value at a specified scale.

TABLE 2: Statistical indicators of RCygg.

Left hand Right hand
T
Male Female P value Male Female P value
1 0.1802 + 0.0325 01801 + 0.0342 0.9911 0.2000 + 0.0362 0.2087 + 0.0461 0.4446
2 03233 + 0.0491 0.3306 + 0.0485 0.5859 0.3513 + 0.0483 03673 + 0.0563 0.2685
3 0.4065 + 0.0744 0.4159 + 0.0588 0.6102 0.4473 + 0.0727 0.4688 + 0.0855 0.3258
4 0.4773 + 0.1016 0.4827 + 0.0783 0.8825 0.5338 + 0.1036 0.5605 + 0.1302 0.4087
5 0.5404 + 0.1286 0.5431 + 0.0960 0.9293 0.6156 + 0.1325 0.6464 + 0.1664 0.4544
6 0.5969 + 0.1509 0.5943 + 0.1134 0.9435 0.6827 + 0.1513 0.7140 + 0.1933 0.5109
7 0.6508 + 0.1631 0.6486 + 0.1256 0.9566 0.7527 + 0.1778 0.7689 + 0.2012 0.7556
8 0.6882 + 0.1732 0.6866 + 0.1491 0.9703 0.7995 + 0.1797 0.8248 + 0.2042 0.6305
9 0.7342 + 01712 0.7443 + 0.1469 0.8169 0.8492 + 0.1920 0.8687 + 0.2077 0.7218
10 0.7820 + 0.1807 0.7895 + 0.1704 0.8761 0.8906 + 0.1988 0.9055 + 0.2058 0.7882
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FIGURE 4: RCyp; under different scales for the left hand (a) and right hand (b). The boxes show the data between the 25th and 75th
percentiles, and the middle line inside each box is the median MFE value at a specified scale.
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TaBLE 3: Statistical indicators of RCypg-
Left hand Right hand
T
Male Female P value Male Female P value
1 0.0956 + 0.0134 0.0954 + 0.0155 0.9608 0.1008 + 0.0176 0.1034 + 0.0182 0.5926
2 0.1499 + 0.0233 0.1485 + 0.0268 0.8387 0.1624 + 0.0296 0.1644 + 0.0306 0.8080
3 0.1899 + 0.0288 0.1875 + 0.0328 0.7800 0.2086 + 0.0361 0.2113 + 0.0374 0.7813
4 0.2255 + 0.0330 0.2219 + 0.0373 0.7144 0.2488 + 0.0410 0.2514 + 0.0416 0.8197
5 0.2570 + 0.0373 0.2520 + 0.0409 0.6414 0.2837 + 0.0460 0.2856 + 0.0455 0.8773
6 0.2846 + 0.0417 0.2777 £+ 0.0439 0.5526 0.3135 + 0.0507 0.3145 + 0.0499 0.9404
7 0.3092 + 0.0465 0.3015 + 0.0467 0.5492 0.3403 + 0.0554 0.3406 + 0.0542 0.9845
8 0.3335 + 0.0517 0.3247 + 0.0498 0.5262 0.3657 + 0.0595 0.3657 + 0.0597 0.9972
9 0.3579 + 0.0568 0.3508 + 0.0539 0.6389 0.3895 + 0.0629 0.3909 + 0.0663 0.9398
10 0.3829 + 0.0621 0.3769 + 0.0579 0.7120 0.4155 + 0.0664 0.4171 + 0.0731 0.9325
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FIGURE 5: RCy;pp under different scales for the left hand (a) and right hand (b). The boxes show the data between the 25th and 75th
percentiles, and the middle line inside each box is the median MPE value at a specified scale.

TABLE 4: Statistical indicators of RCyp.

Left hand Right hand
' Male Female P value Male Female P value
1 0.6022 + 0.0480 0.6221 + 0.0431 0.1153 0.6184 + 0.0594 0.6325 + 0.0486 0.3430
2 0.6648 + 0.0632 0.6843 + 0.0581 0.2427 0.6944 + 0.0700 0.7077 + 0.0594 0.4524
3 0.6675 + 0.0679 0.6806 + 0.0623 0.4644 0.7062 + 0.0728 0.7107 + 0.0640 0.8103
4 0.6770 + 0.0639 0.6872 + 0.0559 0.5330 0.7148 + 0.0648 0.7174 + 0.0676 0.8857
5 0.6926 + 0.0588 0.7031 + 0.0528 0.4937 0.7331 + 0.0594 0.7342 + 0.0671 0.9524
6 0.7119 + 0.0549 0.7222 + 0.0506 0.4784 0.7522 + 0.0530 0.7531 + 0.0656 0.9585
7 0.7351 + 0.0521 0.7467 + 0.0471 0.3953 0.7700 + 0.0495 0.7709 + 0.0636 0.9503
8 0.7561 + 0.0489 0.7691 + 0.0443 0.3102 0.7873 + 0.0444 0.7874 + 0.0612 0.9950
9 0.7760 + 0.0451 0.7893 + 0.0410 0.2629 0.8014 + 0.0409 0.8028 + 0.0586 0.9180
10 0.7955 + 0.0417 0.8081 + 0.0407 0.2662 0.8166 + 0.0378 0.8173 + 0.0540 0.9544

several previous works of literature [17-19] have presented
similar results of higher ApEn values for women than men.
It is reasonably hypothesized that these differences are due to
the fact that women generally live longer and suffer from
cardiovascular disease later than men [17]. On the other
hand, the short-term ECG signal does not clearly show the

gender difference. With multiscale sample entropy measures
(only two scales of 1 and 2), it is demonstrated that there are
no meaningful gender differences in short-term (5-minute)
HRYV for any indices [53]. Subsequently, using more mul-
tiple complexity measures [20], such as compression en-
tropy, and by means of the detrended fluctuation analysis,
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FIGURE 6: RCyp under different scales for the left hand (a) and right hands (b). The boxes show the data between the 25th and 75th
percentiles, and the middle line inside each box is the median MDE value at a specified scale.

TABLE 5: Statistical indicators of RCypg.

Left hand Right hand
! Male Female P value Male Female P value
1 0.4488 + 0.0143 0.4510 + 0.0133 0.5468 0.4505 + 0.0218 0.4600 + 0.0169 0.2773
2 0.5116 + 0.0187 0.5136 + 0.0167 0.6868 0.5164 + 0.0278 0.5268 + 0.0218 0.3324
3 0.5529 + 0.0219 0.5539 + 0.0193 0.8568 0.5580 + 0.0324 0.5692 + 0.0245 0.3585
4 0.5818 + 0.0229 0.5837 + 0.0210 0.7544 0.5880 + 0.0350 0.5984 + 0.0254 0.3162
5 0.6072 + 0.0238 0.6068 + 0.0221 0.9477 0.6133 + 0.0382 0.6223 + 0.0271 0.3243
6 0.6276 + 0.0251 0.6264 + 0.0236 0.8633 0.6333 + 0.0412 0.6430 + 0.0289 0.3204
7 0.6429 + 0.0248 0.6424 + 0.0247 0.9473 0.6498 + 0.0431 0.6600 + 0.0299 0.3193
8 0.6553 + 0.0255 0.6557 + 0.0259 0.9511 0.6640 + 0.0456 0.6740 + 0.0323 0.3572
9 0.6648 + 0.0267 0.6659 + 0.0260 0.8781 0.6741 + 0.0476 0.6847 + 0.0341 0.3488
10 0.6724 + 0.0279 0.6743 + 0.0275 0.8065 0.6812 + 0.0530 0.6928 + 0.0368 0.3536

the dependence on gender for some indices is proven in
young subjects (25 — 34 years). However, the gender influ-
ences are considerably weaker than the age influences.

Therefore, from the above ECG signal analysis, we can
see that the ECG signal is able to identify the gender on some
complexity measures. Although similar to it, the results in
this paper show that the pulse signal has no ability to dis-
tinguish between genders. The reason for this inconsistency
may be explained as follows:

The pulse is measured at the wrist instead of the vicinity
of the heart. During the blood transfer from the heart to
the wrist, many factors, such as the thickness and
elasticity of vessel walls, the blood composition, and the
skin conditions, will ultimately influence the fluctua-
tions. Consequently, Kaplan [54] conjectures that the
interaction of many cardiovascular feedback loops, as
well as random environmental influences, may elimi-
nate detectable traces of nonlinearity, even though the
time series is caused by nonlinear mechanisms.

On the other hand, it is inconclusive whether the
normal pulse signal is nonlinear in terms of signal

characteristics. With the Delay Vector Variance
method [55], Yan et al. [56] examine the nonlinearity of
the wrist pulse signals between the healthy group and
the coronary heart disease group. Their findings report
that in the coronary heart disease group, most of the
wrist pulse signals (80% of 59) are nonlinear, while the
wrist pulse signals of the healthy group (76% of 29) are
commonly linear. But the mechanism of difference of
wrist pulse’s nonlinearity between two groups remains
unclear.

As mentioned in a previous study [20], the gender
differences are not strong for the short-term ECG
signal. In our study, the recording sample is about 2000,
which may reinforce our primary findings. Due to the
short data length, the nonlinear difference may be
ambiguous.

It should be noted that the entropy is only one measure
of complexity; no significant gender difference in entropy
measure does not mean that there is no difference in
complexity. As pointed out in [54], there is the possibility of
gender differences in terms of complexity between healthy
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male and female subjects in some other nonlinear dynamics,
which is just not directly supported by the used data and
employed statistics. Therefore, to fully determine gender
differences for pulse signals, a more thorough complexity
analysis is required in the future.

5.2. Comparison with Gender Difference in Existing Pulse
Signals Analysis. Compared with ECG signals, there are
relatively few studies on gender differences of wrist pulse
signals in healthy individuals. The research focus of existing
work is the optimization of time-domain waveform pa-
rameters or frequency-domain spectrum parameters, not
involved with complexity statistics.

Some findings have suggested the gender difference in
healthy people is present in arterial pulses. For example, King
et al. [57] examine the radial pulse characteristics for a sample of
healthy subjects. The characteristics used include presence at the
three TCM locations (Cun, Guan, Chi), depth (superficial,
middle, deep), relative force, and width, most of which are
qualitative measures. Although in terms of the overall pulse
force, male pulses are more forceful than female pulses, the
study provides limited support for TCM assumptions con-
cerning gender-based differences in these pulse metrics. Yim
et al. [22] investigate pulse differences according to gender and
measuring positions in healthy individuals in a more objective
manner. In this work, several time-domain parameters of the
pulse signal are compared to confirm that the radial pulse difters
significantly with respect to gender and measuring positions.
Subsequently, Lee et al. [23] demonstrate highly significant
differences in gender by performing the analysis of wrist pulse
waves of healthy Korean adults at the three positions in time and
frequency domains. They infer that the reason may be that men
tend to have larger vascular diameters and higher blood ve-
locities, which increase blood flow and blood pressure in the
wrist artery.

TCM practitioners claim that there exist gender differences
between men and women, and these previous studies have
somewhat confirmed that. Yet in our study, there are no sig-
nificant gender differences in nonlinear entropy measures. As
stated before, no difference between the entropy does not mean
that there is no difference between genders. Moreover, early
studies have also shown different and special changes for
specific diseases in the pulse spectrum analysis [14, 15]. Instead
of entropy computation in time-domain, entropy analysis of
frequency spectrum may reveal some new different results,
which is worthwhile to study further.

5.3. Limitations and Future Studies. Undoubtedly, this paper
is just a preliminary exploration to use wrist pulse signals to
identify the gender of healthy people, and there are several
limitations. First, the participants in this study are aged in
their 20s, requiring more middle-aged healthy subjects. Also,
the sample size of participants is relatively small (about 200).
Second, the pulse signal itself exhibits intersubject vari-
ability. According to TCM theory, such variability has
something to do with the collection time and seasonal
changes [2]. In other words, it varies every day even for the
same person according to his (or her) physical condition. In
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addition, we do not perform the pulse acquisition at multiple
different locations, while existing studies have shown that
the gender difference of different measures is related to
collection location [58]. Third, the present study mainly
assesses the entropy measure. As stated in [59], one single
parameter cannot sufficiently describe complex physiolog-
ical systems. Perhaps other complexity measures such as
correlation dimension and detrended fluctuation analysis
can provide more complementary information. Finally,
some unmeasured variables, such as individual levels of
fitness, may also have an impact on the gender differences we
observed in wrist pulse signals. Additionally, the associated
embedding dimension or tolerance parameters in entropy
computation may be relevant.

In short, a further prospective study with a larger sample
size, more multiple collection positions, and more broad
healthy adults and complexity measures is needed to rein-
force our conclusions described above, which is also our
turther study.

6. Conclusions

Pulse signal analysis is crucial to the objectification of TCM
pulse diagnosis. The pulse signal and the ECG signal are
similar and very important physiological signals. Regarding
entropy measures, ECG signals have been confirmed to have
gender differences for normal people, while corresponding
characteristics of the pulse signal have not been studied. In
this paper, a nonlinear analysis to investigate the gender
difference within wrist pulse signals of healthy people for the
first time is presented. We employ four kinds of entropy
measures in the framework of refined composite multiscale
to evaluate the wrist pulse signal. Extensive experiments and
analyses are conducted to study the potential gender
difference.

The results show that the wrist pulse signal is not as
effective as the ECG signal to exhibit statistically significant
gender differences for healthy people. It is however better to
use the dispersion entropy measure for subsequent intelli-
gent diagnosis since we experimentally demonstrate that it is
the most robust and reliable entropy measure for the wrist
pulse signal. Moreover, we believe that our findings will
contribute to the modernization of pulse diagnosis and
facilitate the development of pulse diagnosis systems.

Future research will investigate more influence factors of
entropy measures that may be related to the gender dif-
ference. In addition, more extensive and comprehensive
experiments are further required for a thorough evaluation
of the wrist pulse signals.
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