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Imperfect two-dimensional topological insulator
field-effect transistors
William G. Vandenberghe1 & Massimo V. Fischetti1

To overcome the challenge of using two-dimensional materials for nanoelectronic devices, we

propose two-dimensional topological insulator field-effect transistors that switch based on

the modulation of scattering. We model transistors made of two-dimensional topological

insulator ribbons accounting for scattering with phonons and imperfections. In the on-state,

the Fermi level lies in the bulk bandgap and the electrons travel ballistically through the

topologically protected edge states even in the presence of imperfections. In the off-state

the Fermi level moves into the bandgap and electrons suffer from severe back-scattering.

An off-current more than two-orders below the on-current is demonstrated and a high

on-current is maintained even in the presence of imperfections. At low drain-source bias,

the output characteristics are like those of conventional field-effect transistors, at large

drain-source bias negative differential resistance is revealed. Complementary n- and p-type

devices can be made enabling high-performance and low-power electronic circuits using

imperfect two-dimensional topological insulators.
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T
o obtain the best possible electrostatic control in electronic
devices such as field-effect transistors (FETs), two-
dimensional (2D) materials have to be used1. However,

in practice this is proving to be very challenging. A first big
challenge originates from the need to discover 2D materials with
electronic-transport properties that exceed significantly those
exhibited by silicon technology. A second challenge consists in
devising an appropriate switching mechanism enabling the
exploitation of the transport properties. A third, more practical,
challenge is to find materials that can be grown with high quality
and uniformity to enable the manufacturing of reproducible
devices on a large scale. Efforts have been made to use 2D
materials for conventional FETs2,3 as well as alternative electronic
devices operating based on tunnelling4–6, ferroelectrics7, spin,
exciton condensates8, phase-transitions9,10 but, as of present no
avenue has been found to overcome all of the aforementioned
challenges of 2D materials.

Graphene, as an atomically thin material, exhibits a very high
mobility but, unfortunately for FETs, it has no bandgap and no
good alternative switching mechanism has been devised11,12.
Opening a bandgap by using graphene nanoribbons drastically
reduces the mobility13,14 and the large sensitivity of the bandgap
to the ribbon width makes graphene nanoribbons extremely
sensitive to any edge roughness14. Exciton-based graphene
devices8 are likely to only work at low temperatures15,16,
tunnelling devices are expected to result in low drive
currents5,17,18, graphene devices based on transmission have
low on/off ratios12 and will inevitably suffer from the
imperfections introduced during the fabrication process.

The exploration of new 2D materials, such as transistion metal
dichalcogenides, has shown some promise but mobilities are quite
low19 and defect levels in the materials are very high. Present
material quality suffers from up to 7 orders of magnitude more
defects20 compared with industrial silicon impurity standards.
Other more exotic 2D materials are found in phosphorene2

(monolayer phosphorous in a puckered configuration) which
was initially predicted to have a very high mobility21 but more
rigorous calculations reveal a much less exciting phonon-limited
mobility of E200 cm2V� 1s� 1 (ref. 22). Silicene23,24 (silicon in a
buckled hexagonal monolayer configuration) was similarly
initially predicted to have a mobility similar to graphene25 but
properly accounting for scattering with flexural modes in the
absence of horizontal mirror symmetry reveals a silicene mobility
essentially zero for practical purposes26.

As continuing research has moved towards heavier elements,
the effects of spin–orbit coupling have become more important.
In graphene, for example, the effect of spin–orbit coupling can be

safely ignored27 whereas in stanene28,29 (tin in a hexagonal
monolayer configuration), spin–orbit coupling opens a bandgap
of 0.17 eV which is much larger than the thermal energy at room
temperature. Particularly some of these materials like stanene,
functionalized stanene, transistion metal dichalcogenides in the
distorted tetragonal phase30, ZrTe5 (refs 31,32), bismuthene33 and
several other proposed materials, are 2D topological insulators
(TIs)34,35. The TI nature guarantees the presence of edge states in
2D TI ribbons with excellent transport properties even at very
large levels of material imperfections such as vacancies, doping or
impurities. Proposals to make FETs by switching from 2D trivial
insulators to TIs have been made since their inception30,36,37

but unfortunately operating in this way requires unrealistically
large electric fields (for example, 30 MV cm� 1 in ref. 30).
Three-dimensional (3D) TIs also have surface states whose
presence is protected against imperfections. However, for
transistor applications 3D TIs have severe disadvantages: a 3D
TI will inevitably suffer from shunting paths through the bulk and
through surfaces other than the surface on which the device is
fabricated; the surface states of 3D TIs are effectively metallic
making it hard to significantly move the Fermi level; and while
the 3D TI surface states are also spin-polarized, making them
possible candidates for spin-based memory devices, conduction is
not ballistic in 3D surface states.

In this paper we study theoretically the electronic properties of
TI FETs38 whose operating principle is based on the promotion of
back-scattering. We analyse the device performance by
numerically solving the Boltzmann equation coupled with the
Poisson equation. We account for intra-edge scattering due to
phonons39 and lattice imperfections such as edge roughness
or defects. Using the Boltzmann equation ensures that
Pauli’s exclusion principle and the ballistic limit are respected.
Modulation of the gate bias modifies the scattering strength in the
device and we find that scattering with imperfections is beneficial
for the efficient operation of the TI FET. We compare the TI FET
with other devices in terms of elementary circuit performance
and show that it is competitive with high-performance
complementary metal-oxide-semiconductor (MOS) technology
in terms of speed and competitive with other proposed
energy-efficient devices in terms of energy consumption. We
conclude that the TI FET can provide a high-performance
low-power FET device without requiring defect-free materials.

Results
Edge states. Figure 1a shows the band structure of a 2D
TI as calculated using the Bernevig–Hughes–Zhang (BHZ)
Hamiltonian35 HBHZ(K). Solving the Schrödinger equation yields
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Figure 1 | Topological insulator band structure and wavefunctions in bulk and ribbon. (a) Bulk topological insulator band structure, (b) 15 nm topological

insulator ribbon band structure and (c) the magnitude of the four wavefunction components of the valence band edge states for k¼0.05 Å� 1 (solid) and

k¼0.2 Å� 1 (dashed). The states traversing the bulk bandgap in the ribbon band structure (indicated in red in b) are the topologically protected spin-

polarized edge states. The states for k¼0.05 Å� 1 lie in the bulk bandgap, are localized on the left and right edge and decay exponentially between both

edges. The states k¼0.2 Å� 1 (dashed line in c) do not decay exponentially and have a significant overlap.
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the energies Ej(k) and the ribbon wavefunctions fa
kjðyÞ, where k

denotes the momentum along the ribbon transport direction and
a is an index running over the four degrees of freedom of the
BHZ Hamiltonian. The BHZ parameters are chosen to obtain a
band structure similar to the one of functionalized monolayer tin
as determined from first principles28,40, as discussed in the
Methods section. Figure 1b shows the band structure of a TI
ribbon with a width w¼ 15 nm. The ribbon band structure
reveals the topologically protected edge states compared with the
bulk band structure in Fig. 1a. Each band is twofold degenerate
but for the edge states traversing the bandgap, the wavefunctions
are localized on opposite edges, as revealed in Fig. 1c. The edge
states have an almost linear dispersion in the bandgap with a high
Fermi velocity (5� 105 ms� 1).

Edge states with opposite momentum (k-� k) on the
same edge have opposite spin-polarization (m-k) because of
time-reversal symmetry. The opposite spin-polarization ensures
that phonon, edge roughness, defect and impurity intra-edge
back-scattering is prohibited: the intra-edge matrix elements
vanish. While for inelastic processes non-vanishing intra-edge
matrix elements are possible41, they are negligible for our
purpose. The matrix element with edge states on the opposite
edge does not vanish but for ‘wide’ ribbons, the matrix element
is small and back-scattering is strongly suppressed. These
arguments hold true for edge states with an energy in the bulk
bandgap whose wavefunctions exhibit exponential decay away
from the edge. On the contrary, wavefunctions associated with
edge states whose energy is not in the bandgap do not decay
exponentially and these states may have significant overlap as
illustrated in Fig. 1c.

Device structure and simulation. We show an illustration of a
TI FET and its working principle in Fig. 2. Specifically,
we simulate a TI FET with a gate length Lgate¼ 10 nm and a
ribbon width w¼ 15 nm. We solve the Boltzmann transport
equation self-consistently with the Poisson equation in a region of
length L¼ 30 nm and a channel and oxide thickness of 1 nm.
We account for scattering with phonons whose spectrum,
polarization vectors and deformation potentials are determined
from first principles42. We also account for scattering with
imperfections (having line-edge roughness (LER) in mind as a
specific example), with strength measured by a parameter U.
Additional details about the simulation method are given in the
Methods section.

In Fig. 3a, the resulting distribution function of the
conduction band is illustrated for a gate-source bias Vgs¼ 0.1 V,
a drain-source bias Vds¼ 0.1 V, and with significant scattering
with imperfections (U¼ 16 eV nm). Because of the applied
drain-source bias, the Boltzmann distribution is asymmetric with
respect to momentum and current flows through the device.
In Fig. 3b the distribution function for Vgs¼ 0.5 V is illustrated.

The distribution function and the associated charge density
increase in the gate region as a result of the electric field
induced by the gate and the resulting acceleration of the
carriers in the source (0–10 nm) and drain region (20–30 nm).
The position- and momentum-resolved net velocity
�vðx; kÞ ¼ vðkÞðf ðkÞ� f ð� kÞÞ shown in Supplementary Fig. 1,
reveals the asymmetry of the Boltzmann distribution for Vgs¼ 0.5
V (Fig. 3b) occurs predominantly at the location and momentum
at which the distribution function makes a transition from
occupied (1) to unoccupied (0).

Transfer characteristics. We repeat the self-consistent
calculation of the distribution function and the Poisson equation
for different gate bias Vgs¼ � 0.5y0.5 V while fixing the drain-
source bias to Vds¼ 0.1 V and compute the current. This yields
the transfer characteristic of the TI FET for different strengths of
the scattering with imperfections, as shown in Fig. 4. With a gate-
bias VgsE0 V, the current proceeds almost ballistically from
source to drain since the edge states have limited back-scattering
for all levels of imperfection scattering. With the application of a
large positive or negative gate bias, carriers under the gate occupy
states with an energy in the bulk conduction or valence band
where back-scattering is severe because of the much larger
overlap between wavefunctions. In the case of strong scattering
the current decreases dramatically and an Ion/Ioff ratio of more
than 2 orders of magnitude can be obtained.

Compared to conventional MOS FET transfer characteristics,
the obtained transfer characteristics are similar: a gate bias
in the range Vgs¼ � 0.5y0 V yields nMOS-like characteristics,
whereas a gate bias in the range Vgs¼ 0y0.5 V yields pMOS-like
characteristics. The absolute gate bias ranges (Vgs¼ � 0.5y0 V
and Vgs¼ 0y0.5 V respectively) at which the nMOS or pMOS
behaviour is exhibited, depend on the workfunction of the gate
metal. The workfunction assumed in our simulation positions the
gate Fermi level in the middle of the TI bandgap. However, as
illustrated in Fig. 4b, appropriately choosing two alternernative
gate metals with different workfunctions, an nTI FET and a pTI
FET with their minimal current (off-state) at Vgs¼ 0 V can be
obtained and complementary MOS (CMOS) logic circuits with
low stand-by power can be designed.

Several important differences between TI FETs and conven-
tional FETs exist in terms of behaviour with respect to
imperfections, impact of tunnelling and threshold voltage
variations. First, in Fig. 4, we observe that for the cases where
there are little imperfections, the off-current dramatically
increases while the impact on the on-current is much smaller.
In the absence of imperfections, the transistor action is almost
lost in our simulations as all electrons simply travel through the
device ballistically. The TI FET behaviour with respect to
imperfections is opposite to that in conventional FETs. Indeed,
in conventional FETs off-current is minimally affected by
scattering with imperfections whereas the on-current is severely
limited by high levels of imperfection. Second, in conventional
FETs tunnelling adversely affects the off-current. In TI FETs
tunnelling does not adversely affect the off-current since
scattering and not barriers are responsible for the reduced
current in the off-state. Third, in CMOS based on conventional
MOSFETs, operating at small voltages is problematic because of
device-to-device threshold voltage variations. These threshold
variations originate from the so-called Vt roll-off associated
with device length variations. In TI FETs, intrinsic process-
independent scattering processes—and not channel length or
doping—determine the threshold voltage. TI FETs will thus have
improved immunity from Vt roll-off and improved noise-margin
tolerances than in the ‘conventional’ CMOS technology and can
be operated at smaller voltages.

OffOn

Figure 2 | Schematic of a TI FET in the on-state and off-state. In the

on-state, current is carried by edge states and back-scattering is almost

negligible in wide ribbons. In the off-state the states are no longer localized

on the edge and scattering between states is dramatically increased. Only

the spin-up component is illustrated. For spin-down, forward and backward

transport will take place on the opposite edge.
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Apart from the imperfections and the phonons, alternative
mechanisms and stronger scattering processes are likely to be
active in these devices. The simulations performed with a larger U
(which we took to represent imperfections only in the preceding
paragraphs) may also mimic these stronger or other scattering
mechanisms. First, additional scattering processes, such as
electron–electron scattering will increase the scattering rate.
Second, even scattering with phonons may be significantly
stronger than modelled in our simulations. Indeed, in lower
dimensions (2D or 1D), phonons exhibit a parabolic rather than a
linear dispersion (symmetry breaking yields massive Goldstone
Bosons)43–45. In our case of ribbons, both the flexural (ZA) and
the transverse (TA) phonon exhibit a parabolic dispersion. In our
simulations we have not accounted for this potentially strong
scattering process for the following reasons: the deformation
potential for the flexural phonons (ZA) we obtained from first
principles is very small for the particular TI under study
(functionalized monolayer tin), and the transverse phonons
(TA) are modelled using their linear bulk dispersion. So, in
practice, even without scattering with imperfections, a large
Ion/Ioff ratio can be obtained.

Output characteristics. In Fig. 5a we show the drain current for a
gate bias Vgs¼ � 0.1 V, while varying the drain-source bias in the
range Vds¼ 0y0.5 V. At small drain-source bias (Vdso0.1 V),
the observed output characteristics are similar to those of the

MOS FET with an initial linear region governed by the
quasi-ballistic transport through the edge states. On the other
hand, for high drain bias, the output characteristics reveal a
negative differential resistance. This can be explained by the
observation that at large drain bias, the electrons can not travel
through the entire device ballistically and scattering becomes
inevitable. The region where the current can flow ballistically is
limited by the TI bandgap. Indeed, we verify this by simulating a
larger bandgap 2D TI for Vgs¼ 0 V and correspondingly see the
maximum current at Vds¼ 0.26 eV for the larger gap 2D TI
compared with the maximum current at Vds¼ 0.13 V for the
smaller gap 2D TI in Fig. 5.

Because of the negative differential resistance (NDR), the TI
FET does not provide enough drive current for voltages that
significantly exceed the peak voltage. Operating in a conventional
CMOS-like way would thus be limited to VddE0.2 V for the
smaller bandgap and VddE0.4 V for the larger bandgap 2D TI.
An alternative approach to enable operation at voltages beyond
the peak voltage for small bandgap TIs, would be to exploit the
NDR in a NDR-based logic configuration8.

To get an estimate of the capacitance, we compute the
total charge in the device Q¼

R
dxr(x) at Vgs¼ � 0.35 V and

Vgs¼ � 0.15 V with Vds¼ 0.2 V for the small bandgap TI. The
ratio between the charge variation DQ and the change of gate bias
DV yields a capacitance of about 10.5 aF, which is small compared
with conventional FET devices. The small capacitance is related
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Figure 3 | Boltzmann distributions. Boltzmann distribution for the first conduction band in a TI FET with Vgs¼0.1 V (a) and Vgs¼0.5 V (b), for Vds¼0.1 V.

The gate bias makes the charge density larger in the gate region (10–30 nm) compared with the source and drain regions. The strong asymmetry with

respect to momentum of the distribution in a indicates a much larger current flow compared with the distribution in b, which is almost symmetric.
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different strengths of the scattering with imperfections U¼0y16 eVnm. Scattering is strong for VgsE�0.4 V and VgsE0.4 V (off-state) and weak for

VgsE0 V (on-state). For a TI with many imperfections, scattering reduces the off-current by more than two orders of magnitude while the on-current

remains high. (b) Current for Vds¼0.2 V with U¼ 16 eVnm on a linear scale with adjusted workfunctions. The nTI FET workfunction is decreased by 0.3 V

while the pTI FET workfunction is increased by 0.43 V compared with the workfunction of the 2D TI. The current at Vgs¼0 V is Ioff,n¼ 23 nA for the nTI FET

and Ioff,p¼ 16 nA for the pTI FET.
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to the low density of states of the edge states. The linear electron
density in the edge states 1.93 eV� 1nm� 1 combined with a short
gate length make it so that only a few 10 s of electrons need to be
displaced to switch the device.

Benchmarking. Based on the methodology presented in
refs 46,47, where a 15 nm DRAM half-pitch was chosen, we make
a crude estimate of the figures of merit for logic applications.
We assume Vdd¼ 0.2 V and I¼ 4mA, for the smaller bandgap TI
FET, and Vdd¼ 0.3 V and I¼ 14mA, for the larger bandgap TI
FET. The capacitance is assumed C¼ 10.5 aF for both. We obtain
an intrinsic switching speed for the smaller gap 2D TI (and larger
gap 2D TI in parenthesis) tint¼CVdd/IE0.52 ps (0.22 ps) and an
intrinsic energy per switching Eint ¼ CV2

dd � 0:42 aJ (0.95 aJ).
Taking the interconnect capacitance Cic¼ 37.8 aF from ref. 46,
interconnect delay is tic¼ 0.7Cic�Vdd/IE1.32 ps (0.61 ps)
with an interconnect switching energy Eic ¼ Cic�V2

dd � 1:5 aJ
(3.4 aJ). These figures show that the TI FET with the larger
bandgap (TI FET 0.22 ps/0.95 aJ) is competitive with high-
performance (HP) CMOS in terms of intrinsic delay (HP CMOS:
0.25 ps/19.63 aJ) and the homojunction tunnel FET (HomjTFET)
in terms of power consumption (HomjTFET: 3.27 ps/0.98 aJ). The
use of even larger bandgap 2D TIs than the one we simulated,
such as the recently reported bismuthene with a 0.8 eV
bandgap33, would further improve the on-current and the
intrinsic switching speed. In Fig. 6, we compare the results for
the TI FET in a 32 bit arithmetic logic unit (ALU) based on the
methodology presented in ref. 47 with those of other devices such
as CMOS HP, CMOS LV, the BisFET, the interlayer tunnel FET
(ITFET), and the metal-insulator transistion FET (MITFET). The
results for the 32 bit ALU reveal a more significant trade-off
between energy and speed when going to the larger supply
voltage but confirm that the TI FET is competitive with other
high-performance and low-power exploratory devices.

In the methodology from refs 46,47, off-current is not
considered. Given the significant off-current that can be
observed in Fig. 4b (IoffE0.02 mA(0.09 mA)), the TI FET would
have a large static power consumption Pstatic¼VddIoff¼ 4 nW
(27 nW) in a conventional CMOS setting. Active power
consumption at a switching speed of 1/tint¼ 0.6 THz (1.1 THz)
and assuming an activity factor of 1 would lead to
Pactive¼Eic/tic¼ 0.8 mW (3.9 mW) where active power dominates
over static power by a factor by 200 (144). In a practical setting,
however, circuit switching speed can not be set at 1/tint. Switching

more slowly than 1 GHz or at lower activity factors, static power
consumption would inevitably come to dominate, compromising
energy efficiency. Static power consumption can be reduced to
some extent by changing the workfunction to reduce the
off-current significantly and the on-current less significantly.
Static power will also be reduced by increased scattering due to
more imperfections or other scattering processes. Nevertheless,
the off-current will always be large compared with low-standby
power CMOS and the main target TI FET logic applications
would thus be found in the realm of high-performance operation
where high activity factors can be maintained.

Discussion
We have modelled FETs using TI ribbons as active
channel material by solving the Boltzmann equation accounting
for ballistic transport and scattering while respecting Pauli’s
exclusion principle. The transfer characteristics (Ids�Vgs) show
that similar to CMOS, complementary TI FET logic is possible
with the same kind of TI ribbon if two different gate metals are
used. The off-current was shown to be more than two orders of
magnitude below the on-current. We have argued that a
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satisfactory on/off ratio can be maintained or improved in the
presence of high concentrations of material defects or pro-
nounced edge roughness. Comparing the TI FET performance to
other devices, we have shown that the TI FET is competitive with
high-performance CMOS in terms of speed and also competitive
with TFETs in terms of energy consumption. The key to the
exceptional performance of the TI FET is the small amount of
charge in the channel and the ballistic current, both related to
the topologically protected edge states. Our results motivate
further research towards 2D TIs with large bandgaps to enable
fabrication of room-temperature TI FETs for high-performance
low-power nanoelectronics.

Methods
Band structure. The band structure of the 2D TI under study is modelled after
the theoretical band structure of iodine functionalized monolayer tin28,38,39

(iodostannanane). We first compute the band structure from first principles
using the Vienna ab initio Simulation Package (VASP)40 using the Perdew–Burke–
Ernzerhof functional48. Without accounting for spin–orbit coupling, the
iodostannanane band structure is gapless with the valence and the conduction band
touching each other at G (Fig. 7a). Accounting for spin–orbit coupling opens up a
bandgap, the conduction band minimum lies at G while the top of the valence band
has the shape of an inverted mexican hat around G (Fig. 7b).

To facilitate the calculation of matrix elements for scattering and the band
structure of ribbons with different widths, we use the k � p-like BHZ Hamiltonian

H1=2 Kð Þ ¼
Eg0

2 � ‘ 2 K2

2m þ ‘ 2 K2

2m0
‘p
m0

ky � ikx
� �

‘p
m0

ky þ ikx
� �

� Eg0

2 þ ‘ 2K2

2m þ ‘ 2K2

2m0

" #
; ð1Þ

HBHZ ¼ H1=2 kx; ky
� �

� H1=2 kx ; � ky
� �

ð2Þ
rather than using the band structure obtained from first principles. We have
written the BHZ Hamiltonian in the spirit of the two-band k � p Hamiltonian with a
fundamental bandgap Eg0, an effective mass determining the curvature of both the
valence and the conduction band m, and an effective mass determining the
difference in curvature between the valence and the conduction band m0 . The
momentum matrix element p measures the interaction between conduction and
valence band and can be equivalently written in the form of an energy Ep¼ 2p2/m0.
For the BHZ to be a TI, the sign of Eg0m has to be positive. The parameters we use
are Eg0¼ 0.5 eV, Ep¼ 1.8 eV, m¼ 0.08m0 and m0 ¼ 0.12m0 yielding an indirect
bandgap of Eg¼ 0.33 eV.

It is well-known that first principles simulations using the Perdew–Burke–
Ernzerhof functional underestimates the bandgap, also in the case of TIs
(refs 29,30). As a simplified way to account for this, we also include simulations
with an increased fundamental bandgap Eg0¼ 1.0 eV yielding an indirect bandgap
of Eg¼ 0.5 eV.

The band structure of a TI ribbon is calculated by substituting ky-id/dy,
setting a ribbon width w and introducing a uniform mesh of ny points along y.
Solving the Schrödinger equation yields the energies Ej(k) and the ribbon
wavefunctions fa

kjðyÞ, where kx is now simply denoted as k and a is an index
running over the four degrees of freedom of the bulk Hamiltonian given in
equation (2).

Boltzmann equation. The essential physics of the TI FET consist of both ballistic
transport in the on-state and strong scattering with phonons and imperfections in
the off-state. We choose to model the TI FET using the Boltzmann equation over
alternative approaches to study electron transport. Ballistic quantum transport
approaches49,50 are inappropriate since they do not account for scattering. The
drift-diffusion-like approach we used previously38 is incompatible with the ballistic
limit. A non-equilibrium Green’s function approach accounting for scattering is

computationally very expensive and state-of-the-art approaches are limited to a
localized basis set for the band structure and the scattering interaction51. Within
the non-equilibrium Green’s function approach, respecting Pauli’s exclusion
principle in the presence of inelastic scattering is a daunting task52 (In private
communcation with the authors of ref. 51 confirmed that Pauli’s exclusion
principle can be violated using their approach.). The Pauli master equation53 is
only applicable in the weak-scattering regime.

The Boltzmann equation we solve is

dEjðkÞ
d‘k

@fjðx; kÞ
@x

þ dVðxÞ
‘dx

@fjðx; kÞ
@k

þ
X

j0

Z
dk0 1� fjðx; kÞ

� �
Sjj0 ðk; k0Þfj0 ðx; k0Þ

�
� 1� fj0 ðx; k0Þ
� �

Sj0 jðk0; kÞfjðx; kÞ
�
¼ 0

ð3Þ

where fj(x,k) is the Boltzmann distribution function, x the real-space and k the
reciprocal coordinate in a range [0,L] and [� kmax,kmax], respectively. The
simulated region has a length L and kmax is the largest k-value under consideration.
The index j denotes the subband of the distribution function. The rate for an
electron to make a transition from an initial state j0k0 to a final state jk is measured
by Sjj0(k, k0).

The potential V(x) in equation (3) is obtained from the solution of the Poisson
equation

r2VpðrÞ ¼
rpðrÞ
E

: ð4Þ

The subindex p is introduced to distinguish between the Poisson and the
Boltzmann equation grids. Rather than accounting for the atomistic dielectric
response54, for simplicity we have chosen a uniform dielectric constant E in our
simulations. Taking the simplified uniform dielectric approach presents a minor
approximation since the charge density (and the right hand side of equation (4)) is
generally small in our simulations.

Whereas the Boltzmann equation is solved only along the transport direction,
the Poisson equation is solved in two dimensions (x, z) where x is the transport
direction, the same direction the Boltzmann equation is solved in, and z is the
direction perpendicular to the channel. The nanoribbon channel is taken to have a
thickness t and extends from zA]� t/2,t/2[. A double-gate configuration is
simulated with a gate dielectric in the regions |z|A[t/2,t/2þ tox[, and the boundary
condition Vp(x, z)¼Vg for the two gate electrodes is applied at |z|¼ t/2þ tox and
|x� L/2|oLgate/2.

The Boltzmann and the Poisson equations are coupled and the potential of the
former is taken to be related to the potential of the latter through V(x)¼Vp(x, 0).
The charge is obtained from the Boltzmann distribution through

rðxÞ ¼ e
X
j2v

Z
dk
2p

1� fjðx; kÞ
� �

� e
X
j2c

Z
dk
2p

fjðx; kÞ ð5Þ

where e is the elementary charge and v and c are the set of all the valence and
conduction band indices, respectively. In TI ribbons, the valence (conduction)
bands are all bulk-like valence (conduction) bands together with the band formed
by the TI edge states with the lower (higher) energy. The charge in equation (5) is
converted into the 3D charge density required by the Poisson equation by setting
rp(x, z)¼r(x)/(wt) for |z|ot/2 and we assume there is no fixed charge in the gate
dielectric so rp(x,z)¼ 0 otherwise.

We discretize the Boltzmann distribution function fi(x, k) on a uniform nx� nk

real-space and reciprocal-space grid. The reciprocal-space differential operator
d/dk is discretized using a central difference scheme df(x,k)/dk¼ [f(x, kþDk)
� f(x, k�Dk)]/(2Dk) and periodic boundary conditions are applied at � kmax and
kmax. The real-space differential operator d/dx is discretized using a finite
element scheme with nxþ 1 nodes and nx elements so that df(x, k)/dx|x¼ xþDx/2

¼ [f(xþDx, k)� f(x, k)]/Dx and f(x, k)|x¼ xþDx/2¼ [f(xþDx, k)þ f(x, k)]/2.
At the outer nodes, boundary conditions are introduced such that the injected
Boltzmann distribution function is in thermal equilibrium.

Because of the Pauli exclusion principle, equation (3) is a non-linear equation
and we apply Newton’s method to solve it iteratively. Denoting the left hand
side of equation (3) with F(f), the Boltzmann equation is solved when ||F(f)||¼ 0.
Fortunately, equation (3) admits an exact calculation of the Jacobian
J ¼ dFðf Þ=df . Representing the differential operators with matrices, J is a sparse
matrix and the update to the distribution function Df ¼ J � 1F can be computed
efficiently through sparse LU factorization55.

The current can be computed as

JðxÞ ¼ e
X

j

Z
dk
2p

dEjðkÞ
‘dk

fjðx; kÞ ð6Þ

and on convergence, the current is continuous throughout the device. To
further analyse the current distribution, we can define a position-, band- and
momentum-dependent net velocity

�vjðx; kÞ ¼
X

j

dEjðkÞ
‘dk

fjðx; kÞ� fjðx; � kÞ
� �

ð7Þ
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Figure 7 | Bulk topological insulator band structure calculated from first

principles. . Band structure without spin–orbit coupling (a) and with spin–

orbit coupling (b).
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so that JðxÞ ¼ e
P

j

R kmax

0 dk=ð2pÞ�vjðx; kÞ. In Supplementary Fig. 1, we show the
position- and momentum-dependent net velocity for the simulation of Vgs¼ 0.5 V
and Vds¼ 0.1 V for which the Boltzmann distribution is shown in Fig. 3b of the
results section.

Scattering. To account for the electron–phonon interaction, we include scattering
with phonons through a deformation potential approximation

Sem;abs
jj0 ðk; k0Þ ¼ DK2

2r1Do
1
2
� 1

2
þNð‘oÞ

� 	
Mjj0 ðk; k0Þ


 

2d EjðkÞ� Ej0 ðk0Þ

� �
ð8Þ

where o is the phonon angular frequency, r1D is the charge per unit length, N(‘o)
the Bose–Einstein distribution function and

Mjj0 ðk; k0Þ ¼
X
a

Z
dyfa�

k ðyÞfa
k0 ðyÞ ð9Þ

is the overlap between the wavefunctions. Equation (8) assumes the bulk
phonons of the 2D TI can be used. However, as discussed in the ‘Results’ section,
quantization of phonons will increase the scattering rates56. The deformation
potentials DK are calculated from first principles40 as explained in refs 26,42. For
elastic scattering with longitudinal and transverse acoustic phonons and intraband
back-scattering (so that k0 ¼ � k), DK¼Dq and equation (8) simplifies to

Sem;abs
jj0 ðk; k0Þ ¼ D2 kT

‘ 2r1Dv2
s

Mðk; k0Þj j2

dE=dkj j dðkþ k0Þ: ð10Þ

To include scattering with imperfections, we assume the imperfection scattering
Hamiltonian can be described by a delta-like potential perturbation

Himp ¼ Adðx� x0Þdðy� y0Þdaa0 ð11Þ

where A relates to the strength of the perturbation and will depend on the kind of
imperfection. The magnitude of the matrix element with such a delta-like potential
is

j0k0 Himp


 

jk� �

 

 ¼ Afa0

jk ðy0Þfa0
j0k0 ðy0Þ=l




 


 ð12Þ

(to give equation (12) units of energy, we introduced a length l-N to
normalize the plane-waves along the x-direction, that is, cðx; yÞ ¼ eikx=

ffiffi
l
p

fðyÞÞ.
The scattering rate associated with one imperfection is

1
timp
¼ 2pA2

‘ l2
fa0

jk ðy0Þfa0
j0k0 ðy0Þ




 


2d Ejk � Ej0k0
� �

: ð13Þ

Assuming a set of delta-like potentials is randomly placed throughout the TI
ribbon with an areal density Nimp, the number of scatterers is Nimpwl. Now
inspecting equation (3) and relying on the fact that in limit l-N, 2p/l

P
k-
R

dk,
the imperfection scattering rate for the Boltzmann equation (equation 3) is

Simp
jj0 ðk; k0Þ ¼

U2 Mimp
jj0 ðk; k0Þ




 


2
‘ dEj=dk


 

 dðkþ k0Þdjj0 ð14Þ

for intraband back-scattering (k-� k, as reflected by d(kþ k0)) where

Mimp
jj0 ðk; k0Þ




 


2¼X
a

Z w

0
dy fa

jkðyÞfa
j0k0 ðyÞ




 


2 ð15Þ

and U ¼
ffiffiffiffiffiffiffiffiffiffi
Nimp

p
A. The strength of the scattering with imperfection thus depends

on their density and the kind of imperfection.
To speculate on the possible magnitude of the imperfection strength, we

calculating the matrix element for the case of a dangling bond using first principles
and obtain a value of A¼ |hj0k0|U0�Udangling| jki|WL¼ 14 eV nm2. As an upper
limit, at large concentrations of NimpE0.5 nm� 2 (one imperfection in one in every
10 unit cells), U would then reach values on the order of 10 eV nm. This motivates
our choice of U¼ 0.25 eV nm-16 eV nm in the main text. Also, as mentioned in
the main text, other scattering processes such as edge roughness and electron–
electron scattering could also lead to large scattering rates in these materials and
could also be mimicked by a certain value of U.

Unlike most scattering processes, equation (14) has no q-dependence apart
from the overlap of the wavefunctions. For example, LER has a q-dependence of
the form MLERpU/(1þ 0.5q2L2)3/2 (for exponential correlation) with U¼DVD,
where DV is the depth/height of the scattering potential and D the step height of
the roughness, and L is the LER correlation length. However, LER has minimal
q-independence when qL is much o1. With an electron energy E¼‘ vF, assuming
a typical value L¼ 1 nm and a Fermi velocity, vF¼ 5� 105 m s� 1, this implies
that up to electron kinetic energies of about 0.2 eV (kL¼ 1 at 0.328 eV), our
q-independent imperfection scattering matrix process would be identical to the
LER-scattering process. Taking a DVE1Ry¼ 13.6 eV and a anti-correlated
roughness with step height D¼ 0.2 eV would yield a U¼ 5.4 eV nm which is also
on the order of 10 eV.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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