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The elusive abnormal CO2 insertion enabled by
metal-ligand cooperative photochemical selectivity
inversion
Felix Schneck1, Jennifer Ahrens2, Markus Finger1, A. Claudia Stückl1, Christian Würtele1, Dirk Schwarzer 2 &

Sven Schneider 1

Direct hydrogenation of CO2 to CO, the reverse water–gas shift reaction, is an attractive

route to CO2 utilization. However, the use of molecular catalysts is impeded by the general

reactivity of metal hydrides with CO2. Insertion into M–H bonds results in formates (MO(O)

CH), whereas the abnormal insertion to the hydroxycarbonyl isomer (MC(O)OH), which is

the key intermediate for CO-selective catalysis, has never been directly observed. We here

report that the selectivity of CO2 insertion into a Ni–H bond can be inverted from normal to

abnormal insertion upon switching from thermal to photochemical conditions. Mechanistic

examination for abnormal insertion indicates photochemical N–H reductive elimination as the

pivotal step that leads to an umpolung of the hydride ligand. This study conceptually intro-

duces metal-ligand cooperation for selectivity control in photochemical transformations.
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Selectivity control is a key issue for CO2 functionalization to
added value products. The products from CO2 reduction
can range from oxalic acid (1-electron) to carbon monoxide

or formic acid (2-electron), formaldehyde (4-electron), and
methanol (6-electron) all the way to hydrocarbons1. The primary
industrial C1 building block CO is a particularly attractive target.
In nature, CO2 reduction to CO is catalyzed by the enzyme [NiFe]
carbon monoxide dehydrogenase ([NiFe]-CODH), which con-
tains a nickel capped [Fe4S4Ni]-cluster as active site1. The pro-
posed mechanism comprises CO2 binding to nickel followed by
formation of a hydroxycarbonyl bridged {Ni(CO2H)Fe} inter-
mediate as selectivity deriving step upon electron and proton
transfer. Alternatively, CO2 insertion into a Ni–H bond has also
been discussed2. In analogy, metallocarboxylate (MCO2H/M)
species are also proposed as the key intermediates for synthetic
CO-selective molecular catalysis, yet rarely detected3–8. Such
systems are generally electro- or photochemically driven1,9–12 as
direct hydrogenation by reverse water–gas shift (RWGS) is
endothermic (see equation 1).

CO2 þH2 ! COþH2O ðΔrH
0 ¼ þ42:2 kJ �mol�1Þ ð1Þ

Photo-driven direct RWGS would be a highly desirable alter-
native to (photo)electrocatalysis. But this route also faces a major
kinetic challenge, which disfavors CO formation: CO2 hydro-
genation via molecular hydride catalysts generally leads to formic
acid (or methanol) instead of CO13–16. This selectivity is a con-
sequence of the normal CO2 insertion into M–H bonds giving
formates (MO2CH)17. In contrast, the alternative formation of
the hydroxycarbonyl (MCO2H) isomer has never been directly
observed and is therefore referred to as abnormal CO2

insertion13.
Nickel pincer complexes were recently studied both as [NiFe]-

CODH models and in catalytic CO2 hydrogenation to formate18–21.
Inspired by the biological and synthetic precedence, we here
report the photo-driven inversion of the CO2 insertion selectivity
into a Ni–H bond representing an example of abnormal CO2

insertion. The selectivity is defined by photoinduced trans N–H
reductive elimination as an application of metal-ligand coopera-
tivity in photocatalysis.

Results
Thermal vs. photochemical CO2 insertion. Nickel(II) hydride
complex [NiH(PNP)] (1, PNP=N(CHCHPtBu2)2) can be pre-
pared from the previously reported bromide [NiBr(PNP)] with
LiAlH4

22. As expected, the reaction of 1 with CO2 (1–10 bar) at
room temperature (r.t.) gives formate complex [Ni(O2CH)(PNP)]
(2, Fig. 1) as the product of normal insertion. However, the
reaction is sluggish and takes several days for completion even at
p(CO2)= 10 bar. In contrast to this thermal reactivity, bulk
photolysis of 1 (λexc > 305 nm, Supplementary Fig. 15) in benzene
or THF under CO2 (1 bar) at r.t. results in full conversion of 1
within a few hours (Fig. 1). A quantum yield around ΦP= 5%
was estimated actinometrically using a ferrioxalate assay (Sup-
plementary Fig. 37). Importantly, the abnormal insertion product
[NiII(CO2H)(PNP)] (3) is formed as the main product in ~ 70%
spectroscopic and isolated yield with no indication for formate 2.
In the solid state, the bond metrics of the {NiCO2H} entity
(Fig. 2) resemble the other previously reported nickel hydro-
xycarbonyl complex, which was not obtained directly from
CO2

18. Besides 3, small amounts (ca. 20%) of the hydrocarbonate
complex [Ni(OCO2H)(PNP)] (4, Fig. 2) and trace quantities of
nickel(I) complex [Ni(CO)(PNP)] (5, Fig. 2) are observed by
nuclear magnetic resonance (NMR) and electron paramagnetic
resonance (EPR) spectroscopy (Supplementary Figs. 28, 29),
respectively, as the only side products. Kinetic monitoring of the

photolysis (Fig. 3a) indicates slow underlying conversion of 3 to 4
by CO extrusion and CO2 insertion as the source of hydro-
carbonate and carbonyl side products. Accordingly, photolysis of
isolated 3 under argon gives the hydroxy complex [Ni(OH)
(PNP)] (6, Fig. 2) in high yield within competitive timescales and
6 selectively inserts CO2 to hydrocarbonate 4 (Fig. 4a, Supple-
mentary Fig. 16).

Mechanistic examinations. In agreement with the experimental
findings, thermal normal insertion was computed to be slow and
strongly favored over endergonic abnormal insertion both ther-
modynamically and kinetically (Fig. 1). Mechanistic examinations
were conducted to rationalize this photochemical selectivity
inversion. Photolysis of the [NiD(PNP)] isotopologue under CO2

results in almost quantitative transfer of the deuterium label to
the hydroxy proton of 3, thus confirming the hydride ligand as
the primary hydrogen source (Supplementary Fig. 25). The
reaction rate exhibits first-order dependence in 1 and photon flux,
respectively, but is independent from CO2 pressure between 1 and
10 bar (Supplementary Figs. 20–25). Therefore, the photo-
chemistry of 1 in the absence of CO2 was first studied. Hydride
H/D exchange with TEMPO-D (2,2,6,6-tetra-
methylpiperidinyldeuteroxide; 10 equiv.) is observed only under
photolytic conditions (Supplementary Fig. 19). In contrast, H/D
scrambling with tBuOD is obtained neither in the dark nor upon
photolysis, suggesting homolytic rather than heterolytic Ni–H
photoactivation. Accordingly, photolysis of 1 in benzene or THF
under argon (Fig. 4b) gives [Ni(PNP)] (7) as the only detectable
product by NMR and EPR spectroscopy upon comparison with
an analytically pure sample prepared by reduction of [NiBr
(PNP)] with Mg (Supplementary Figs. 17 and 30). Liberation of
H2 was confirmed by gas chromatography headspace analysis
(Supplementary Fig. 18). The rhombic g-tensor (gx= 2.29, gy=
2.25, gz= 2.01) and 14N superhyperfine interaction (Az= 34
MHz) of 7 are in agreement with nickel(I) and some spin delo-
calization onto the pincer ligand, which is confirmed by density
functional theory (DFT) computations (ρNi= 91%; Supplemen-
tary Fig. 42). In analogy to other nickel(I) complexes with similar
spectroscopic features20,23,24,25, the molecular structure of 7
(Fig. 2) reveals T-shaped nickel coordination.

The observation of the photoreduction products 7 and 5 raises
the question about the role of nickel(I) for abnormal insertion, e.
g, via a radical chain mechanism. 7 reacts with equimolar
amounts of CO2 in the dark and under photochemical conditions
to one diamagnetic compound (Fig. 4b). NMR spectroscopic
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characterization of the 13CO2 isotopologue is in agreement with
the formation of a dinuclear CO2-bridged (δ(13C)= 237 ppm)
NiII/NiII complex, in analogy with a related nickel(I) pincer
complex20. In the current case, the product [(PNP)NiII(1κC,2κ2O,
O′-CO2)NiII(κ2P,N-PNP)] (8) bears one tridentate (δ(31P)= 67.8
ppm) and one bidentate pincer ligand (δ(31P)= 72.2 and 4.8
ppm), respectively, presumably as a consequence of increased
steric pressure. At 1 bar CO2, 8 subsequently eliminates CO and
inserts CO2 (Fig. 4b) to the dinuclear carbonate bridged complex
[(PNP)NiII(OC(O)O)NiII(PNP)] (9, Fig. 2). In the presence of 1
(without irradiation) this reactivity of 7 with CO2 remains
unchanged. Importantly, 1 is not consumed under these
conditions disfavoring a radical chain mechanism for abnormal
insertion with photochemically produced 7 as chain propagator.
Photolysis of mixtures of 1 and 7 ([7]0= 0–1.3 [1]0) under CO2

(1 bar) gives rising amounts of binuclear (9) vs. mononuclear (3)
products with increasing [7]0 (Fig. 3b). In fact, the consumption
of 1 even slows with increasing [7]0. This rate retardation and the
diverging selectivities strongly suggest that nickel(I) complex 7 is
not an intermediate in abnormal CO2 insertion.

Time-resolved spectroscopy. Transient spectroscopy was
employed to further rationalize the photochemistry of 1. Pump-
probe IR-spectroscopy (λexc= 400 nm, THF) reveals an instan-
taneous bleach of the Ni–H stretching vibration at 1845 cm–1 and
simultaneous shift of vibrational modes of the vinylic PNP ligand
backbone ~1500–1520 cm–1 (Fig. 3c–e). The absence of other
transient signals within the experimental window (1260–1900
cm–1) for both Ni–H/D isotopomers is consistent with the

population of a dissociative state or at least strong weakening of
the metal-hydride bond upon excitation (Supplementary Figs. 32,
33, 35). Ground state repopulation can be modeled with a biex-
ponential fit. The immediately formed excited state shows a
lifetime of τ1= 1.3 ps. The timescale of the subsequent spectral
evolution (τ2= 12 ps) is consistent with vibrational cooling in the
electronic ground state of 1. Although full relaxation is observed
for the IR spectrum, transient UV/Vis spectroscopy (Fig. 3f–h,
Supplementary Fig. 34; λexc= 400 nm, THF) reveals the evolution
of a band at around 450 nm within the same timescale (τ2 ≈ 13 ps)
that is persistent on the timescale of the pump-probe experiment
(τ3≫ 1 ns) and does not originate from nickel(I) complex 7
(Supplementary Fig. 31). The absence of IR-bands assignable to
this product is attributed to low quantum yields (<5%). Notably, a
weak feature at 450 nm is also observed in the stationary UV/Vis
spectrum after bulk photolysis of 1 (Supplementary Fig. 31).
Importantly, the rapid rate of all photoprocesses well below the
timescale of diffusion exclude bimolecular reactivity of an excited
state of 1 with CO2, which is in line with the rate independence of
abnormal insertion from p(CO2). Instead, 1 apparently forms a
photoproduct with low quantum yield that presumably is a
common intermediate for photoreduction to 7 or, alternatively,
abnormal insertion in the presence of CO2.

Trapping experiments. The timescales of the photoprocesses
and the retention of the Ni–D label upon reaction with CO2

support an intramolecular rearrangement to the photoproduct,
yet not to nickel(I) as suggested by the kinetics. Further
information about the photointermediate was obtained from
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variation of the reaction conditions. Irradiation of 1 in the
presence of only one equivalent of CO2 gave a new product in
~20% isolated yield (Fig. 4c). Spectroscopic and crystal-
lographic characterization reveal the formation of the unusual,
dinuclear complex [(PNP)NiII(1κC,2κ2O,O’-CO2)NiII(κ2P,C-
tBu2PCHCHNHCHCH2PtBu2)] (10, Fig. 2). This product is
also obtained upon photolysis of solutions of 1 and 3 under
argon suggesting trapping of the photointermediate by 3 at low
CO2 concentrations. The formation of 10 can be rationalized by
O–H oxidative addition of 3 to a nickel(0) photoproduct and
subsequent olefin migrative insertion. Initial photoinduced
N–H reductive elimination to nickel(0) is further supported by
a trapping experiment with CO. Photolysis under CO gives the
nickel(0) complex [(CO)3Ni{κP-HN(CHCHPtBu2)2}] (11,
Fig. 2) almost selectively (Fig. 4c). Thermal reductive elimina-
tion under CO is also observed26, yet on considerably slower
timescales compared with the photolytic conditions. Reductive
elimination photoreactivity is frequently observed for metal
hydrides27. Surprisingly, the almost fully released pincer ligand
of 11 favors the divinylamine over imine tautomer, in line with
the selective transfer of the Ni–D deuteride label to the hydroxy
group of 3. In contrast, cooperative participation of the vinylic
backbone, should lead to C–H/D scrambling, which is not
observed22.

Computational examinations. This mechanistic picture was
further probed by DFT computations (Fig. 5). The trans-NH
reductive elimination product [Ni0(HPNP)] (A) was found at ΔG
= 33.2 kcal mol–1 relative to parent 1 and close to a THF solvent
adduct, [(THF)Ni0(HPNP)] (A’, ΔG= 35.9 kcal mol–1). In con-
trast to the NiII and NiI complexes 1 and 7, respectively, TD-DFT
predicts several electronic transitions with high oscillator strength
in the range 400–450 nm both for A and A’ (Supplementary
Fig. 40), as was found by transient UV/Vis spectroscopy (Fig. 3f).
Anagostic hydrogen bonding of the amine proton indicates high
basicity of the metal ion. For the unproductive oxidative addition
back to parent 1, which fully proceeds on the singlet potential
energy surface, a sizable barrier (TSA/1: ΔG‡= 13.8 kcal mol–1,
Supplementary Fig. 45) was found that is in agreement with a
persistent photoproduct on the (ps) timescale of the transient
spectroscopy experiments. Carbon dioxide binding stabilizes A by
7.0 kcal mol–1 giving side-on CO2 complex [Ni0(CO2)(HPNP)]
(B). Alternatively, explicit solvent modeling produced inter-
mediate [Ni0(CO2)(THF-HPNP)] (C) within 2.6 kcal mol–1.
Anagostic N–H bonding (B) is in C replaced by a hydrogen
bridge to THF. Such a structure could not be found for A,
indicating reduced metal basicity upon binding of the π-acceptor
CO2. Furthermore, nitrogen is directly bound to the metal in C
more closely resembling the {Ni(PNP)} fragment of final product 3.
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This observation suggests structural flexibility of the pincer at low
energetic cost. Proton coupled electron transfer to the CO2 ligand
would then complete the reaction sequence. Several intra- and
intermolecular routes are conceivable and were found computa-
tionally with kinetically competitive barriers below unproductive
N–H oxidative addition (TSA/1). However, such values should be
treated with caution without experimental benchmarking owing
to the known difficulties for DFT to reliably describe proton
transfer reactions with considerable charge buildup and possible
direct solute–solvent interactions28. We therefore prefer to cor-
relate intermediates B/C with the free energy for deprotonation of
3 in THF, which is experimentally accessible upon reaction with a
reference base (Supplementary Figs. 26, 27), defining an energetic
upper limit for N-to-O proton transfer. Assuming that the proton
mobility is sufficient within a [H(THF)xNi(CO2)(PNP)] (D) ion
pair the pKip of 3 (20.6) is used, placing D at 35.4 kcal mol–1 well
below TSA/1, which further supports the proposed mechanism.

In summary, a mechanism that evolved from kinetic, spectro-
scopic, labeling, and chemical trapping experiments supported by
DFT calculations explains the photochemical selectivity inversion.
Photochemical excitation populates a dissociative state leading to
rate-determining conversion to a photoproduct with an overall
quantum yield ~5%. Trapping with CO, 3 and 1, respectively, the
exclusion of nickel(I) as relevant intermediate, the retention of
the Ni–D label, the photochemical timescales and the computed
UV/Vis spectroscopic signatures all support the nickel(0) assign-
ment for the immediate photoproduct as a result of intramole-
cular N–H reductive elimination. Hydroxycarbonyl formation
presumably follows CO2 coordination to nickel(0) and proton
coupled electron transfer. Hydrogen atom transfer of the
photointermediate with 7 can explain the abnormal insertion
rate retardation in the presence of added nickel(I) (Fig. 6).

This model implies the notion that the inversion of the CO2

insertion selectivity from normal to abnormal relies on the
photochemical umpolung reaction of the hydride ligand to an
N–H proton. As a consequence of this electron transfer, the
reduced metal center becomes the most basic site and is subject to
electrophilic attack by the substrate CO2. This mechanistic
picture therefore in several ways expresses an application of
metal-ligand cooperation (MLC), which is currently extensively
exploited as a strategy for catalyst design29. On one hand,
photochemical transfer of the two reducing equivalents stored
within the Ni–H bond to the metal presumably drives the overall
endergonic abnormal CO2 insertion. On the other hand, the
pincer ligand acts as a proton relay and intramolecular proton
coupled electron transfer from the amine likely facilitates the CO2

two-electron reduction to the hydroxycarbonyl isomer. Hence,
MLC might similarly emerge as a valuable conception for
photocatalysis.

Methods
Synthesis and characterization. [NiH{N(CHCHPtBu2)2}] (1). [NiBr{N
(CHCHPtBu2)2}] (208 mg, 0.420 mmol, 1.00 eq) and LiAlH4 (16 mg, 0.422 mmol,
1.00 eq) are dissolved in 6 mL of THF. After stirring at room temperature for 30
mins, the solvent of the orange solution is removed in vacuo. The orange residue is
extracted with pentanes and the resulting solution is filtered over Celite to yield a
yellow solution. The solvent is removed in vacuo and the yellow solid is washed
with 7 × 2mL MeOH at 0 °C. The residue is dissolved in 10 mL of pentanes and
filtered. After removal of the solvent in vacuo, the yellow solid is dissolved in a
minimal amount of pentanes and recrystallized at −36 °C. The supernatant solu-
tion is decanted, and again recrystallized at −36 °C. The yellow crystalline material
is dried in vacuo to yield 106 mg (0.255 mmol, 61%) of 1. Crystals suitable for X-
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ray diffraction are obtained by crystallization from pentanes at −36 °C. 31P{1H}
NMR (121MHz, C6D6) δ: 86.2 ppm. 1H NMR (300MHz, C6D6) δ: 7.20
(ABXX’B’A’, N=│3JA-X+ 4JA-X’│= 18.3 Hz, 3JA-B= 5.0 Hz, 4JH-H= 1.9 Hz, Hz, 2
H, NCH), 4.09 (ABXX’B’A’, N=│2JA-X+ 4JA-X’│= 1.8 Hz, 3JA-B= 5.1 Hz, 4JH-H

= 1.8 Hz, 2 H, PCH), (A18XX’A’18, N=│3JA-X+ 5JA-X│= 6.7 Hz, 36 H, PtBu),
−18.52 (tp, 2JP-H= 59.4 Hz, 4JH-H= 2.0 Hz, 1 H, NiH) ppm. 13C{1H} NMR (75
MHz, C6D6) δ: 160.8 (AXX’A’, N=│2JA-X+ 3JA-X’ │= 11.8 Hz, NCH), 83.0
(AXX’A’, N=│1JA-X+ 3JA-X’│= 15.8 Hz, PCH), 33.8 (A2XX’A’2, N=│1JA-X+
3JA-X’ │= 11.1 Hz, PCMe3), 29.8 (A6XX’A’6, N=│2JA-X+ 4JA-X’ │= 2.9 Hz,
PCMe3) ppm. IR (KBr): ṽ= 1834.3 cm−1. Anal. Calcd. For C40H41NNiP2 (416.20):
C, 57.72; H, 9.93; N, 3.37. Found: C, 57.48 H, 9.80; N, 3.41. MS (LIFDI): m/z (%)
415.1 (100).

[NiD{N(CHCHPtBu2)2}] (1-D). [NiBr{N(CHCHPtBu2)2}] (150 mg, 0.303
mmol, 1.00 eq) and LiAlD4 (13 mg, 0.310 mmol, 1.02 eq) are dissolved in 6 mL of
THF. After stirring at room temperature for 30 mins, the solvent of the orange
solution is removed in vacuo. The orange residue is extracted with pentanes and
the resulting solution is filtered over Celite to yield a yellow solution. The solvent is
removed in vacuo and the yellow solid is washed with 7 × 2 mL MeOH at 0 °C. The
residue is dissolved in 10 mL of pentanes and filtered. After removal of the solvent
in vacuo, the yellow solid is dissolved in a minimal amount of pentanes and
recrystallized at −36 °C. The supernatant solution is decanted, and again
recrystallized at −36 °C. The yellow crystalline material is dried in vacuo to yield
69 mg (0.165 mmol, 55%) of 1-D. 2H NMR (46MHz, C6H6) δ: −17.50 (t, 2JH-P=
9.0 Hz, NiD) ppm. IR (THF-d8): ṽ= 1318, 1333 cm−1.

[Ni(OCHO){N(CHCHPtBu2)2}] (2). Complex 1 (2.0 mg, 4.8 µmol, 1.00 eq) is
dissolved in 0.3 mL of THF-d8 and filled into a medium wall precision pressure/
vacuum valve NMR tube. The sample is degassed by three freeze–pump–thaw
cycles. A total of 10 atm CO2 pressure (≥99.5% purity, no further purification) is
applied. After 14 days, nearly complete conversion of 1 to 2 is detected. 31P{1H}
NMR (203MHz, THF-d8) δ: 56.1 ppm. 1H NMR (500MHz, THF-d8) δ: 7.25 (t,
4JH-P= 3.4 Hz, 1 H, OCOH), 6.49 (ABXX’B’A’, N=│3JA-X+ 4JA-X’│= 19.1 Hz,
3JA-B= 5.5 Hz, 2 H, NCH), 4.09 (ABXX’B’A’, N=│2JA-X+ 4JA-X’│= 2.0 Hz, 3JA-B
= 5.5 Hz, 2 H, PCH), 1.51 (A18XX’A’18, N=│3JA-X+ 5JA-X’│= 6.8 Hz, 36 H,
PtBu) ppm. 13C{1H} NMR (126MHz, THF-d8) δ: 168.3 (t, 3JC-P= 1.1 Hz, OCOH),
162.9 (AXX’A’, N=│2JA-X+ 3JA-X’ │= 11.0 Hz, NCH), 83.0 (dd, 1JC-P= 19.6 Hz,
3JC-P= 18.7 Hz, PCH), 35.8 (A2XX’A’2, N=│1JA-X+ 3JA-X’ │= 8.5 Hz, PCMe3),
29.0 (A6XX’A’6, N=│2JA-X+ 4JA-X’ │= 2.8 Hz, PCMe3) ppm.

[Ni(CO2H){N(CHCHPtBu2)2}] (3). A solution of 1 (20 mg, 0.048 mmol, 1.00
eq) in benzene (6 mL) is degassed by three pump–freeze–thaw cycles and set under
1 atm of CO2 (≥99.5% purity, no further purification). The reaction mixture is
photolyzed (λexc > 305 nm) for 8 hours, followed by washing with 5 × 2mL of
benzene and 5 × 2 mL of pentanes. The product is dissolved in THF and dried in
vacuo to yield 3 (15 mg, 0.035 mmol, 73%) as a yellow solid. Crystals suitable for X-
ray diffraction are obtained by diffusion of pentanes into a solution of 3 in THF.
31P{1H} NMR (162MHz, THF-d8) δ: 66.2 ppm. 1H NMR (400MHz, THF-d8) δ:
9.51 (br, 1 H, CO2H), 6.49 (ABXX’B’A’, N=│3JA-X+ 4JA-X’│= 18.4 Hz, 3JA-B=
5.3 Hz, 2 H, NCH), 4.02 (ABXX’B’A’, N=│2JA-X+ 4JA-X’│= 2.0 Hz, 3JA-B= 5.2

Hz, 2 H, PCH), 1.37 (A18XX’A’18, N=│3JA-X+ 5JA-X’│= 6.7 Hz, 36 H, PtBu) ppm.
13C{1H} NMR (126MHz, THF-d8) δ: 203.6 (t, 2JC-P= 31.1 Hz, CO2H), 161.1
(AXX’A’, N=│2JA-X+ 3JA-X’ │= 10.7 Hz, NCH), 82.4 (AXX’A’, N=│1JA-X+ 3JA-
X’ │= 18.6 Hz, PCH), 35.9 (A2XX’A’2, N=│1JA-X+ 3JA-X’ │= 10.2 Hz, PCMe3),
29.3 (A6XX’A’6, N=│2JA-X+ 4JA-X’ │= 2.7 Hz, PCMe3) ppm. IR (KBr): ṽ= 2645,
1584, 1565 cm−1. Anal. Calcd. For C41H41NO2NiP2 (460.20): C, 54.81; H, 8.98; N,
3.04. Found: C, 54.92 H, 8.98; N, 2.91. MS (LIFDI): m/z (%) 459.0 (100).

[Ni(OCO2H){N(CHCHPtBu2)2}] (4). A solution of [Ni(OH){N
(CHCHPtBu2)2}] (6) in THF-d8 is degassed by three pump–freeze–thaw cycles set
under 1 atm CO2 ( ≥ 99.9993% purity, purification by passing through P4O10,
Drierite and cooling to −40 °C) in a J-Young NMR tube. Crystals of 4 suitable for
X-ray diffraction are obtained by diffusion of pentanes on a THF solution. 31P{1H}
NMR (162MHz, THF-d8) δ: 54.6 ppm. 1H NMR (400MHz, THF-d8) δ: 9.28 (br, 1
H, OCO2H), 6.47 (ABXX’B’A’, N=│3JA-X+ 4JA-X’│= 19.1 Hz, 3JA-B= 5.5 Hz, 2
H, NCH), 3.88 (ABXX’B’A’, N=│2JA-X+ 4JA-X’│= 2.0 Hz, 3JA-B= 5.4 Hz, 2 H,
PCH), 1.48 (A18XX’A’18, N=│3JA-X+ 5JA-X’│= 6.8 Hz, 36 H, PtBu) ppm. 13C{1H}
NMR (126MHz, THF-d8) δ: 163.0 (AXX’A’, N=│2JA-X+ 3JA-X’ │= 11.1 Hz,
NCH), 158.9 (s, OCO2H), 82.2 (AXX’A’, N=│1JA-X+ 3JA-X’ │= 18.8 Hz, PCH),
35.7 (A2XX’A’2, N=│1JA-X+ 3JA-X’ │= 8.6 Hz, PCMe3), 29.0 (A6XX’A’6, N=
│2JA-X+ 4JA-X’ │= 2.9 Hz, PCMe3) ppm. Evaporation of a solution of 4 results in
CO2 elimination and clean reformation of 6.

[Ni(CO){N(CHCHPtBu2)2}] (5). A solution of [Ni{N(CHCHPtBu2)2}] 7 (10
mg, 0.024 mmol, 1.00 eq) in THF (0.5 mL) is degassed by three freeze–pump–thaw
cycles and set under 1 atm of CO in a J-Young NMR tube. The solution is shaken at
r.t. for 30 mins and the solvent is evaporated. The black residue is dissolved in
pentanes and filtrated. Evaporation of the solvent and drying in vacuo gives 9 mg
(0.020 mmol, 83%) of 5 as black solid. Crystals suitable for X-ray diffraction are
obtained by crystallization from Et2O at −36 °C. IR (KBr): ṽ= 1910.1 (CO) cm−1.
MS (LIFDI): m/z (%) 414.1 (55), 442.1 (45). For EPR characterization see
Supplementary Figs. 28, 29.

[Ni(OH){N(CHCHPtBu2)2}] (6). [NiBr{N(CHCHPtBu2)2}] (24 mg, 0.048
mmol, 1.00 eq), KOH (30 mg, 0.535 mmol, 11.15 eq) and 15-crown-5 (10 µL, 0.051
mmol, 1.06 eq) are filled in a J-Young NMR tube and dissolved in 1 mL THF. The
solution is warmed to 70 °C for 2 days. After evaporation of the solvent, the orange
solid is extracted with pentanes and filtered over celite. The solvent is evaporated
and the orange powder is dissolved in pentanes and recrystallized at −36 °C.
Removal of the solvent and drying in vacuo yields red, crystalline 6 (14 mg, 0.033
mmol, 69%). Crystals suitable for X-ray diffraction are obtained by crystallization
from pentanes at −36 °C. 31P{1H} NMR (162MHz, THF-d8) δ: 50.3 ppm. 1H
NMR (400MHz, THF-d8) δ: 6.62 (ABXX’B’A’, N=│3JA-X+ 4JA-X’│= 18.8 Hz,
3JA-B= 5.4 Hz, 2 H, NCH), 3.88 (ABXX’B’A’, N=│2JA-X+ 4JA-X’│= 1.9 Hz, 3JA-B
= 5.3 Hz, 2 H, PCH), 1.37 (A18XX’A’18, N=│3JA-X+ 5JA-X’│= 6.6 Hz, 36 H,
PtBu), −4.88 (t, 3JH-P= 5.6 Hz, OH) ppm. 13C{1H} NMR (126MHz, THF-d8) δ:
162.8 (AXX’A’, N=│2JA-X+ 3JA-X’ │= 11.8 Hz, NCH), 81.2 (AXX’A’, N=│1JA-X
+ 3JA-X’ │= 18.3 Hz, PCH), 35.2 (A2XX’A’2, N=│1JA-X+ 3JA-X’ │= 8.6 Hz,
PCMe3), 29.3 (A6XX’A’6, N=│2JA-X+ 4JA-X’ │= 2.9 Hz, PCMe3) ppm. IR (Nujol):
ṽ= 3643.8 cm−1. Anal. Calcd. For C40H41NONiP2 (132.19): C, 55.58; H, 9.56; N,
3.24. Found: C, 55.50 H, 9.46; N, 3.12. MS (LIFDI): m/z (%) 431.2 (100).

[Ni{N(CHCHPtBu2)2}] (7). [NiBr{N(CHCHPtBu2)2}] (80 mg, 0.162 mmol, 1.00
eq) and magnesium powder (78 mg, 3.21 mmol, 19.8 eq) are suspended in 5 mL
THF and stirred for 30 mins at room temperature accompanied by a color change
to orange. The solvent is evaporated, and the residue is dissolved in pentanes and
filtered over celite. The solution is dried in vacuo and the orange powder is
dissolved in a minimum amount of pentanes and recrystallized at –36 °C. The
mother liquor is decanted after 3 days and this procedure is repeated two times,
giving 42 mg (0.101 mmol, 62%) of 7 as orange crystals. Crystals suitable for X-ray
diffraction are obtained by crystallization from pentanes at −36 °C. 1H NMR (400
MHz, C6D6) δ: 7 (br, tBu), −62 (br, CH) ppm. Anal. Calcd. For C20H40NP2Ni
(415.19): C, 57.86; H, 9.71; N, 3.37. Found: C, 57.59 H, 9.48; N, 3.27. MS (LIFDI):
m/z (%) 414.1 (100).

[{N(CHCHPtBu2)2}Ni(1κC,2κ2O,O’-13CO2)Ni{κ2P,N-N(CHCHPtBu2)2}] (8).
Complex 7 (5.0 mg, 0.012 mmol, 1.00 eq) is dissolved in 0.5 mL C6D6 in a J-Young
NMR tube and 300 µL (0.012 mmol, 1.00 eq) 13CO2 are added with a syringe. The
solution is kept at room temperature for 24 h. 31P{1H} NMR (162MHz, C6D6) δ:
72.2 (dd, 5JP-P= 8.7 Hz, 3JP-C= 2.4 Hz, 1 P, (PNP)NiCO2Ni(PN)), 67.8 (d, 2JP-C=
29.1 Hz, 2 P, (PNP)NiCO2Ni(PN)), 4.77 (d, 5JP-P= 8.6 Hz, 1 P, non-coordinating
pincer arm) ppm.1H NMR (400MHz, C6D6) δ: 8.23 (ddd, 3JH-P= 42.4 Hz, 4JH-P=
5.5 Hz, 3JH-H= 5.5 Hz, 1 H, NCH non-coordinating pincer arm), 6.86 (ABXX’B’A’,
N=│3JA-X+ 4JA-X’│= 18.4 Hz, 3JA-B= 5.2 Hz, 2 H, NCH), 6.43 (dd, 3JH-P= 20.8
Hz, 2JH-H= 10.5 Hz, 1 H, NCH coordinating pincer arm), 4.69 (dd, 2JH-H= 10.5
ppm, 2JH-P= 6.4 Hz, 1 H, PCH coordinating pincer arm), 3.95 (m, 2 H, PCH), 3.40
(dd, 2JH-P= 4.8 Hz, 2JH-H= 4.8 Hz, 1 H, PCH non-coordinating pincer arm), 1.60
(m, 36 H, PtBu), 1.47 (d, 3JH-P= 13.6 Hz, 18 H, PtBu coordinating pincer arm),
1.25 (d, 3JH-P= 10.9 Hz, 18 H, PtBu non-coordinating pincer arm) ppm. 13C{1H}
NMR (101 MHz, C6D6) δ: 236.7 (t, 2JC-P= 29.1 Hz, 3JC-P= 2.4 Hz, CO2), 165.8 (dd,
2JC-P= 23.0 Hz, 3JC-P= 13.7 Hz, NCH non-coordinating pincer arm), 160.9
(AXX’A’, N=│2JA-X+ 3JA-X’│= 10.4 Hz, NCH), 149.8 (d, 2JC-P= 14.1 Hz, NCH),
96.4 (d, 1JC-P= 18.8 Hz, PCH), 82.3 (AXX’A’, N=│1JA-X+ 3JA-X’│= 18.6 Hz,
PCH), 74.9 (d, 1JP-C= 47.5, PCH non-coordinating pincer arm), 36.0 (A2XX’A’2, N
=│1JA-X+ 3JA-X’ │= 10.3 Hz, PCMe3), 35.0 (d, 1JC-P= 20.9 Hz, PCMe3), 32.4 (d,
1JC-P= 19.5 Hz, PCMe3), 30.0 (d, 2JC-P= 14.3 Hz, PCMe3), 29.7 (br, PCMe3), 28.9
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Fig. 6 Proposed mechanism. Formation of a nickel(0) photoproduct from
photochemical activation of 1 and reactivity with different substrates
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(d, 1JC-P= 4.1 Hz, PCMe3), 30.0 (d, 2JC-P= 14.3 Hz, PCMe3) ppm. Assignment of
signals is based on selectively decoupled 1H{31P} and 2D NMR spectra. MS
(LIFDI): m/z (%) 872.3 (100).

[{N(CHCHPtBu2)2}Ni(OC(O)O)Ni{N(CHCHPtBu2)2}] (9). Complex 7 (3.2
mg, 0.008 mmol, 1.00 eq) and 3 µL O(SiMe3)2 as internal standard are dissolved in
0.5 mL THF-d8. The solution is degassed by three pump–freeze–thaw cycles and 1
atm CO2 (≥99.9993% purity, purification by passing through P4O10, Drierite and
cooling to −40 °C) is applied. The solution is stirred at room temperature for
11 days. Crystals suitable for X-ray diffraction are obtained by crystallization from
pentanes at −36 °C. 31P{1H} NMR (162MHz, THF-d8) δ: 49.2 ppm. 1H NMR
(400MHz, THF-d8) δ: 6.31 (ABXX’B’A’, N=│3JA-X+ 4JA-X’│= 17.9 Hz, 3JA-B=
5.6 Hz, 4 H, NCH), 3.80 (d, 3JH-H= 5.6 Hz, 4 H, PCH), 1.50 (A18XX’A’18, N
=│3JA-X+ 5JA-X’│= 6.7 Hz, 72 H, PtBu), ppm. 13C{1H} NMR (126MHz, C6D6) δ:
162.5 (s, OC(O)O) ppm. MS (LIFDI): m/z (%) 889.3 (100, 13CO3

2–-isotopologue).
[{N(CHCHPtBu2)2}Ni(1κC,2 κ2O,O’-CO2)Ni{κ2P,C-

tBu2PCHCHNHCHCH2PtBu2)}] (10). Synthesis from 1 and CO2: Complex 1 (30
mg, 0.072 mmol, 1.00 eq) is dissolved in 3 mL benzene and 1.8 mL CO2 (0.074
mmol, 1.03 eq, ≥99.9993% purity, purification by passing through P4O10, Drierite
and cooling to −40 °C) are added by syringe. The solution is photolyzed (λexc >
305 nm) over night and the solvent is evaporated. The residue is dissolved in
pentanes, filtered, and the solvent is evaporated. The residue is suspended in 1 mL
acetonitrile and diethyl ether is added dropwise until the solid is dissolved
completely. Repeated crystallization at –36 °C and subsequent drying in vacuo gives
orange 10 (7 mg, 0.008 mmol, 22%). Crystals suitable for X-ray diffraction are
obtained by crystallization from pentanes at −36 °C. Synthesis from 1 and 3: 3 (1.5
mg, 3.3 µmol, 1.00 eq) and 1 (1.4 mg, 3.4 µmol, 1.03 eq) are dissolved in 0.5 mL
THF and filled in a J-Young NMR tube and the sample is photolyzed (λexc > 305
nm). 31P{1H} NMR (203 MHz, C6D6) δ: 66.2 (d. 2JP-P= 197.3 Hz, 1 P, (PNP)
NiCO2Ni(PC)), 65.0 (d. 2JP-P= 197.1 Hz, 1 P, (PNP)NiCO2Ni(PC)), 36.8 (d, 4JP-P
= 7.4 Hz, 1 P, (PNP)NiCO2Ni(PC)), 17.1 (d, 4JP-P= 7.2 Hz, 1 P, non-coordinating
pincer arm) ppm. 1H NMR (500MHz, C6D6) δ: 6.96 (m, 2 H, NCH), 6.48 (ddd,
2JH-P= 27.2 Hz, 3JH-H= 9.6 Hz, 4JH-H= 7.5 Hz, 1 H, PCH), 4.37 (dd, 4JH-P= 7.4
Hz, 4JH-H= 7.4 Hz, 1 H, NH), 4.02 (m, 2 H, PCH), 3.52 (d, 3JH-H= 9.6 Hz, 1 H,
NCH), 2.92 (dddd, 3JH-H= 12.4 Hz, 3JH-P= 6.1 Hz, 3JH-H= 1.9 Hz, 3JH-H= 1.9 Hz,
1 H, NCHCH2), 2.72 (ddd, 2JH-H= 14.3 Hz, 2JH-P= 5.9 Hz, 3JH-H= 2.1 Hz, 1 H,
NCHCHH), 1.73 (m, 9 H, PtBu), 1.68 (m, 9 H, PtBu), 1.59 (m, 9 H, PtBu), 1.51 (m,
9 H, PtBu), 1.50 (d, 3JH-P= 12.9 Hz, 9 H, PtBu), 1.47 (d, 3JH-P= 13.1 Hz, 9 H,
PtBu), 1.47 (NCHCHH, detected by 1H,1H COSY NMR), 1.32 (d, 3JH-P= 10.7 Hz,
9 H, PtBu), 1.19 (d, 3JH-P= 10.9 Hz, 9 H, PtBu) ppm. 13C{1H} NMR (126MHz,
C6D6) δ: 228.3 (dt, 2JC-P= 28.5 Hz, 3JC-P= 3.0 Hz, NiCO2Ni), 160.7 (dd, 3JC-P=
13.9 Hz, 2JC-P= 7.3 Hz, NCH), 160.7 (dd, 3JC-P= 14.0 Hz, 2JC-P= 7.1 Hz, NCH),
149.0 (d, 2JC-P= 7.3 Hz, NCH), 82.6 (dd, 1JC-P= 33.3 Hz, 3JC-P= 9.4 Hz, PCH),
82.4 (dd, 1JC-P= 32.5 Hz, 3JC-P= 9.5 Hz, PCH), 68.0 (dd, 1JC-P= 50.7 Hz, PCH),
36.2 (dd, 1JC-P= 13.8, 3JC-P= 6.0 Hz, PCMe3), 35.9 (dd, 1JC-P= 14.0, 3JC-P= 5.8
Hz, PCMe3), 35.8 (dd, 1JC-P= 14.2, 3JC-P= 6.0 Hz, PCMe3), 35.4 (dd, 1JC-P= 14.2,
3JC-P= 6.4 Hz, PCMe3), 35.0 (d, 1JC-P= 21.4, PCMe3), 34.6 (d, 1JC-P= 24.4,
PCMe3), 33.2 (dd, 2JC-P= 30.4 Hz, 2JC-P= 4.1 Hz, NCHNi), 32.6 (d, 1JC-P= 22.9
Hz, PCMe3), 31.2 (d, 1JC-P= 21.6 Hz, PCMe3), 30.5 (d, 2JC-P= 12.7 Hz, PCMe3),
30.2 (dd, 2JC-P= 3.9 Hz, 4JC-P= 1.8 Hz, PCMe3), 30.1 (dd, 2JC-P= 3.8 Hz, 4JC-P=
1.8 Hz, PCMe3), 39.9 (d, 1JC-P= 13.3 Hz, PCMe3), 29.7 (d, 2JC-P= 5.0 Hz,
2xPCMe3), 29.7 (dd, 2JC-P= 3.7 Hz, 4JC-P= 1.8 Hz, PCMe3), 29.6 (dd, 2JC-P= 3.7
Hz, 4JC-P= 1.6 Hz, PCMe3), 29.4 (d, 1JC-P= 26.9 Hz, CH2) ppm. IR (THF-d8): ṽ=
1526.4, 1611.3, 3333.5 cm−1. MS (LIFDI): m/z (%) 873.4 (50), 1392.5 (50).

[(CO)3Ni{κP-HN(CHCHPtBu2)2}] (11). A solution of 1 (9.69 mM, 0.5 mL) in
THF-d8 and O(SiMe3)2 as internal standard are filled into a J-Young NMR tube,
degassed by three pump–freeze–haw cycles and 1 atm of CO applied. The sample is
photolyzed (λexc > 305 nm) for 90 minutes. Crystals of 11 suitable for X-ray
diffraction are obtained by crystallization from acetonitrile at −36 °C. 31P{1H}
NMR (162MHz, THF-d8) δ: 39.3 (PNi(CO)3), −5.2 ppm. 1H NMR (400MHz,
THF-d8) δ: 8.10 (dd, 3JH-H= 12.3 Hz, 3JH-H= 12.3 Hz, 1 H, NH), 6.92 (dddd, 3JH-P

= 24.8 Hz, 3JH-H= 13.0 Hz, 3JH-H= 10.8 Hz, 4JH-H= 2.4 Hz, 1 H, NCHCHPNi
(CO)3), 6.88 (ddd, 3JH-P= 18.1 Hz, 3JH-H= 11.6 Hz, 3JH-H= 9.5 Hz, 1 H, NCH),
4.74 (dd, 3JH-H= 9.5 Hz, 2JH-P= 4.8 Hz, 1 H, PCH), 4.46 (dd, 3JH-H= 10.7 Hz, 2JH-

P= 2.4 Hz, 1 H, HCPNi(CO)3), 1.24 (d, 3JH-P= 13.3 Hz, 18 H, tBu2PNi(CO)3), 1.23
(d, 3JH-P= 12.3 Hz, 18 H, PtBu2) ppm. 13C{1H} NMR (101MHz, THF-d8) δ: 198.5
(d, 2JC-P= 3.8 Hz, Ni(CO)3), 145.5 (d, 2JC-P= 5.8 Hz, NCH), 145.0 (d, 2JC-P= 20.4
Hz, NCH), 95.3 (d, 1JC-P= 17.1 Hz, PCH), 84.9 (d, 1JC-P= 30.7 Hz, PCH), 35.9 (d,
1JC-P= 35.9 Hz, PCMe3), 31.9 (d, 1JC-P= 16.3 Hz, PCMe3), 29.7 (d, 2JC-P= 13.8 Hz,
PCMe3), 29.2 (d, 2JC-P= 7.1 Hz, PCMe3) ppm. IR (Nujol): ṽ= 3316.5, 2062.7,
1987.9 cm−1. MS (LIFDI): m/z (%) 443.4 (100). Evaporation in vacuo results in CO
loss and reformation of 1.

Data availability. Detailed descriptions of experimental and spectroscopic meth-
ods and results are available within this paper and its supplementary information
files. For NMR spectra of the compounds in this article, see Supplementary Figs 1–
14. For quantum chemical methods and results see Supplementary Figs. 38–47 and
Supplementary Tables 1–18. The crystallographic data CCDC-1561988–1561994,
CCDC-1574302, and CCDC-1574303 can be obtained free of charge from the
Cambridge Crystallographic Data Centre (www.ccdc.cam.ac.uk/data_request/cif).
All other data are available from the authors upon reasonable request.
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