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A fully adaptive non-linear full multigrid (FMG) algorithm is implemented to

computationally simulate a model of multispecies desmoplastic tumor growth in three

spatial dimensions. The algorithm solves a thermodynamic mixture model employing

a diffuse interface approach with Cahn-Hilliard-type fourth-order equations that are

coupled, non-linear, and numerically stiff. The tumor model includes extracellular matrix

(ECM) as a major component with elastic energy contribution in its chemical potential

term. Blood and lymphatic vasculatures are simulated via continuum representations.

The model employs advection-reaction-diffusion partial differential equations (PDEs) for

the cell, ECM, and vascular components, and reaction-diffusion PDEs for the elements

diffusing from the vessels. This study provides the details of the numerical solution

obtained by applying the fully adaptive non-linear FMG algorithm with finite difference

method to solve this complex system of PDEs. The results indicate that this type

of computational model can simulate the extracellular matrix-rich desmoplastic tumor

microenvironment typical of fibrotic tumors, such as pancreatic adenocarcinoma.

Keywords: cancer, computational simulation, mathematical model, non-linear 3D tumor growth, diffuse interface

model, adaptive mesh refinement, full multigrid, full approximation scheme

INTRODUCTION

The process of cancer progression is driven by the communication between tumor cells and
their surroundings. A dynamic tumor microenvironment typically consists of highly proliferating
neoplastic cells of different phenotypes, necrotic tumor cells, infiltrating innate and adaptive
immune inflammatory cells, cancer-associated fibroblasts, cancer stem cells, extracellular matrix
(ECM), blood and lymphatic vessels, pericytes, healthy host cells, and a variety of soluble molecules
(Hanahan andWeinberg, 2000; de Visser and Coussens, 2006; Tlsty and Coussens, 2006;Whiteside,
2008; Perez-Moreno, 2009). These cellular andmolecular elements dictate the tumor progress from
unregulated neoplastic growth to potential metastasis. In its heterogeneous milieu with complex
tumor-induced interactions and mechanical stress, an evolving tumor mass also undergoes
transient morphological changes arising from cell motility and cell-cell/cell-ECM interactions.
Mathematical modeling of cancer progression including its associated microenvironment may be a
useful tool for predicting tumor dynamics and cancer response to therapy.

To study the desmoplastic tumor microenvironment, we recently presented a tumor model
(Ng and Frieboes, 2017) as a continuum scale multicomponent-multispecies system consisting
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of heterogeneous cell types and ECM. This thermodynamic
mixture model, inspired by the one derived in Wise et al.
(2008) and Frieboes et al. (2010), includes metabolic reactions,
tumorigenic factors, desmoplastic response, as well as tumor-
induced angiogenesis and lymphangiogenesis. The diffuse
interface approach is implemented as derived in Wise et al.
(2008), where thermodynamically consistent Darcy velocities and
Fickian diffusive terms are determined from the energy variation.
In the Helmholtz free energy equation, the square gradient
model (Cahn and Hilliard, 1958; Cahn, 1959; Yang et al., 1976;
Rowlinson, 1979) is used to describe interfaces arising from
the adhesive properties of cells and ECM components, and an
elastic energy term by Leo et al. (1998) is added to represent
the elastic properties of the ECM component. Continuous
blood and lymphatic vessel densities are modified from cell
fluxes employed in Anderson and Chaplain (1998), Chaplain
(1996), and Mantzaris et al. (2004). Sprout initiation conditions
of vessels, as well as interactions between angiogenic factors,
proteolytic enzymes, and the ECM component are inspired by
Levine et al. (2000), Levine et al. (2001a,b). Lymphangiogenesis
is assumed to behave similarly to angiogenesis. Nutrients and
waste products from cell metabolism are governed by fluxes and
reaction rates modified from Casciari et al. (1992).

Continuum models represent cell populations and molecular
species that influence the cell cycle events as continuous variables
(see recent reviews Roose et al., 2007; Preziosi and Tosin,
2009a; Tracqui, 2009; Byrne, 2010; Cristini and Lowengrub,
2010; Edelman et al., 2010; Kreeger and Lauffenburger, 2010;
Lowengrub et al., 2010; Osborne et al., 2010; Rejniak and
McCawley, 2010; Vineis et al., 2010; Andasari et al., 2011;
Chaplain, 2011; Deisboeck et al., 2011; Frieboes et al., 2011;
Michor et al., 2011; Rejniak and Anderson, 2011; Bachmann
et al., 2012; Oden et al., 2015 and references therein), These
models typically implement ODE or PDE approaches to
describe an advection-diffusion-reaction system. Continuum
multiphase/mixture mechanochemical models include chemical
and mechanical interactions between phases (cell types or
species) (see Araujo and McElwain, 2004; Hatzikirou et al.,
2005; Quaranta et al., 2005; Byrne et al., 2006; Graziano and
Preziosi, 2007; Roose et al., 2007; Astanin and Preziosi, 2008;
Preziosi and Tosin, 2009a; Tracqui, 2009; Lowengrub et al., 2010)
and associated references). These models typically introduce a
stress tensor, velocity, and pressure for each phase by enforcing
mass, momentum, and energy balances (Ambrosi and Preziosi,
2002; Breward et al., 2002, 2003; Byrne and Preziosi, 2003;
Byrne et al., 2003; Araujo and McElwain, 2005a,b; Graziano
and Preziosi, 2007; Astanin and Preziosi, 2008; Galle et al.,
2009; Preziosi and Tosin, 2009b; Bresch et al., 2010; Preziosi
et al., 2010; Preziosi and Vitale, 2011; Sciumé et al., 2013;
Klika, 2014). Related to these mixture models is the diffuse
interface approach (Oden et al., 2010; Hawkins-Daarud et al.,
2012; Chen et al., 2014), for which the square gradient theory
can be used to describe smooth transitions within thin interfacial
regions. The gradient contributes to the Helmholtz free energy,
from which the component velocities, pressures, and diffusive
terms can be derived (Wise et al., 2008; Chen and Lowengrub,
2014). Continuum single- or multi-phase models that consider

the effects of cell-cell and/or cell-ECM adhesion have included
(Frieboes et al., 2007, 2013; Ambrosi and Preziosi, 2009; Bearer
et al., 2009; Kuusela and Alt, 2009; Chatelain Clément et al.,
2011; Escher and Matioc, 2013). In Gerisch and Chaplain (2008),
Preziosi and Tosin (2009b), Psiuk-Maksymowicz (2013), Wu
et al. (2013), Sciumé et al. (2014a,b), and Arduino and Preziosi
(2015), the ECM is represented as a key component of the
tumoral tissue.

This paper presents the fully adaptive non-linear FMG
algorithm and numerical solution of the model presented in Ng
and Frieboes (2017). This diffuse interface model is characterized
by non-linear fourth-order Cahn-Hilliard type PDEs and narrow
transition layers. A fully adaptive block-structure Cartesian mesh
is used on adaptively refined grid levels to address the need of
transient locally-refined mesh regions for the narrow transition
layers. To avoid severe time-step restrictions of explicit methods
and fine resolution of transition layers, a fully adaptive non-linear
finite difference multigrid method inspired by the pioneering
work of Wise et al. (2007) and Wise et al. (2011) is implemented
to solve the system of equations. The equations are discretized
in time by the semi-implicit Crank-Nicolson method. The error
smoothing steps employ the non-linear Full Approximation
Scheme, and iterations are carried out in V-cycles. Modified from
the numerical solution and method given in Wise et al. (2007,
2011) we implement a fully adaptive non-linear full multigrid
(FMG) algorithm with finite difference method to solve this
complex set of PDEs.

MATERIALS AND METHODS

Desmoplastic Tumor Model
Consider a tumor growing in a tissue domain � ⊂ R

3 where
tumor and healthy cells, as well as the ECM, are tracked with
continuous volume fractions. In the diffuse interface model,
adhesive forces hold the tumor cells together, creating a boundary
layer of finite thickness between the tumoral and healthy regions.
An appropriate distribution of ECM across the domain can be
achieved by a carefully chosen free energy term. Dimensionless
governing equations for multispecies tumor growth systems are
presented here.

We assume that the liquid (extracellular fluid) volume fraction
stays constant, as well as the total solid (ECM, tumor and
healthy cells) volume fraction, and set the densities of all
components to unity. Dimensionless variables φ̃V , φ̃D, φ̃E, and
φ̃H are the normalized volume fraction (normalized by the total
volume fraction) of viable tumor cells, dead tumor cells, ECM,
and healthy host cells, respectively. Their transient diffusion-
convection governing equations are given as Ng and Frieboes
(2017):

Cells and ECM Components

∂φ̃V

∂ t̃
+∇ ·

(

φ̃V ũα

)

= ∇ ·
(

M̃V∇µ̃T

)

+ S̃V (2.1)

∂φ̃D

∂ t̃
+ ∇ ·

(

φ̃Dũα

)

= ∇ ·
(

M̃D∇µ̃T

)

+ S̃D (2.2)
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∂φ̃E

∂ t̃
+ ∇ ·

(

φ̃Eũα

)

= ∇ ·
(

M̃E∇µ̃E

)

+ S̃E (2.3)

φ̃H = 1− φ̃V − φ̃D − φ̃E (2.4)

The total tumor volume fraction is φ̃T = φ̃V + φ̃D and M̃i = M̃φ̃i
is the positive non-constant mobility of component i. Chemical
potential terms are given below:

Chemical Potentials

µ̃T =
∂ F̃b

∂φ̃T
− ǫ̃T

2 ∇2φ̃T − ǫ̃TE
2∇2φ̃E (2.5)

µ̃E =
∂ F̃b

∂φ̃E
+
∂W̃

∂φ̃E
− ǫ̃E

2 ∇2φ̃E − ǫ̃TE
2∇2φ̃T (2.6)

∂ F̃b

∂φ̃T
= 2A1φ̃T

(

1− φ̃T − φ̃E

) (

1− 2φ̃T − φ̃E

)

+ (A5 − A3)

(

2φ̃E − A5 − A3

)

(2.7)

∂ F̃b

∂φ̃E
= 2

(

φ̃T + A2

) (

φ̃E − A3

)

− 2A1

(

φ̃T

)2 (

1− φ̃T − φ̃E

)

+
(

φ̃E − A5

) [

2
(

1− φ̃T + A4

)

− 3φ̃E + A5

]

(2.8)

∂W̃

∂φ̃E
= ǫ̃e

[

6φ̃E

(

1− φ̃E

)]

3
∑

i,j=1

[

1

2

(

ẼT
)

ij
T̃

∗

ij −
(

Ẽ
∗

T

)

ij
T̃ij

]

(2.9)

The bulk free energy term F̃b is adapted from a tertiary semi-
immiscible system described by Kim and Lowengrub (2005),
where A1 – A5 are constants. The dimensionless elastic strain
energy term W̃ used in Equation (2.9), which follows the form
given by Leo et al. (1998) and Garcke (2005), is computed from
the elements given below.

Elastic Energy

T̃mn = 2 L̃2
(

ẼT
)

mn
+ L̃1δmn

3
∑

s=1

(

ẼT
)

ss
(2.10)

(

ẼT
)

mn
= Ẽmn − Ẽ

∗

mn (2.11)
(

Ẽ
∗

T

)

mn
=
(

Ẽ
∗

E

)

mn
−
(

Ẽ
∗

C

)

mn
(2.12)

Ẽ
∗

mn = Q3

(

φ̃E

) (

Ẽ
∗

T

)

mn
+
(

Ẽ
∗

C

)

mn
(2.13)

T̃
∗

mn = 2
(

1− L̃C2
) (

ẼT
)

mn

+
(

L̃E1 − L̃C1
)

δmn

3
∑

k=1

(

ẼT
)

kk
(2.14)

Ẽmn =
1

2

(

∂ ũm

∂ x̃n
+
∂ ũn

∂ x̃m

)

(2.15)

L̃i = Q3

(

φ̃E

)

(

L̃Ei − L̃Ci
)

+ L̃Ci where i = 1, 2(2.16)

where Ẽ is the infinitesimal strain, ũd is the displacement vector,
Ẽ∗
E and Ẽ∗

C are the Eigenstrain tensors for ECM and cells,

respectively. In Equations (2.10) and (2.14), δmn = 1 for m = n
and δmn = 0 for m 6= n. L̃E1 , L̃

E
2 , L̃

C
1 , and L̃C2 are Lamé constants

for the ECM and cell components. The displacement vector ũd
is solved by setting ∇ · T̃i = 0, where T̃i =

[

T̃1i T̃2i T̃3i

]

and
i = 1, 2, 3.

The dimensionless cell-ECM phase pressure p̃ and interstitial
fluid phase pressure q̃, with their corresponding velocities ũα and
ũβ are computed using the following equations:

Pressures and Velocities

∇ ·

[

k̃α

(

∇p̃−
γ̃T

ǫ̃T
µ̃T∇φ̃T −

γ̃E

ǫ̃E
µ̃E∇φ̃E

)]

= −
(

S̃V + S̃D + S̃E
)

(2.17)

∇2q̃ =
Rα,β

k̃β

(

S̃V + S̃D + S̃E
)

(2.18)

ũα = −k̃α

[

∇p̃−
γ̃T

ǫ̃T
µ̃T∇φ̃T −

γ̃E

ǫ̃E
µ̃E∇φ̃E

]

(2.19)

ũβ = −k̃β∇q̃ (2.20)

ũE = ũα − M̃∇ (µ̃E) (2.21)

where k̃α = f
(

φ̃T , φ̃E

)

and k̃β are motilities of the solid and

liquid phase respectively, and ũE is the ECM component velocity.
Dimensionless nutrients and waste products concentrations

ñ, g̃, w̃, l̃, b̃, ã, s̃, and r̃ represent O2, glucose, CO2, lactate,
bicarbonate, H+, Na+, and Cl− respectively. We use the
following quasi-steady state governing equations for tracking
nutrients and waste products within the tissue domain:

Nutrients and Waste Products

∇ ·
(

D̃n ∇ ñ
)

+ k̃n1ñC −
(

k̃n1 + k̃n2

)

ñ = 0 (2.22)

∇ ·
(

D̃g ∇ g̃
)

+ k̃g1g̃C −
(

k̃g1 + k̃g2

)

g̃ = 0 (2.23)

∇ ·
(

D̃w ∇ w̃
)

+ k̃n2ñ + k̃r b̃ã+ k̃ww̃C −
(

k̃f + k̃w

)

w̃ = 0 (2.24)

∇ ·

{

D̃ℓ

[

∇ℓ̃

−z̃ℓ ℓ̃

(

z̃ℓD̃ℓ∇ℓ̃+ z̃bD̃b∇b̃+ D̃a∇ã+ z̃sD̃s∇ s̃+ z̃rD̃r∇ r̃

z̃2ℓ D̃ℓ ℓ̃+ z̃2
b
D̃b b̃+ D̃a ã+ z̃2s D̃s s̃+ z̃2r D̃r r̃

)]}

+ 2 Rg,n

(

k̃g2 g̃
)

−
1

3

(

k̃n2ñ
)

+ k̃ℓℓ̃C − k̃ℓℓ̃ = 0 (2.25)

∇ ·

{

D̃b

[

∇b̃

−z̃b b̃

(

z̃ℓD̃ℓ∇ℓ̃+ z̃bD̃b∇b̃+ D̃a∇ã+ z̃sD̃s∇ s̃+ z̃rD̃r∇ r̃

z̃2ℓ D̃ℓ ℓ̃+ z̃2
b
D̃b b̃+ D̃a ã+ z̃2s D̃s s̃+ z̃2r D̃r r̃

)]}

+ k̃f w̃− k̃r b̃ã = 0 (2.26)

∇ ·

{

D̃a

[

∇ã

−z̃a ã

(

z̃ℓD̃ℓ∇ℓ̃+ z̃bD̃b∇b̃+ D̃a∇ã+ z̃sD̃s∇ s̃+ z̃rD̃r∇ r̃

z̃2ℓ D̃ℓ ℓ̃+ z̃2
b
D̃b b̃+ D̃a ã+ z̃2s D̃s s̃+ z̃2r D̃r r̃

)]}

+2 Rg,n

(

k̃g2 g̃
)

−
1

3

(

k̃n2ñ
)

+k̃f w̃−k̃r b̃ã+ k̃ℓℓ̃C− k̃ℓℓ̃=0 (2.27)
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∇ ·

{

D̃s

[

∇ s̃

−z̃s s̃

(

z̃ℓD̃ℓ∇ℓ̃+ z̃bD̃b∇b̃+ D̃a∇ã+ z̃sD̃s∇ s̃+ z̃rD̃r∇ r̃

z̃2ℓ D̃ℓ ℓ̃+ z̃2
b
D̃b b̃+ D̃a ã+ z̃2s D̃s s̃+ z̃2r D̃r r̃

)]}

= 0 (2.28)

r̃ = −
1

z̃r

(

z̃ℓℓ̃+ z̃bb̃+ z̃aã+ z̃s s̃
)

(2.29)

The flux terms of charged species follow those given by Casciari

et al. (1992). The terms k̃n1, k̃n2, k̃g1, k̃g2, k̃w, and k̃l are combined
rate constants used in source terms of nutrients and waste
products, whereas k̃f and k̃r are the forward and reverse rate

constants of the reaction CO2 +H2O ↔ HCO−
3 +H+.

Dimensionless concentrations of tumor growth factors,
tumor angiogenic factors, matrix degrading enzymes, and

myofibroblastic cells are represented by ˜tgf , ˜taf , m̃, and F̃E
respectively. Quasi-steady state equations for ˜tgf and ˜taf , as well
as transient governing equations for m̃ and F̃E are given below:

Tumorigenic Species

∇ ·
(

D̃tgf∇
˜tgf
)

+ λ̃tgf

−
(

λ̃tgf + λ̃de,tgf + λ̃U,tgf

)

˜tgf = 0 (2.30)

∇ ·
(

D̃taf∇
˜taf
)

+ λ̃taf

−
(

λ̃taf + λ̃de,taf + λ̃U,taf

)

˜taf = 0 (2.31)

∂m̃

∂ t̃
= ∇ ·

(

D̃m∇m̃
)

+ S̃m (2.32)

∂ F̃E

∂t
+ ∇ ·

(

F̃EũE
)

= − ∇ ·
(

D̃F F̃E∇ ˜tgf
)

+ S̃FE (2.33)

Here, F̃E reflects the concentration within the ECM phase,
assuming the volume of myofibroblastic cells is negligible
and the ECM phase is continuous throughout the domain.
Similarly, dimensionless ECM based concentrations of blood
and lymphatic vessels, B̃En and L̃En respectively, with their
corresponding diffusive flux terms are given by.

Blood and Lymphatic Vessels

∂B̃En
∂t

+ ∇ ·
(

B̃EnũE
)

= − ∇ · J̃BnE + S̃BnE (2.34)

∂ L̃En
∂t

+ ∇ ·
(

L̃EnũE
)

= − ∇ · J̃LnE + S̃LnE (2.35)

J̃BnE = χ̃che,BnE Ache,BnE B̃
E
n ∇

˜taf

+χ̃hap,BnE Ahap,BnE B̃
E
n ∇φ̃E − D̃BnE∇B̃En (2.36)

J̃LnE = χ̃che,LnE Ache,LnE L̃
E
n ∇

˜taf

+χ̃hap,LnE Ahap,LnE L̃
E
n ∇φ̃E − D̃LnE∇L̃En (2.37)

Tissue effective diffusivities D̃n, D̃g , D̃w, D̃l, D̃b, D̃a, D̃s, D̃tgf ,

D̃taf , D̃m, D̃FE, D̃BnE, D̃LnE, and tissue effective mass transfer

coefficients λ̃B,n, λ̃B,g , λ̃B,w, λ̃B,l, are represented by ψ̃ and
determined as follow:

ψ̃ = ψ̃E Q3

(

φ̃E

)

+
[

1− Q3

(

φ̃E

)]

{

ψ̃T Q3

(

φ̃T

φ̃C

)

+ ψ̃H

[

1− Q3

(

φ̃T

φ̃C

)]}

(2.38)

where ψ̃E, ψ̃T , and ψ̃H are dimensionless diffusivity or transfer
coefficient in the ECM, tumor, and healthy-host cell domain
respectively. The total cell volume fraction is φ̃C = φ̃T +

φ̃H . The full list of parameters, constants, factors used in non-
dimensionalization, source terms, rate terms, and adjustment
factors can be found in Supplementary Tables 1–6.

We define the following Neumann boundary conditions for
the cell and ECM volume fractions, and Dirichlet boundary
conditions for solid cell pressure and chemical potentials at all
external boundaries:

n·∇φ̃V = n·∇φ̃D = n·∇φ̃E = 0,

p̃ = µ̃T = µ̃E = µ̃H = 0 (2.39)

where n is the outward normal of a boundary. For nutrients
and waste products, as well as tumorigenic species, Dirichlet
boundary conditions are imposed, with the exception of
myofibroblastic cell species, where Neumann boundary
conditions are applied:

ñ = g̃ = 1,

w̃ = ℓ̃= b̃= ã= s̃= ˜tgf = ˜taf = m̃= 0,

n·∇F̃E = 0. (2.40)

Blood and lymphatic vessels are assumed to be at their
corresponding far-field values at external boundaries:

B̃En=B̃∞ , L̃En=L̃∞ , (2.41)

where B̃∞ = L̃∞ = 0.2 is used here.

Numerical Methods
The mathematical model is first discretized in time and
space. After reorganizing the discretized equations, a non-linear
relaxation procedure is employed.

Computational Domain
We consider a rectangular 3D domain� = (Lx,Rx)×

(

Ly,Ry
)

×

(Lz ,Rz). Let the domain be discretized into Nx × Ny × Nz

cells. Bounded by boundary cells, the domain is covered by
the following sets of cell centers, cell edge points, and cell grid
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points:

C =
{(

xi, yj, zk
)
∣

∣ 0 ≤ i ≤ Nx + 1, 0 ≤ j ≤ Ny + 1, 0 ≤ k ≤ Nz + 1
}

(2.2.1)

Eew =
{(

xi+ 1
2
, yj, zk

)
∣

∣

∣
0 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz

}

, (2.2.2)

Ens =
{(

xi, yj+ 1
2
, zk

)∣

∣

∣
1 ≤ i ≤ Nx, 0 ≤ j ≤ Ny, 1 ≤ k ≤ Nz ,

}

, (2.2.3)

Etb =
{(

xi, yj, zk+ 1
2

)
∣

∣

∣
1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 0 ≤ k ≤ Nz ,

}

, (2.2.4)

G =
{(

xi+ 1
2
, yj+ 1

2
, zk+ 1

2

)
∣

∣

∣
0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny, 0 ≤ k ≤ Nz ,

}

(2.2.5)

where Eew, Ens, and Etb represent east-west, north-south, and
top-bottom sets of cell edges respectively, and G represents cell
corners. Let grid spaces be

1xi = xi+ 1
2
− xi− 1

2
,

1yj = 1yj+ 1
2
− yj− 1

2
,

1zk = zk+ 1
2
− zk− 1

2
, (2.2.6)

and if partitions in the three directions are uniform and equal:

1xi = 1xj = 1xk = η , (2.2.7)

η =
Rx − Lx

Nx
=

Ry − Ly

Ny
=

Rz − Lz

Nz
, (2.2.8)

for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, and 1 ≤ k ≤ Nz , we get the
following coordinates for cell centers and cell edges or corners
defined in Equations (2.2.1)–(2.2.5):

xi = Lx +

(

i−
1

2

)

η , yj = Ly +

(

j−
1

2

)

η ,

zk = Lz +

(

k−
1

2

)

η , (2.2.9)

xi+ 1
2
= Lx + i η , yj+ 1

2
= Ly + j η ,

zk+ 1
2
= Lz + k η , (2.2.10)

following their corresponding ranges indicated in Equations
(2.2.1)–(2.2.5).

The differential, Laplacian and flux terms associated with the
model are in Supplementary Materials.

Model Discretization
The model consists of a set of stiff differential equations that
are fourth-order in space. At time step a with time step size θ ,
they are discretized in time using the Crank-Nicolson Method
as in Wise et al. (2011). Details of the discretization as well
as the multigrid V-cycle iterations and non-linear Gauss–Seidel
relaxations are given in Supplementary Materials.

The tumor model solved using the adaptive full multigrid
V-cycle was coded in C and simulations were performed on a

FIGURE 1 | For simplification and ease of visualization, a two dimensional example is given here. The multigrid algorithm consists of a hierarchy of grid levels

κ = −2, . . . , 2, shown here on the top rowwith their corresponding subdomains/blocks. Level κ = 0 is the root level and levels κ = 1 and 2 are refinement levels.

Global levels κ = 0, −1, and −2 cover the entire computational domain, whereas refinement levels κ = 1 and 2 cover subdomains where refinement is needed.

Shown in the example here, the locally refined block-structured κ = 1 consists of one block, B1,1, and κ = 2 consists of two blocks, B2,1 and B2,2. The middle row

shows the corresponding meshes for each level. For refinement levels in the example here, mesh G1,1 for block B1,1, G2,1 and G2,2 for blocks B2,1 and B2,2. The

composite grids of all levels is shown in the last row.
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node equipped with 768 GB of RAM and 32 Intel Xeon 3.3 GHz
cores running CentOS 6.7 x86_64. The algorithms were partially
parallelized using OpenMP to achieve higher performance.

RESULTS

Self-Adaptive Full Multigrid Full
Approximation Scheme V-Cycle Algorithm
The self-adaptive full multigrid process combines FMG
with the self-adaptive approach. The process involves
constructing a multilevel block-structured mesh and
seeking the solution on the new mesh structure.
Mesh construction and refinement, as well as FAS
multigrid in an adaptive FMG setting were developed as
follows.

Multilevel Mesh Refinement
We start with a rectangular computational domain as described
in Methods. Each level κ covers a domain of �κ with mesh
size ηκ . Grid levels are numbered as κ = κmin, . . . , 0, . . . , κmax,
where κmin represents the coarsest mesh level and κmax the
finest. Global grid levels, κ = 0 − κmin, cover the entire
computational domain �κ = �. The finest global grid
level, κ = 0, is referred as the root level. Grid levels
κ = 1 to κ = κmax are levels with refined mesh
covering a domain of �κ+1 ⊆ �κ ⊆ �, each consists
of nκ rectangular blocks, Bκ ,1, . . . , Bκ ,nκ , of uniform grids,
Gκ ,1, . . . , Gκ ,nκ . Note that nκ = 1 for all global grid
levels. Cell-centered discretization is used with grid spacing
ηκ+1 =

ηκ
2 . The hierarchy of levels and meshes are shown in

Figure 1.
After solution is obtained for the current finest level, we use

the undivided gradient test (Wise et al., 2007) to tag cells for
refinement. The undivided gradient test is used to capture the
diffuse interface region (tumor-host cell domain). Let the critical
value of some indicative variable ψκ

(

x, y, z
)

be Cκ , cell-centered
coordinates on level κ be xi,j,k, the following test is performed on
cells on level κ :

Fκ =



















xi,j,k ∈ �κ |

√

√

√

√

√

√

[

ψi+1,j,k − ψi−1,j,k

]2

+
[

ψi,j+1,k − ψi,j−1,k

]2

+
[

ψi,j,k+1 − ψi,j,k−1

]2

> Cκ



















(3.1.1)

where Fκ are coordinates of flagged cells. Another criteria that
can be used to tag cells for refinement is the relative truncation
error test (Trottenberg et al., 2001). In the relative truncation
error test, the relative truncation error with respect to �κ and
�κ−1,

τ 2hh = Lκ−1

(

Rκ−1
κ ψa,r,ν1

κ

)

−Rκ−1
κ Lκ

(

ψa,r,ν1
κ

)

(3.1.2)

as used in Equation (3.1.20) in the FAS cycle, is used to flag cells
for refinement. A subroutine is created and called to perform this
task:

Fa,nκ = FLAG
(

ψa,r
κ

)

(3.1.3)

where the current finest-grid data is used and Fa,nκ is a list of
flagged coordinates.

The flagged cells are then rearranged into patches of
rectangular refined mesh in the next finer level using a clustering
algorithm from Bell et al. (1994) and Berger and Rigoutsos
(1991) with minor modification. Create a list of blocks and start
with just one block containing all flagged cells given by Fa,nκ .
The following procedure is used to divide flagged cells into
blocks:

(1) Compute efficiency of the block, which is the ratio of flagged
cells to total cells. If the efficiency is below the threshold
efficiency, and, if the size of the block is more than twice
the threshold size, then continue. Else, accept and add the
current block to the list, return to Step (1) for the next block
on the list.

(2) Compute signatures, which is the number of flagged cells
in each slice along each direction. Checking for gaps along
all dimensions starting from the longest edge, find a gap
closest to the center of that direction. If gaps exist and an
optimum gap location is found, slice the block into two
along the gap, and go to Step (5). If no gaps are found,
continue.

(3) Compute second derivatives of the signatures along all
directions. Checking for inflection points starting from
the longest edge, find an inflection point closest to
the center of that direction. If inflection points are
found and an optimum inflection location is found,
slice the block into two along the inflection point,
and go to Step (5). If no inflection points are found,
continue.

(4) If the efficiency of the block is above a minimum allowed,
accept and add the current block to the list, returning to
Step (1) for the next block on the list. Else, divide the block
into two along the mid-point of the longest dimension and
continue.

(5) Delete all empty slices along the edges of each block, and add
the two trimmed blocks to the list. Repeat from Step (1) until
all blocks created are checked.

The above task is assigned to the following subroutine of block
generation:

Bκ+1 = BLOCKGEN
(

threshold_eff , threshold_size, min_eff , Fa,nκ
)

(3.1.4)

where Bκ+1 is an array of blocks on the refined level κ + 1, with
rows of coordinates corresponding to corners of each block.

Following the generation of new refined grids on level κ + 1,
the new grids are populated with data from level κ and the old
level κ+1. All cell-centered data for variables on the newly refined
grids must be generated by higher order interpolation, such as
cubic interpolation given by Equations (3.1.28) and (3.1.29), from
the coarse grids below. If a new level κ + 1 grid cell overlaps
any old level κ + 1 grid cell, the previous time-step data for
the new grid cell is copied from the old. However, for any new
level κ + 1 grid cell that does not overlap with an old κ + 1
grid cell, its previous time-step data has to be obtained from
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the coarse grid below. For all old level κ + 1 grid cells that do
not overlap with any new κ + 1 grid cells, data are averaged
and stored in the coarse level κ grid. Refer to Figure 2 for
illustration.

After populating the newly refined grid, ghost cells
surrounding each grid patch must be constructed. We first
compute data for the ghost cells using the 5 quadratic
interpolation given by Colella et al. (2009). Illustrated in
Figure 3, quadratic interpolation is performed twice. First, to get
data from the coarse-grid for the intermediate points a and b:

Iκκ−1ψκ−1

(

x, y
)

=
1

32

[

30 ψκ−1

(

x, y−
ηκ

2

)

+5 ψκ−1

(

x, y+
3ηκ

2

)]

−3 ψκ−1

(

x, y−
5ηκ

2

)]

, (3.1.5)

Iκκ−1ψκ−1

(

x, y
)

=
1

32

[

30 ψκ−1

(

x, y+
ηκ

2

)

+5 ψκ−1

(

x, y−
3ηκ

2

)]

− 3 ψκ−1

(

x, y+
5ηκ

2

)]

, (3.1.6)

respectively. Then, to compute fine-grid boundary data on
ghost cell c, perform quadratic interpolation using points a,
e, and g. Similarly, interpolate using points b, f , and h to
obtain data at ghost cell d. Following Wise et al. (2007),
all ghost cells of each fine-grid patch are first filled using
the quadratic interpolation above. If a ghost cell falls on
a cell on any neighboring fine-grid patches of the same
level, then the ghost cell data is replaced by the more
accurate cell-centered data from the cell of the neighboring
patch.

Adaptive FAS V-Cycle
Consider a case with κ grid levels with κ = 0 being the root
level. The levels κ = κmax and κ = κmin represent the level
with the finest and coarsest grid, respectively. Each level of
κ > 0 contains one or more blocks of refined rectangular grids
covering a subdomain �κ , whereas levels κ ≤ 0 cover the entire
computational domain�κ = �.

Averaging is used for the restriction operator Rκ−1
κ :

Rκ−1
κ ψκ

(

x, y, z
)

=
1

8

[

ψκ

(

x−
ηκ

2
, y−

ηκ

2
, z −

ηκ

2

)

+ψκ

(

x−
ηκ

2
, y+

ηκ

2
, z −

ηκ

2

)

+ ψκ

(

x+
ηκ

2
, y−

ηκ

2
, z −

ηκ

2

)

+ψκ

(

x+
ηκ

2
, y+

ηκ

2
, z −

ηκ

2

)

+ ψκ

(

x−
ηκ

2
, y−

ηκ

2
, z +

ηκ

2

)

+ψκ

(

x−
ηκ

2
, y+

ηκ

2
, z +

ηκ

2

)

+ ψκ

(

x+
ηκ

2
, y−

ηκ

2
, z +

ηκ

2

)

+ψκ

(

x+
ηκ

2
, y+

ηκ

2
, z+

ηκ

2

)]

(3.1.7)

which reduces to a four-point average in a 2D case. Linear
interpolation is used for the prolongation operators Pκκ−1
in error correction steps within a V-cycle. In the 2D cell-
centered discretization cases as depicted in Figure 4, the bilinear
interpolation operators are given by Trottenberg et al. (2001):

Pκκ−1ψκ−1

(

x, y
)

=
1

16

[

9 ψκ−1

(

x−
ηκ

2
, y+

ηκ

2

)

+3 ψκ−1

(

x−
ηκ

2
, y−

3ηκ

2

)

+ 3 ψκ−1

(

x+
3ηκ

2
, y+

ηκ

2

)

+ψκ−1

(

x+
3ηκ

2
, y−

3ηκ

2

)]

(3.1.8)

Pκκ−1ψκ−1

(

x, y
)

=
1

16

[

9 ψκ−1

(

x+
ηκ

2
, y+

ηκ

2

)

+3 ψκ−1

(

x+
ηκ

2
, y−

3ηκ

2

)

+ 3 ψκ−1

(

x−
3ηκ

2
, y+

ηκ

2

)

+ψκ−1

(

x−
3ηκ

2
, y−

3ηκ

2

)]

(3.1.9)

Pκκ−1ψκ−1

(

x, y
)

=
1

16

[

9 ψκ−1

(

x−
ηκ

2
, y−

ηκ

2

)

+3 ψκ−1

(

x−
ηκ

2
, y+

3ηκ

2

)

+ 3 ψκ−1

(

x+
3ηκ

2
, y−

ηκ

2

)

+ψκ−1

(

x+
3ηκ

2
, y+

3ηκ

2

)]

(3.1.10)

Pκκ−1ψκ−1

(

x, y
)

=
1

16

[

9 ψκ−1

(

x+
ηκ

2
, y−

ηκ

2

)

+3 ψκ−1

(

x+
ηκ

2
, y+

3ηκ

2

)

+ 3 ψκ−1

(

x−
3ηκ

2
, y−

ηκ

2

)

+ψκ−1

(

x−
3ηκ

2
, y+

3ηκ

2

)]

(3.1.11)

for points marked a, b, c, and d, respectively. For 3D cases as
shown in Figure 5, trilinear interpolation produces the following
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FIGURE 2 | Populating a newly refined grid. For simplification and ease of visualization, a two dimensional example is illustrated here. An existing block, with its

boundary marked by - -, is overlapped by a newly refined block with boundary marked by . All cell-centered variable data on the newly refined grid are obtained

via cubic interpolation from the coarse grid data below. The previous time-step data for the new grid points (•), which overlap old grid points, are copied directly from

the old grid points they overlap; for new grid points (N) that do not overlap with any old grid, their previous time-step data are obtained from the coarse grid below.

The remaining data on the old grid (◦) that do not overlap any of the new grid points are averaged and copied to the coarse grid data points (×).

FIGURE 3 | Interpolation at fine-grid ghost layers. For simplification and ease of visualization, a two dimensional illustration is presented. The coarse grid mesh is

shown using thick solid lines, and the finer grid mesh is shown using thin solid lines. The internal cell-centered grid points of the finer grid are depicted by (N) and its

external/ghost grid points are represented by (◦). Only relevant cell-centered grid points (�) on the coarse grids are shown. First, data on intermediate points (×) are

obtained using quadratic interpolation from their nearest three coarse grid points (�). Corner ghost cells (◦) are obtained by quadratic interpolation using the nearest

coarse-grid data (�) and two fine-grid data (N) on the diagonal, shown by green dashed lines. Remaining ghost cells (◦) are obtained from the intermediate points (×)

and two fine-grid interior points (N), shown by red dashed lines.

Frontiers in Physiology | www.frontiersin.org 8 July 2018 | Volume 9 | Article 821

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Ng and Frieboes Multispecies Desmoplastic Cancer Simulation

Pκκ−1ψκ−1

(

x, y, z
)

=
1

64

[

27 ψκ−1

(

x+
ηκ

2
, y−

ηκ

2
, z ±

ηκ

2

)

+9 ψκ−1

(

x+
ηκ

2
, y+

3ηκ

2
, z ±

ηκ

2

)

+ 9 ψκ−1

(

x+
ηκ

2
, y−

ηκ

2
, z ∓

3ηκ

2

)

+9 ψκ−1

(

x−
3ηκ

2
, y−

ηκ

2
, z ±

ηκ

2

)

+ 3 ψκ−1

(

x+
ηκ

2
, y+

3ηκ

2
, z ∓

3ηκ

2

)

+3 ψκ−1

(

x−
3ηκ

2
, y+

3ηκ

2
, z ±

ηκ

2

)

+ 3 ψκ−1

(

x−
3ηκ

2
, y−

ηκ

2
, z ∓

3ηκ

2

)

+ψκ−1

(

x−
3ηκ

2
, y+

3ηκ

2
, z ∓

3ηκ

2

)]

(3.1.12)

Pκκ−1ψκ−1

(

x, y, z
)

=
1

64

[

27 ψκ−1

(

x+
ηκ

2
, y+

ηκ

2
, z ±

ηκ

2

)

+9 ψκ−1

(

x+
ηκ

2
, y−

3ηκ

2
, z ±

ηκ

2

)

+ 9 ψκ−1

(

x+
ηκ

2
, y+

ηκ

2
, z ∓

3ηκ

2

)

+9 ψκ−1

(

x−
3ηκ

2
, y+

ηκ

2
, z ±

ηκ

2

)

+ 3 ψκ−1

(

x+
ηκ

2
, y−

3ηκ

2
, z ∓

3ηκ

2

)

+3 ψκ−1

(

x−
3ηκ

2
, y−

3ηκ

2
, z ±

ηκ

2

)

+ 3 ψκ−1

(

x−
3ηκ

2
, y+

ηκ

2
, z ∓

3ηκ

2

)

+ψκ−1

(

x−
3ηκ

2
, y−

3ηκ

2
, z ∓

3ηκ

2

)]

(3.1.13)
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ηκ
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ηκ
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2
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)

FIGURE 4 | Arrangement of unknowns in 2D cell-centered discretization.

+ψκ−1

(

x+
3ηκ

2
, y+

3ηκ

2
, z ∓

3ηκ

2

)]

(3.1.14)

Pκκ−1ψκ−1

(

x, y, z
)

=
1
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27 ψκ−1
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ηκ

2
, y+

ηκ
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, z ∓
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2
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3ηκ

2

)
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2
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3ηκ

2
, z ∓

3ηκ

2

)]

(3.1.15)

for points a and c, b and d, e and g, f and h, respectively. The
coarse grid operator Lκ−1 is generated in a way that is analogous
to the computation of Lκ on the fine grid. Alternatively, the
Galerkin coarse grid operator can be used:

Lκ−1 = Rκ−1
κ LκP

κ
κ−1 (3.1.16)

where Rκ−1
κ and Pκκ−1 are appropriately chosen transfer operators

(Trottenberg et al., 2001).
A FAS V-cycle consists of two iterating components. The

outer time iteration travels through one V–loop, starting
from the finest mesh level, looking for the fixed point
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FIGURE 5 | Arrangement of unknowns in 3D cell-centered discretization.

solution of L
(

ψ
a,r
i,j,k

,ψa,r−1
i,j,k

)

= R
(

ψa−1
i,j,k

,ψa,r−1
i,j,k

)

as derived in

Supplement (Multigrid V–Cycle Iterations). Starting from ψa,0,
each successive V–cycle produces an approximation that is
converging toward the fixed point solution, ψa, at the current
time step a. After r∗ outer time iterations (after r∗ V–loops), if
the approximation ψa,r∗ results in an error within a tolerable
bound, an approximated solution for the current time step is
established by ψa = ψa,r∗. The inner iteration is the non-
linear Gauss-Seidel relaxation as described in Supplement (Non-
linear Gauss–Seidel Relaxations) and given in Supplementary
Equation (1.4.39). This procedure occurs twice on each level.
Relaxation first takes place during the error smoothing step
while traveling down from the finest to the coarsest grid
level, and again after coarse grid correction while going up
from the coarsest to the finest grid level. Hence, the starting
approximation for the error smoothing step is obtained from the
previous iteration ψa,r,0

κ =ψa,r−1
κ or restricted from the relaxed

fine-grid approximation ψa,r,0
κ =Rκ−1

κ ψ
a,r,ν1
κ+1 , whereas the coarse-

grid-corrected approximation ψa,r,0
κ =ψa,r,CGC

κ is used during the
correction step.

The computation of a new time iterate ψa,r
κ using an adaptive

FASmultigrid-cycle, starting with any of the refined or global grid
levels described in the Multilevel Mesh Refinement subsection,
can be done recursively using a two–level model as summarized
in the operator below (Brandt, 1977; Trottenberg et al., 2001;
Wise et al., 2007).

Recursive adaptive cycle operator:

ψa,r
κ = ADAPFAS

(

κ , γ , ν0, ν1, ν2, ψa,r−1
κ ,ψa,r−1

κ−1 ,Lκ , Rκ

)

(3.1.17)

I. Pre-smoothing – Compute a smoothed approximation
ψa,r,ν1
κ by applying ν1 smoothing steps to ψa,r−1

κ on�κ :

ψa,r,ν1
κ = SMOOTH

(

ν1, ψa,r−1
κ , Lκ , Rκ

)

(3.1.18)

II. Coarse-grid correction: – Initialize the coarse-grid iterate:

ψ
a,r,0
κ−1 =

{

Rκ−1
κ ψa,r,ν1

κ on�κ−1 ∩�κ

ψ
a,r−1
κ−1 on�κ−1 −�κ

(3.1.19)

– Update the ghost cells on κ − 1 level using interpolation
and exchange for ψ

a,r,0
κ−1 on neighboring patches.

– Compute the coarse-grid RHS:

Rκ−1 =







Rκ−1
κ

[

Rκ−Lκ
(

ψa,r,ν1
κ

)]

+Lκ−1

(

Rκ−1
κ ψa,r,ν1

κ

)

on�κ−1 ∩�κ
Rκ−1 on�κ−1 −�κ

(3.1.20)
– Compute an approximate solution ψ

a,r
κ−1 of the following

coarse-grid equation on�κ−1:

Lκ−1

(

ψ
a,r
κ−1

)

=Rκ−1 (3.1.21)

If κ = κmin + 1, employ a direct solver or perform ν0
smoothing steps:

ψ
a,r
κmin

= SMOOTH
(

ν0, ψa,r,0
κmin

, Lκmin , Rκmin

)

(3.1.22)

If κ > κmin + 1, solve Equation (3.1.21) by employing γ
adaptive FAS cycle using ψ

a,r,0
κ−1 as initial approximation:

ψ
a,r
κ−1 = ADAPFAS

(

κ − 1, γ , ν0, ν1, ν2, ψ
a,r,0
κ−1,

ψ
a,r−1
κ−2 , Lκ−1, Rκ−1

)

(3.1.23)
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– Arrive at approximation for time iteration r on�κ−1 −

�κ :

ψ
a,r
κ−1 = ψ

a,r
κ−1 (3.1.24)

– Compute coarse-grid correction on�κ−1 ∩�κ :

ea,rκ−1 = ψ
a,r
κ−1−ψ

a,r,0
κ−1 (3.1.25)

– Interpolate the correction and compute the coarse-grid
corrected approximation on�κ :

ψa,r,CGC
κ = ψa,r,ν1

κ +Pκκ−1e
a,r
κ−1 (3.1.26)

– Update the ghost cells on κ level using interpolation
and exchange for ψa,r,CGC

κ on neighboring patches.

III. Post-smoothing:
Compute ψa,r

κ by applying ν2 smoothing steps toψa,r,CGC
κ

on�κ :

ψa,r
κ = SMOOTH

(

ν2 , ψa,r,CGC
κ , Lκ , Rκ

)

(3.1.27)

– Update the ghost cells on κ level using interpolation and
exchange for ψa,r

κ on neighboring patches.

V– or W–cycle is defined via the cycle index γ = 1 and
γ = 2, respectively. The initial value used in V-cycles may come
from the converged solution at previous time ψa,0 = ψa−1 or
from coarse-grid approximations as in FMG method described
in the next section. The SMOOTH routine in Equations (3.1.18),
(3.1.22), and (3.1.27) uses Red-Black (or odd-even) ordering for
the relaxation process, with νb extra smoothing steps for dκ cells
within the boundaries.

Adaptive FMG Structure
In FMG, a better initial approximation for finer-grid iteration is
obtained from a coarser-grid level (Kronsjö and Dahlquist, 1972;
Brandt, 1977). The procedure begins with a set of solutions on
the coarsest grid, followed by interpolation of the solution set
to a fine-grid level, providing an initial guess for the fine-grid
multigrid approximation. After a fewmultigrid cycles on the fine-
grid level, the solution is again interpolated to the next fine-grid
level. This proceeds until the finest grid level has been reached, if
refinement is needed for each level κ > 0. Discretization accuracy
can be reached on each grid level within a few multigrid cycles
in this manner. The structure of full multigrid is illustrated in
Figure 6.

A higher order scheme is normally employed for an FMG
interpolation. Cubic Lagrangian interpolation is one such
method used in the FMG interpolation steps to compute an
approximation at the fine grid. In 1D as depicted in Figure 7,

approximation ψκ (x) at the fine grid point can be computed as

Πκ
κ−1ψκ−1 (x) =

1

128

[

− 7 ψκ−1

(

x−
5ηκ

2

)

+105 ψκ−1

(

x−
ηκ

2

)

+ 35 ψκ−1

(

x+
3ηκ

2

)

−5 ψκ−1

(

x+
7ηκ

2

)]

(3.1.28)

Πκ
κ−1ψκ−1 (x) =

1

128

[

− 7 ψκ−1

(

x+
5ηκ

2

)

+105 ψκ−1

(

x+
ηκ

2

)

+ 35 ψκ−1

(

x−
3ηκ

2

)

−5 ψκ−1

(

x−
7ηκ

2

)]

(3.1.29)

for point a and b respectively. Cubic interpolation in the y- and
z-directions for bicubic and tricubic interpolation, in 2D and 3D
cases, respectively, are analogous to the 1D calculation shown.

FMG can be performed on locally refined grids which are
defined a priori. Here, we use self-adaptive FMG, where refined
grids may or may not be generated, one layer at a time, based on
some predefined criteria. Self-adaptive FMG advances as follows:

(1) Perform FMG on a series of global grids until a satisfactory
accuracy has been obtained on grid level κ = 0.

(2) Determine if refining the finest grid would be beneficial,
based on the criteria outlined in the Multilevel Mesh
Refinement subsection. If no, iteration stops. If yes, refine
grid in local regions.

(3) Use cubic interpolation on the current fine-grid (κ)
approximation to compute an initial guess for the refined
grid level (κ + 1), proceed by performing a number of
multigrid cycles on the refined level until the required
accuracy has been satisfied.

(4) If the finest level κmax has been reached, the time iteration
stops. Otherwise, return to Step (2).

Let tolκ , γκ , and rκ be the residual tolerance, cycle index, and
number of multigrid cycles performed on level κ . The self-
adaptive FMG-FAS iteration is given by the following:

Initialize ψa=0
κ , κ = κmin, . . . , κmax

Set γκ , rκ , and tolκ , κ = κmin, . . . , κmax

For a = 1, amax

Set ψa,r=0
κ = ψa−1

κ , κ = κmin, . . . , κmax

ψa
κ= FMG (κ , γ ,ν0,ν1,ν2,tolk) , κ = κmin, . . . , κmax (3.1.30)

End For

The recursive FMG routine from Rude (1993) is modified for
Equation (3.1.30) above and shown as the following:
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FIGURE 6 | FMG on self-adaptive grids. Beginning on a series of global coarse grids, finer grid is introduced a layer per multigrid cycle. ⊗ represents solution on the

coarsest grid; ⊗ represents smoothing on global grid levels; • represents smoothing on refined grid levels; indicates FMG interpolation; ց indicates restriction; and

ր indicates prolongation.

FIGURE 7 | Arrangement of unknowns in 1D cell-centered discretization.

For κ = κmin, κmax

If κ = κmin, employ a direct solver or perform ν0
smoothing steps at the coarsest level and return the solution:

ψ
a,0,ν0
κmin

= SMOOTH
(

ν0, ψa,r=0
κmin

, Lκmin , Rκmin

)

Else
If κ < 0, perform rκ multigrid V-cycles at level κ :

r = r + 1

ψa,r
κ = ADAPFAS

(

κ , γκ , tolκ , ν0, ν1, ν2, ψa,r−1
κ ,ψa,r−1

κ−1 ,

Lκ , Rκ

)

Else perform multigrid V-cycles at level κ until the
approximation yields an error within bound:
Do

r = r + 1

ψa,r
κ = ADAPFAS

(

κ , γκ , tolκ , ν0, ν1, ν2, ψa,r−1
κ ,ψa,r−1

κ−1 ,

Lκ , Rκ

)

While
∥

∥Rκ−Lκ
(

ψa,r
κ

)
∥

∥ > tolκ
End If
If κ < 0, interpolate the coarse-grid solution to obtain
fine-grid initial guess:

ψ
a,r−1
κ+1 = Πκ+1

κ ψa,r−1
κ

Else

If 0 ≤ κ < κmax, flag cells on level κ to determine if
refinement is needed:

Fa,r−1
κ = FLAG

(

ψa,r−1
κ

)

If any cells are flagged to be refined, generate blocks on level
κ + 1 accordingly:

Bκ+1 = BLOCKGEN
(

threshold_eff , threshold_size, min_eff ,

F
a,r−1
κ

)

Then interpolate the coarse-grid solution to obtain fine-grid
initial guess:

ψ
a,r−1
κ+1 = Πκ+1

κ ψa,r−1
κ

End If
End For

A parameter σ is used to adapt the accuracy to the different
level of meshes. Tolerance is reduced by σ for each finer mesh

level, tolκ =
tolκ−1
σ

. The parameter σ and the initial value of
tolerance have to be selected with care in order to ensure the
overall accuracy of the final grid structure.

System Solution
Next, we applied the fully adaptive non-linear FMG algorithm
to solve the desmoplastic tumor model. The set of tumor model
related parameters, constants, source terms, rate expressions,
and adjustment factors are listed in Supplementary Tables 1–6.
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We assume that the tissue consists of a fixed fraction of liquid
interstitial-fluid phase (φβ = 0.2) and solid cell-ECM phase
(φα = 0.8). We also assume that the solid cell-ECM phase is
only composed of viable tumor cells (φ̃V ), dead tumor cells
(φ̃D), extracellular matrix ECM (φ̃E), and healthy host cells (φ̃H).
Nutrients, waste products, and tumorigenic species are assumed
to be carried in the liquid phase, while the myofibroblastic
cell species (F̃E), blood (B̃En) and lymphatic (L̃En) microvessels
are assumed to take up negligible volume and exist within the
continuous ECM component.

We assume that the source and sink of viable tumor cells
comes from cell proliferation and losses to necrosis respectively.
The dead tumor cell species hence comes from the necrosed
viable tumor cells and undergoes lysis. The ECM is assumed
to be secreted by the myofibroblastic cell species and degraded
by the matrix degrading enzyme species (m̃). The healthy host
cells species is assumed to be homeostatic. Nutrients such as
oxygen (ñ) and glucose (g̃) enter the tissue via blood vessels
and are consumed mainly by the viable tumor species. Tumor

growth factors ( ˜tgf ) and tumor angiogenic factors ( ˜taf ) are
assumed to be secreted by viable tumor cells and can undergo
degradation. Tumor angiogenic factors also have an uptake term
by proliferating vessels. Myofibroblastic cell species is assumed to
go through proliferation, apoptosis, and necrosis, while the blood
and lymphatic vessels undergo restructuring and potential loss
due to crushing by the surrounding tissue pressure. To slightly
perturb the symmetry of tumor progression, we let the fraction of
blood vessels that are sprouting be different in different regions of
the domain, ranging from 0.1 to 0.8.

As described in Methods, all PDEs were discretized using
the Crank-Nicolson method. To solve the set of cell-centered
discretized equations, we applied full multigrid algorithm and
adaptive full approximation scheme V-cycle with Gauss-Seidel
Red-Black smoothing to the multiple grid level system. Here, we
use a total of five grid levels as depicted in Figure 1, with three
increasingly refined global levels (κ = −2, −1, 0) covering the
entire domain� and two adaptively refined levels (κ = 1, 2). The
domain is � = (0, 40)3 and the mesh sizes for the finest global
level to the finest adaptively refined level are η0 = 40/32, η1 =

40/64, and η2 = 40/128. The time step-size used is θ = 1× 10−2

and minimum tolerance is set at 5 × 10−4. Key solver related
parameters are listed in Table 1.

The center of the computational domain is simply seeded with
viable tumor cells (φ̃V = 0.65) at the beginning of the simulation.
We assume that there are no dead tumor cells (φ̃D = 0) initially
and the ECM is distributed evenly (φ̃E = 0.35) across the domain.
The healthy host cells thus take up the remaining volume in the
solid phase of the tissue. The initial tumor shape is therefore
rectangular with a sharp interface. The simplified source term for
the viable tumor cell species used in Equation (2.1), where only
mitosis and necrosis are considered, is given by:

S̃V =
{

λ̃M,V ñ
(

1+ ˜tgf
)

H (ñ− ñh)

−λ̃N,V

[

1−H
(

ñ− ñv,V
)

H
(

g̃ − g̃v,V
)]

}

φ̃V , (5.1)

where H is the Heaviside function, ñh = 0.3 is the hypoxic level
of oxygen, λ̃M,V = 1 and λ̃N,V = 3 are the rate constants of

mitosis and necrosis, respectively, for viable tumor cells. ñv,V =

0.21 and g̃v,V = 0.1 are the oxygen and glucose viability limits,
respectively, for the viable tumor cell species. The mitosis rate is
assumed to be upregulated by the level of tumor growth factors.
The center of the tumor mass experiences a significant drop in
nutrient levels. When the oxygen level drops below the hypoxic
level, viable tumor cells cease to reproduce. Necrosis takes place if
the oxygen level falls below the viability limit, where viable tumor
cells necrosed to dead tumor cells. The source term for the dead
tumor cell species in Equation (2.2) is hence given by

S̃D = λ̃N,V

[

1−H
(

ñ− ñv,V
)

H
(

g̃ − g̃v,V
)]

φ̃V − λ̃L,Dφ̃D , (5.2)

where λ̃L,D = 1 is the lysis rate constant for the dead tumor
cell species. The lysed dead tumor cells are assumed loss to the
interstitial fluid. The other major solid component of the tissue is
the ECM, and its source term used in Equation (2.3) is

S̃E = λ̃F,EAF,EF̃ − λ̃de,Em̃φ̃E , (5.3)

where λ̃F,E = 5 is the secretion rate constant of ECM by the
myofibroblastic cell species F̃ and λ̃de,E = 5 is the degradation
rate constant of ECM by the matrix degrading enzyme species
m̃. Factors affecting the rate constant of ECM secretion by the
myofibroblastic cell species are included in the adjustment factor
AF,E given by

AF,E =

(

1− φ̃T − φ̃E

) (

1+ ˜tgf
) [

1+ FF
n,E

ñh−ñ
ñh−ñv,F

H (ñh − ñ)
]

H
(

ñ− ñv,F
)

H
(

˜tgf − ˜tgf F,E

)

H
(

1− φ̃T − φ̃E

)

(5.4)

where FF
n,E = 2 is the effective factor of hypoxia on upregulating

the production of ECM by myofibroblastic cells and ñv,F =

0.21 is the oxygen viability limit of the myofibroblastic cell

species. The constant ˜tgf F,E = 0.2 is a lower threshold of tumor
growth factors, below which the production of ECM by the
myofibroblastic cell species is assumed negligible. A complete list
of source terms, rate expressions, and adjustment factors is shown
in Supplementary Table 6.

The transient tumor progression is shown in Figure 8, via
tracking the evolution of the tumor isosurface φ̃T = 0.15.
With the specific set of constants and parameters used in this
case, the tumor undergoes regression in the time frame shown.
Nutrients levels drop below the viability limit in the center of
the tumor mass, causing dead tumor cells to accumulate from
necrosed viable tumor cells, which are then lysed from the tumor
mass. The increase in tumor growth factors in the tumor region
upregulates the secretion of ECM by the myofibroblastic cell
species, resulting in a high ECM environment within the tumor
mass (as in Figure 9).

As mentioned in Results (Adaptive FMG Structure), a higher
order scheme is normally used in the FMG interpolation step
when interpolating the solution to a finer grid level. Trilinear
interpolation as shown in Equations (3.1.12–3.1.15) and cubic
interpolation given in Equations (3.1.28) and (3.1.29) are used in
the FMG interpolation step and the simulation results for time
= 10 are compared in Figure 9. The ECM and viable tumor
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TABLE 1 | Solver related parameters.

γ = 1 Cycle index (1 for V-cycle, 2 for W-cycle)

ν0 = 4 Number of smoothing steps on the coarsest grid level κ−2 (set to ν1 + ν2)

ν1 = 2 Number of pre-correction smoothing steps during a V-cycle

ν2 = 2 Number of post-correction smoothing steps during a V-cycle

νb = 2 Number of extra smoothing steps near boundaries

dκ =

{

2κ+2 , forκ ≤ 0
min

(

dx ,dy ,dz
)

8 , forκ > 0

Number of cells inward from a boundary to be included in the near-boundary extra smoothing steps

Set to 2κ−κmin for κ ≤ 0

Set to 1
8 of the minimum block dimension (in x-, y-, and z-direction) for κ > 0

rκ = 1 Number of V-cycles (iterations) performed before the finest global level is reached (for levels κmin < κ < 0, which is r−1 here)

σ = 4 Factor by which the tolerance is reduced from level κ to κ + 1

Cκ = 0.05 Critical value used in the undivided gradient test in the FLAG routine

threshold_eff = 0.9 Upper limit of efficiency, any blocks below this limit will go through the splitting algorithm. (Used in the BLOCKGEN routine)

threshold_size = 103 Minimum size of a block allowed. (Used in the BLOCKGEN routine)

min _eff = 0.5 Lowest limit of efficiency allowed, any blocks below this limit will be bisected. (Used in the BLOCKGEN routine)

FIGURE 8 | The transient φT = 0.15 isosurface at time = 10, 30, and 50. The total tumor volume fraction φT = φV + φD. The center of the domain is initially seeded

with viable tumor cells φV = 0.65. The starting extracellular matrix volume fraction is set to be homogenously distributed across the domain at φE = 0.35. The

remaining volume fraction is thus made up by healthy host cells, denoted by φH.

levels are slightly higher in the case where cubic interpolation
is used, resulting in higher solid cell–ECM phase pressure. Since
the myofibroblastic cell species and vessels are assumed to reside
within the ECM component, the higher ECM volume fraction in
the high order scheme case also results in higher myofibroblastic
cell species (presented in green as myF) and vessel densities
(presented in red as Bn for blood and blue as Ln for lymphatic)
in tissue. Concentration profiles of interstitial fluid based species
show no visible difference in the two cases.

The adaptive block-structured mesh system for the simulation
in Figures 8, 9 at time = 50 is shown in Figure 10. For global
level κ = 0, there is one block (shown in black) covering the
entire domain with mesh size η0 = 40/32. In the first level of
refinement at level κ = 1, there are four blocks (shown in green)
with mesh size η1 = 40/64. In the next level of refinement at
level κ = 2 and within the coarser domain �1, there are six
blocks (shown in red) with mesh size η2 = 40/128. As shown
in Table 1, the critical value of Cκ = 0.05 in Equation (3.1.1)
is used in the undivided gradient test to flag cells for refinement.
We also buffer each flag cell by flagging four cells surrounding

it in each direction, creating a cube of 9 × 9 × 9 flagged
cells, or less if it is near any external or ghost boundaries. The
thresholdsize sets the minimum block size to 103, resulting in
overall bigger blocks generated by the BLOCKGEN routine in
Equation (3.1.4).

In Figure 11, the transient degree of freedom (DOF) for the
simulation in Figures 8, 9 is plotted. The degree of freedom
is represented by the total cell-centered grid points in the 3D
domain. The mesh with just the three global levels (κ =

−2, −1, 0) has only 37,376 DOF. In the first iteration, both
refinement levels (κ = 1, 2) begin to contain flagged cells
and the mesh now has 224,640 DOF. At time = 50, there
are 554,568 DOF, increased by a factor of 2 from the first
iteration.

A 3D convergence test as described in Wise et al. (2007)
was done by varying grid and time-step sizes. Three simulations
were performed where grid spacings used for the root level
κ = 0 are 163, 323, and 643, respectively. We focused on the
convergence of the tumor volume fraction, φ̃T , and in all three
cases, data were interpolated to the cell centers of their global
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FIGURE 9 | 1-D Profiles of species with trilinear (left side) vs. cubic (right side) interpolation used in FMG-interpolation at time = 10 (sliced at j = k = 58). First row:

tumor viable species φ̃V , dead species φ̃D, and ECM species φ̃E . The overall tumor pressure is labeled by pα . Second row: diffusible substances driving the tumor

evolution, including oxygen (O2), glucose (Glu), carbon dioxide (CO2), bicarbonate (Bic), lactate (Lac), and hydrogen ions (H+). Third row: Concentration of

myfibroblasts (myF), tumor growth factors (TGF), and matrix degrading enzymes (MDE). Fourth row: corresponding density of blood vasculature (Bn), lymphatic

vasculature (Ln), and tumor angiogenic factors (TAF). The myofibrobrastic cell species density in tissue (shown in the third row of plots as myF) is computed by

F̃ = F̃E φ̃E . Similarly, the blood and lymphatic vessel densities in tissue (shown in the last row of plots as Bn and Ln) are given by B̃n = B̃En φ̃E and L̃n = L̃En φ̃E
respectively.

uniform grids corresponding to their finest mesh ηκmax . With
κmax = 2, the grid sizes η2 and the corresponding time step
sizes θ , which follow the linear refinement path θ = 0.032η,
are outlined in Table 2. The errors were calculated by comparing
cell center data to the averaged cell center data of the finer grid
set, and the l2 norms of the errors were used to obtain the
convergence rates as shown in Wise et al. (2007). The errors and
the rate of convergence are also listed in Table 2. The results
show that the algorithm presented herein is first-order accurate.
Even though the discretization is second order in both time
and space, the first-order rate of convergence attained, as also
reported by Wise et al. (2011), is expected since the surface
adhesion terms in Supplementary Equation (1.2.6) were treated
explicitly. Non-smooth functions used in adjustment factors
and first order interpolation function used in prolongation
are other potential contributing factors to the first-order
convergence.

DISCUSSION

This paper illustrates the application of a fully adaptive, non-
linear full multigrid, finite-difference algorithm to solve a diffuse
interface desmoplastic tumor system (Ng and Frieboes, 2017).
The set of PDEs in the model is discretized in time using
the Crank-Nicolson method. A Non-linear Full Approximation
Scheme is used in the full multigrid V-cycle iterations, and Red-
Black ordering is used in the Gauss-Seidel relaxation. A block-
structure multilevel Cartesian mesh isused consisting of three
global levels with mesh sizes η−2 = 40/8, η−1 = 40/16, η0 =

40/32, and two adaptively refined levels with mesh sizes η1 =

40/64, η2 = 40/128. A numerical simulation of desmoplastic
tumor progression in 3D which shows that the algorithm is
capable of simulating an ECM-rich tumor environment and the
handling of morphological changes during tumor progression
(Ng and Frieboes, 2017).
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FIGURE 10 | φT = 0.15 isosurface at time = 50 shown with the blocks of the block-structured mesh in the global and refined levels. There is one block (black)

covering the entire global domain on the global level = 0 with the mesh spacing η0 = 40/32. There are two levels of refinement. Blocks covering the refined level = 1

(green) correspond to mesh spacing η1 = 40/64, whereas blocks on the refined level = 2 (red) correspond to mesh spacing η2 = 40/128.

FIGURE 11 | Degree of freedom, represented by total cell-centered grid

points in the 3D domain, from time = 0 to 50. Here, external boundary and

internal (ghost) boundary grid points are not accounted.

The diffuse interface model is chosen to bypass the need
to track the transient position of sharp interfaces, as well
as enforcing complicated boundary conditions across these

TABLE 2 | Errors and convergence rate.

Global level

κ = 0 grids

163 323 643

Grid sizes for

ηκmax
= η2

40
64

40
128

40
256

Time step

sizes θ

2× 10−2 1× 10−2 5× 10−3

Error 3.41765× 10−3 1.76463× 10−3

Rate 0.95364

interfaces, such as those required in a sharp interface model.
The adaptive multigrid algorithm used can efficiently handle
the narrow transition layers as well as larger morphological
evolutions. As opposed to lexicographic ordering, the
Red-Black sweep used here in relaxations/error smoothings
allows for easy parallelization to minimize the computational
expense.

In the future, 3D meshes with more refinement levels and
finer grids will be evaluated. Different criteria, such as the
relative truncation error test or a simple volume fraction test,
will be used to flag cells for refinement, and the minimum block
size allowed during block generation will also be reduced. The

Frontiers in Physiology | www.frontiersin.org 16 July 2018 | Volume 9 | Article 821

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Ng and Frieboes Multispecies Desmoplastic Cancer Simulation

mathematical model may be augmented to include additional
tumor cell species as well as immune cell species, together
with their corresponding functions and effects. Tumorigenic
species such as hormonal growth factors and chemoattractants
could be added. An anticancer drug species may be added to
study various tumor responses to different therapeutics. A more
expansive role and interaction of the lymphatic system with the
microenvironment (e.g., Scianna et al., 2013; Swartz, 2014) could
be implemented. The current numerical model is coded in C and
is partially parallelized. Full parallelization of the program will be
explored to speed up and extend the capabilities of the code to
handle models of larger scale.
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