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Abstract Neurons respond selectively to stimuli, and thereby define a code that associates

stimuli with population response patterns. Certain correlations within population responses (noise

correlations) significantly impact the information content of the code, especially in large

populations. Understanding the neural code thus necessitates response models that quantify the

coding properties of modelled populations, while fitting large-scale neural recordings and

capturing noise correlations. In this paper, we propose a class of response model based on mixture

models and exponential families. We show how to fit our models with expectation-maximization,

and that they capture diverse variability and covariability in recordings of macaque primary visual

cortex. We also show how they facilitate accurate Bayesian decoding, provide a closed-form

expression for the Fisher information, and are compatible with theories of probabilistic population

coding. Our framework could allow researchers to quantitatively validate the predictions of neural

coding theories against both large-scale neural recordings and cognitive performance.

Introduction
A foundational idea in sensory neuroscience is that the activity of neural populations constitutes a

‘neural code’ for representing stimuli (Dayan and Abbott, 2005; Doya, 2007): the activity pattern

of a population in response to a sensory stimulus encodes information about that stimulus, and

downstream neurons decode, process, and re-encode this information in their own responses.

Sequences of such neural populations implement the elementary functions that drive perception,

cognition, and behaviour (Pitkow and Angelaki, 2017). Therefore, by studying the encoding and

decoding of population responses, researchers may investigate how information is processed along

neural circuits, and how this processing influences perception and behaviour (Wei and Stocker,

2015; Panzeri et al., 2017; Kriegeskorte and Douglas, 2018).

Given a true statistical model of how a neural population responds to (encodes information

about) stimuli, Bayes’ rule can transform the encoding model into an optimal decoder of stimulus

information (Zemel et al., 1998; Pillow et al., 2011). However, when validated as Bayesian

decoders, statistical models of neural encoding are often outperformed by models trained to

decode stimulus-information directly, indicating that the encoding models miss key statistics of the

neural code (Graf et al., 2011; Walker et al., 2020). In particular, the correlations between neurons’

responses to repeated presentations of a given stimulus (noise correlations), and how these noise

correlations are modulated by stimuli, can strongly impact coding in neural circuits (Zohary et al.,

1994; Abbott and Dayan, 1999; Sompolinsky et al., 2001; Ecker et al., 2016; Kohn et al., 2016;

Schneidman, 2016), especially in large populations of neurons (Moreno-Bote et al., 2014;

Montijn et al., 2019; Bartolo et al., 2020; Kafashan et al., 2021; Rumyantsev et al., 2020).

Statistically validating theories of population coding in large neural circuits thus depends on

encoding models that support accurate Bayesian decoding, effectively capture noise-correlations,
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and efficiently fit large-scale neural recordings. There are at least two classes of neural recordings

for which established models have facilitated such analyses. Firstly, for recordings of binary spike-

counts, pairwise-maximum entropy models (Schneidman et al., 2006; Lyamzin et al., 2010;

Granot-Atedgi et al., 2013; Tkačik et al., 2013; Meshulam et al., 2017; Maoz et al., 2020) have

been used to investigate the structure of the retinal code (Ganmor et al., 2015; Tkačik et al.,

2015). Secondly, when modelling dynamic spike-train recordings, generalized linear models (GLMs)

have proven effective at modelling spatio-temporal features of information processing in the retina

and cortex (Pillow et al., 2008; Park et al., 2014; Runyan et al., 2017; Ruda et al., 2020).

Nevertheless, many theories of neural coding are formulated in terms of unbounded spike-counts

(Ma et al., 2006; Beck et al., 2011a; Ganguli and Simoncelli, 2014; Makin et al., 2015;

Yerxa et al., 2020), rather than the binary spike-counts of pairwise maximum entropy models. Fur-

thermore, neural correlations are often low-dimensional (Arieli et al., 1996; Ecker et al., 2014;

Goris et al., 2014; Rabinowitz et al., 2015; Okun et al., 2015; Semedo et al., 2019), in contrast

with the correlations that result from the fully connected, recurrent structure of standard GLMs.

Although there are extensions of the GLM approach that capture shared-variability (Vidne et al.,

2012; Archer et al., 2014; Zhao and Park, 2017), they seem unable to support exact Bayesian

decoding. Similarly, methods such as factor analysis that model unbounded spike-counts as continu-

ous variables have proven highly effective at modelling neural correlations in large-scale recordings

(Yu et al., 2009; Cunningham and Yu, 2014; Ecker et al., 2014; Semedo et al., 2019), yet it is also

unknown if they can support accurate Bayesian decoding.

Towards modelling spike-count responses and accurate Bayesian decoding in large populations

of correlated neurons, we develop a class of encoding model based on finite mixtures of Poisson dis-

tributions. Within neuroscience, Poisson mixtures are widely applied to modelling the spike-count

distributions of individual neurons (Wiener and Richmond, 2003; Shidara et al., 2005; Goris et al.,

2014; Taouali et al., 2016). Outside of neuroscience, mixtures of multivariate Poisson distributions

are an established model of multivariate count distributions that effectively capture correlations in

count data (Karlis and Meligkotsidou, 2007; Inouye et al., 2017).

Building on the theory of exponential family distributions (Wainwright and Jordan, 2008;

Macke et al., 2011b), our model extends previous mixture models of multivariate count data in two

ways. Firstly, we develop a tractable extension of Poisson mixtures that captures both over- and

under-dispersed response variability (i.e. where the response variance is larger or smaller than the

mean, respectively) based on Conway-Maxwell Poisson distributions (Shmueli et al., 2005; Steven-

son, 2016). Secondly, we introduce an explicit dependence of the model on a stimulus variable,

which allows the model to accurately capture changes in response statistics (including noise correla-

tions) across stimuli. Importantly, the resulting encoding model affords closed-form expressions for

both its Fisher information and probability density function, and thereby a rigorous quantification of

the coding properties of a modelled neural population (Dayan and Abbott, 2005). Moreover, the

model learns low-dimensional representations of stimulus-driven neural activity, and we show how it

captures a fundamental property of population codes known as information-limiting correlations

(Moreno-Bote et al., 2014; Montijn et al., 2019; Bartolo et al., 2020; Kafashan et al., 2021;

Rumyantsev et al., 2020).

We apply our mixture model framework to both synthetic data and recordings from macaque pri-

mary visual cortex (V1), and demonstrate that it effectively models responses of populations of hun-

dreds of neurons, captures noise correlations, and supports accurate Bayesian decoding. Moreover,

we show how our model is compatible with the theory of probabilistic population coding

(Zemel et al., 1998; Pouget et al., 2013), and could thus be used to study the theoretical coding

properties of neural circuits, such as their efficiency (Ganguli and Simoncelli, 2014), linearity

(Ma et al., 2006), or information content (Moreno-Bote et al., 2014).

Results
A critical part of our theoretical approach is based on expressing models of interest in exponential

family form. An exponential family distribution pðnÞ over some data n (in our case, neural responses)

is defined by the proportionality relation pðnÞ / eu�sðnÞbðnÞ, where u are the so-called natural parame-

ters, sðnÞ is a vector-valued function of the data called the sufficient statistic, and bðnÞ is a scalar-val-

ued, non-negative function called the base measure (Wainwright and Jordan, 2008). The
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exponential family form allows us to modify and extend existing models in a simple and flexible man-

ner, and derive analytical results about the coding properties of our models. We demonstrate our

approach with applications to both synthetic data, and experimental data recorded in V1 of anaes-

thetized and awake macaques viewing drifting grating stimuli at different orientations (for details

see Materials and methods).

Extended Poisson mixture models capture spike-count variability and
covariability
Our first goal is to define a class of models of stimulus-independent, neural population activity, that

model neural activity directly as spike-counts, and that accurately capture single-neuron variability

and pairwise covariability. We base our models on Poisson distributions, as they are widely applied

to modelling the trial-to-trial distribution of the number of spikes generated by a neuron

(Dayan and Abbott, 2005; Macke et al., 2011a). We will also generalize our Poisson-based models

with the theory of Conway-Maxwell (CoM) Poisson distributions (Sur et al., 2015; Stevenson, 2016;

Chanialidis et al., 2018). The two-parameter CoM-Poisson model contains the one-parameter Pois-

son model as a special case, however, whereas the Poisson model always has a Fano factor (FF; the

variance divided by the mean) of 1, the CoM-Poisson model can exhibit both over- (FF>1) and

under-dispersion (FF<1), and thus capture the broader range of Fano factors observed in cortex

(Stevenson, 2016).

The other key ingredient in our modelling approach are mixtures of Poisson distributions, which

have been used to model complex spike-count distributions in cortex, and also allow for over-disper-

sion (Shidara et al., 2005; Goris et al., 2014; Taouali et al., 2016; Figure 1A). In our case, we mix

multiple, independent Poisson distributions in parallel, as such models can capture covariability in

count data as well (see Karlis and Meligkotsidou, 2007 for a more general formulation of multivari-

ate Poisson mixtures than what we consider here). To construct such a model, we begin with a prod-

uct of independent Poisson distributions (IP distribution), one per neuron. We then mix a finite

number of component IP models, to arrive at a multivariate spike-count, finite mixture model (see

Materials and methods). Importantly, although each component of this mixture is an IP distribution,

randomly switching between components induces correlations between the neurons (Figure 1B,C).

IP mixtures can in fact model arbitrary covariability between neurons (see Materials and methods,

Equation 7); however, they are still limited because the model neurons in an IP mixture are always

over-dispersed. To overcome this, it is helpful to consider factor analysis (FA), which is widely

applied to modelling neural population responses (Cunningham and Yu, 2014). IP mixtures are simi-

lar to FA, in that FA represents the covariance matrix of neural responses as the sum of a diagonal

matrix that helps capture individual variance, and a low-rank matrix that captures covariance (see

Bishop, 2006), and FA and IP mixtures can be fine-tuned to capture covariance arbitrarily well. How-

ever, whereas FA has distinct parameters for representing means and diagonal variances, the means

and variances in an IP mixture are coupled through shared parameters (see Materials and methods,

Equation 6). Our strategy will thus be to break this coupling between means and variances by grant-

ing IP mixtures an additional set of parameters based on the theory of CoM-Poisson distributions.

To do so, we first show how to express an IP mixture as the marginal distribution of an exponen-

tial family distribution. Note that an IP mixture with dK components may be expressed as a latent

variable model over spike-count vectors n and latent component-indices k, where 1 � k � dK . In this

formulation we denote the kth component distribution by pðn j kÞ, and the probability of realizing

(switching to) the k th component by pðkÞ. The mixture model over spike-counts n is then expressed

as the marginal distribution pðnÞ ¼
PdK

k¼1
pðn j kÞpðkÞ ¼

PdK
k¼1

pðn; kÞ, of the joint distribution pðn; kÞ.

Under mild regularity assumptions (see Materials and methods), we may reparameterize this joint

distribution in exponential family form as

pðn;kÞ /
euN �nþuK �dðkÞþn�QNK �dðkÞ

QdN
i¼1

ni!
; (1)

where the vectors uN and uK , and matrix QNK are the natural parameters of pðn;kÞ, and

dðkÞ ¼ ðd2ðkÞ; . . . ;ddK ðkÞÞ is the Kronecker delta vector defined by djðkÞ ¼ 1 if j¼ k, and 0 otherwise.

This representation affords an intuitive interpretation. In general, the natural parameters of an IP

distribution are the logarithms of the average spike-counts (firing rates), and the natural parameters
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of the first component distribution pðn j k ¼ 1Þ of an IP mixture are simply uN . The natural parameters

of the k th component for k>1 are then the sum of the ‘baseline’ parameters uN and column k � 1

from the matrix of parameters QNK (Equation 13, Materials and methods). Because the dimension of

the baseline parameters uN is much smaller than the total number of parameters in a given mixture,

the baseline parameters provide a relatively low-dimensional means of affecting all the component

distributions of the given mixture, as well as the probability distribution over indices pðkÞ (Figure 1D;

see Materials and methods, Equation 12 for how the index-probabilities pðkÞ depend on uN ).

We next extend Equation 1 with the theory of CoM-Poisson distributions, and define the latent

variable exponential family

pðn;kÞ / euN �nþu�N �lfðnÞþuK �dðkÞþn�QNK �dðkÞ; (2)

where lfðnÞ ¼ ðlogðn1!Þ; . . . ; logðndN !ÞÞ is the vector of log-factorials of the individual spike-counts, and

u�N are a set of natural parameters derived from CoM-Poisson distributions (see Materials and meth-

ods). Based on this construction, each component pðn j kÞ is a product of independent CoM-Poisson

distributions, and when u�N ¼�1, we recover an IP mixture defined by Equation 1 with parameters

uN , uK , and QNK . The first component of this model pðn j k¼ 1Þ has parameters uN and u�N , and as

with the IP mixture, the parameters uN are translated by column k� 1 of QNK when k>1. However,

the parameters u�N are never translated, and remain the same for each component distribution

Figure 1. Poisson mixtures and Conway-Maxwell extensions exhibit spike-count correlations, and over- and under-disperson. (A) A Poisson mixture

distribution (red), defined as the weighted sum of three component Poisson distributions (black; scaled by their weights). FF denotes the Fano Factor

(variance over mean) of the mixture. (B, C) The average spike-count (rate) of the first and second neurons for each of 13 components (black dots) of a

bivariate IP mixture, and 68% confidence ellipses for the spike-count covariance of the mixture (red lines; see Equations 6 and 7). The spike-count

correlation of each mixture is denoted by r. (D) Same model as A, except we shift the distribution by increasing the baseline rate of the components.

(E, F) Same model as A, except we use an additional baseline parameter based on Conway-Maxwell Poisson distributions to concentrate (E) or disperse

(F) the mixture distribution and its components.
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(Equation 16, Materials and methods, and see Equation 15 for formulae for the index-probabilities

pðkÞ). We refer to models defined by Equation 2 as CoM-based (CB) mixtures, and u�N as CB

parameters.

Due to the addition of the CB parameters u�N , a CB mixture breaks the coupling between the

spike-count means and variances that is present in the simpler IP mixture (Equation 17, Materials

and methods). In Figure 1D–F, we demonstrate how changing the parameters of a CB mixture can

concentrate or disperse both the mixture distribution and its components, and that a CB mixture

can indeed exhibit under-dispersion.

To validate our mixture models, we tested if they capture variability and covariability of V1 popu-

lation responses to repeated presentations of a grating stimulus with fixed orientation (dN ¼ 43 neu-

rons and dT ¼ 355 repetitions of 150 ms duration in one awake macaque; dN ¼ 70 and dT ¼ 1; 200 of

duration 70 ms in one anaesthetized macaque). We fit our mixtures to the complete datasets with

expectation-maximization (EM, a standard choice for training finite mixture models

[McLachlan et al., 2019] see Materials and methods). The CB mixture accurately captured single-

neuron variability (Figure 2A–B, red symbols), including both cases of over-dispersion and under-dis-

persion. On the other hand, the simpler IP mixture (Figure 2A–B, blue symbols) cannot accommo-

date under-dispersion due to its mathematical limits, and demonstrated limited ability to model

over-dispersion due to the coupling between the mean and variance (Equation 6).

To understand how the CB parameters allow the CB mixture to overcome the limits of the IP mix-

ture, we plot a histogram of the CB parameters u�N for both fits (Figure 2C–D). If the CB parameter

of a given CoM-Poisson distribution is <� 1, >� 1, or ¼ �1, then the CoM-Poisson distribution is

under-dispersed, over-dispersed, or Poisson-distributed, respectively. When a CB mixture is fit to

the awake data (Figure 2C), we see that it learns a range of values for the CB parameters around

�1, to accommodate the variety of Fano factors observed in the awake data (Figure 2A). On the

anaesthetized data, even though IP mixtures can capture over-dispersion, the IP mixture underesti-

mates the dispersion of neurons due to the coupling between the mean and variance (Figure 2B).

The CB mixture thus uses the CB parameters to further disperse its model neurons (Figure 2D).

In contrast with individual variability, we found that both mixture models were flexible enough to

qualitatively capture pairwise noise correlation structure in both awake and anaesthetized animals

(Figure 3A–B), and that the distributions of modelled neural correlations were broadly similar when

compared to the data (Figure 3C–D). In Appendix 1, we rigorously compare IP mixtures, CB mix-

tures, and FA on our datasets, and show that although FA is better than our mixture models at cap-

turing second-order statistics in training data, IP mixtures and CB mixtures achieve comparable

predictive performance as FA when evaluated on held-out data.

Extended Poisson mixture models capture stimulus-dependent
response statistics
So far, we have introduced the exponential family theory of IP and CB mixtures, and shown how

they capture response variability and covariability for a fixed stimulus. To allow us to study stimulus

encoding and decoding, we further extend our mixtures by inducing a dependency of the model

parameters on a stimulus. When there are a finite number of stimulus conditions and sufficient data,

we may define a stimulus-dependent model with a lookup table, and fit it by fitting a distinct model

at each stimulus condition. However, this is inefficient when the amount of data at each stimulus-con-

dition is limited and the stimulus-dependent statistics have structure that is shared across conditions.

A notable feature of the exponential family parameterizations in Equations 1 and 2 is that the base-

line parameters influence both the index probabilities and all the component distributions of the

model. This suggests that by restricting stimulus-dependence to the baseline parameters, we might

model rich stimulus-dependent response structure, while bounding the complexity of the model.

In general, we refer to any finite mixture with stimulus-dependent parameters as a conditional

mixture (CM), and depending on whether the CM is based on Equations 1 and 2 and, we refer to it

as an IP- or CB-CM, respectively. Although there are many ways we might induce stimulus-depen-

dence, in this paper we consider two forms of CM: (i) a maximal CM, which we implement as a

lookup table, such that all the parameters in Equations 1 and 2 and depend on the stimulus, and (ii)

a minimal CM, for which we restrict stimulus-dependence to the baseline parameters uN . This results

in the CB-CM
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pðn;k j xÞ / euN ðxÞ�nþu�N �lfðnÞþuK �dðkÞþn�QNK �dðkÞ; (3)

where x is the stimulus, and uNðxÞ are the stimulus-dependent baseline parameters, and we recover a

minimal, IP-CM by setting u�N ¼�1.

The IP-CM again affords an intuitive interpretation: The first component of an IP-CM

pðn j x; k ¼ 1Þ has stimulus-dependent natural parameters uNðxÞ, and thus the stimulus-dependent fir-

ing rate, or tuning curve, of the i th neuron given k ¼ 1 is �i1ðxÞ ¼ e�N;iðxÞ, where �N;iðxÞ is the i th ele-

ment of uNðxÞ. The natural parameters of the k th component for k>1 are then the sum of uNðxÞ and

column k � 1 of QNK . As such, given k>1, the tuning curve of the i th neuron �ikðxÞ ¼ gi;ðk�1Þ�i1ðxÞ is a

‘gain-modulated’ version of �i1ðxÞ, where the gain gi;ðk�1Þ is the exponential function of element i of

column k � 1 of QNK (see Equation 13, Materials and methods). For a CB-CM this interpretation no

longer holds exactly, but still serves as an approximate description of the behaviour of its compo-

nents (see Equation 16 and the accompanying discussions).

Figure 2. CoM-based parameters help Poisson mixtures capture individual variability in V1 responses to a single stimulus. We compare Independent

Poisson (IP) mixtures (Equation 1) and CoM-Based (CB) mixtures (Equation 2) on neural population responses to stimulus orientation x ¼ 20
� in V1 of

awake (dN ¼ 43 neurons and dT ¼ 355 trials) and anaesthetized (dN ¼ 70 and dT ¼ 1; 200) macaques; both mixtures are defined with dK ¼ 5 components

for both data sets (see Materials and methods for training algorithms). A,B: Empirical Fano factors of the awake (A) and anaesthetized data (B),

comparing IP (blue) and CB mixtures (red). C,D: Histogram of the CB parameters u�N for the CB mixture fits to the awake (C) and anaesthetized (D) data.

Values of u�N<� 1 denote under-dispersed mixture components, values >� 1 denote over-dispersed components.
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Towards understanding the expressive power of CMs, we study a minimal, CB-CM with dN ¼ 20

neurons, dK ¼ 5 mixture components, and randomly chosen parameters (see Materials and meth-

ods). Moreover, we assume that the stimulus is periodic (e.g. the orientation of a grating), and that

the tuning curves of the component distributions pðn j x; kÞ have a von Mises shape, which is a widely

applied model of neural tuning to periodic stimuli (Herz et al., 2017). We may achieve such a shape

by defining the stimulus-dependent baseline parameters as uNðxÞ ¼ u0N þQNX � vmðxÞ, where u0N and

QNX are parameters, and vmðxÞ ¼ ðcos 2x; sin 2xÞ. Figure 4A shows that the tuning curves of the CB-

CM neurons are approximately bell-shaped, yet many also exhibit significant deviations.

Figure 3. IP and CB mixtures effectively capture pairwise covariability in V1 responses to a single stimulus. Here we analyze the pairwise statistics of the

same models from Figure 2. (A, B) Empirical correlation matrix (upper right triangles) of awake (A) and anaesthetized data (B), compared to the

correlation matrix of the corresponding IP mixtures (lower left triangles). (C, D) Noise correlations highlighted in A and B, respectively. (E, F)

Highlighted noise correlations for CB mixture fit. (G,H) Histogram of empirical noise correlations, and model correlations from IP and CB mixtures.
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We also study if CMs can be effectively fit to datasets comparable to those obtained in typical

neurophysiology experiments. We generated 200 responses from the CB-CM described above —

the ground truth CB-CM — to each of 10 orientations spread evenly over the half-circle, for a total

of 2000 stimulus-response sample points. We then used this data to fit a CB-CM with the same num-

ber of components. Toward this aim, we derive an approximate EM algorithm to optimize model

Figure 4. Expectation-maximization recovers a ground truth CoM-based, conditional mixture (CB-CM). We compare a ground truth, CB-CM with 20

neurons, five mixture components, von Mises-tuned components, and randomized parameters to a learned CB-CM fit to 2000 samples from the ground

truth CB-CM. A,B: Tuning curves of the ground-truth CB-CM (A) and learned CB-CM (B). Three tuning curves are highlighted for effect. C,D: The

orientation-dependent index probabilities of the ground truth CB-CM (C) and learned CB-CM (D), where colour indicates component index. Dashed

lines indicate example stimulus-orientations used in E, F, and G. (E, F) The correlation matrix of the ground truth CB-CM (upper right), compared to the

correlation matrix of the learned CB-CM (lower left) at stimulus orientations x ¼ 85
� (E) and x ¼ 110

� (F). (G) The FFs of the ground-truth CB-CM

compared to the learned CB-CM at orientations x ¼ 85
� (blue circles) and x ¼ 110

� (red triangles).
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parameters (see Materials and methods). Figure 4B shows that the tuning curves of the learned CB-

CM are nearly indistinguishable from those of the ground truth CB-CM (Figure 4B, coefficient of

determination r2 ¼ 0:998).

To reveal the orientation-dependent latent structure of the model, in Figure 4C we plot the index

probability pðk j xÞ for every k as a function of the orientation x. In Figure 4D we show that the orien-

tation-dependent index probabilities of the learned CB-CM qualitatively match the true index proba-

bilities in Figure 4C. We also note that although the learned CB-CM does not correctly identify the

indices themselves, this has no effect on the performance of the CB-CM.

The orientation-dependent index-probabilities provide a high-level picture of how the complexity

and structure of model correlations varies with the orientation. The vertical dashed lines in

Figure 4C–D denote two orientations that yield substantially different index probabilities pðk j xÞ.

When a large number of index-probabilities are non-zero, the correlation-matrices of the CB-CM can

exhibit complex correlations with both negative and positive values (Figure 4E). However, when one

index dominates, the correlation structure largely disappears (Figure 4F). In Figure 4G we show

that the FFs also depend on stimulus orientation. Lastly, we find that both the FF and the correla-

tion-matrices of the learned CB-CM are nearly indistinguishable from the ground-truth CB-CM

(Figure 4E–G).

In summary, our analyses show that minimal CB-CMs can express complex, stimulus-dependent

response statistics, and that we can recover the structure of a ground truth CB-CM from realistic

amounts of synthetic data with EM. In the following sections, we rigorously evaluate the perfor-

mance of CMs on our awake and anaesthetized datasets.

Conditional mixtures effectively model neural responses in macaque V1
A variety of models may be defined within the CM framework delineated by Equations 1, 2 and 3.

Towards understanding how effectively CMs can model real data, we compare different variants by

their cross-validated log-likelihood on both our awake and anaesthetized datasets; this is the same

data used in Figures 2 and 3 but now including all stimulus-conditions. We consider both IP and CB

variants of each of the following conditional mixtures: (i) maximal CMs where we learn a distinct mix-

ture for each of dX stimulus conditions, (ii) minimal CMs with von Mises-tuned components, and (iii)

minimal CMs with discrete-tuned components given by uNðxÞ ¼ u0N þQNX � dðxÞ, where d is the Kro-

necker delta vector with dX � 1 elements, and x is the index of the stimulus. In contrast with the von

Mises CM, the discrete CM makes no assumptions about the form of component tuning. In Table 1

we detail the number of parameters for all forms of CM.

To provide an interpretable measure of the relative performance of each CM variant, we define

the ‘information gain’ as the difference between the estimated log-likelihood (base e) of the given

CM and the log-likelihood of a von Mises-tuned, independent Poisson model, which is a standard

model of uncorrelated neural responses to oriented stimuli (Herz et al., 2017). We then evaluate

the predictive performance of our models with 10-fold cross-validation of the information gain.

Table 2 shows that the CM variants considered achieve comparable performance, and perform

substantially better than the independent Poisson lower bound on both the awake and anaesthe-

tized data. Figure 5 shows that a performance peak emerges smoothly as the model complexity

(number of parameters) is increased. In all cases, the CB models outperform their IP counterparts,

and typically with fewer parameters. The discrete CB-CMs achieve high performance on both data-

sets. In contrast, von Mises CMs perform well on the anaesthetized data but more poorly on the

Table 1. Parameter counts of CM models.

First row is number of parameters in IP models, second row is number of additional parameters in CB

extensions of IP models, as a function of number of stimuli dS, neurons dN , and mixture components

dK .

Model parameter formulae

Maximal Von mises Discrete

Num. Params dSðdNdK þ dK � 1Þ ðdN þ 1ÞðdK � 1Þ þ 3dN ðdN þ 1ÞðdK � 1Þ þ dSdN

Add. CB Params dSdN dN dN
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awake data, and maximal CMs exhibit the opposite trend. Nevertheless, von Mises CMs solve a

more difficult statistical problem as they also interpolate between stimulus conditions, and so may

still prove relevant even where performance is limited. On the other hand, even though maximal

CMs achieve high performance, they simply do so by replicating the high performance of stimulus-

independent mixtures (Figures 2 and 3) at each stimulus condition, and require more parameters

than minimal CMs to maximize performance.

Table 2. Conditional mixtures models of neural responses in macaque V1 capture significant

information about higher-order statistics.

We apply 10-fold cross-validation to estimate the mean and standard error of the information gain

(model log-likelihood -log-likelihood of a non-mixed, independent Poisson model in nats/trial) on

held-out data, from either awake (sample size dT ¼ 3; 168, from dN ¼ 43 neurons, over dS ¼ 9 orienta-

tions) or anaesthetized (dT ¼ 10; 800, dN ¼ 70, dS ¼ 9) macaque V1. We compare maximal CMs, mini-

mal CMs with von Mises-tuned components, and minimal CMs with discrete-tuned components, and

for each case we consider either IP or CB variants. For each variant, we indicate the number of CM

components dK and the corresponding number of model parameters required to achieve peak infor-

mation gain (cross-validated). For reference, the non-mixed, independent Poisson models use 129

and 210 parameters for the awake and anaesthetized data, respectively.

Encoding performance

V1 awake data V1 anaesthetized data

CM Variant Inf. Gain (Nats
Trial

) dK # Params. Inf. Gain (Nats
Trial

) dK # Params.

Maximal IP 2:30� 0:32 5 1971 8:77� 0:71 8 5103

Maximal CB 2:44� 0:35 5 2358 9:42� 0:70 7 5094

Von Mises IP 2:01� 0:26 45 2065 8:97� 0:70 40 2979

Von Mises CB 2:10� 0:25 40 1888 9:38� 0:69 35 2694

Discrete IP 2:25� 0:28 40 2103 9:17� 0:70 35 3044

Discrete CB 2:35� 0:29 30 1706 9:53� 0:68 30 2689

Non-mixed IP 0 1 129 0 1 210

Figure 5. Finding the optimal number of parameters for CMs to model neural responses in macaque V1. 10-fold cross-validation of the information

gain given awake V1 data (A) and anaesthetized V1 data (B), as a function of the number of model parameters, for multiple forms of CM: maximal CMs

(green); minimal CMs with von Mises component tuning (blue); minimal CMs with discrete component tuning (purple); and for each case we consider

either IP (dashed lines) or CB (solid lines) variants. Standard errors of the information gain are not depicted to avoid visual clutter, however they are

approximately independent of the number of model parameters, and match the values indicated in Table 2.
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Conditional mixtures facilitate accurate and efficient decoding of neural
responses
To demonstrate that CMs model the neural code, we must show that CMs not only capture the fea-

tures of neural responses, but that these features also encode stimulus-information. Given an encod-

ing model pðn j xÞ and a response from the model n, we may optimally decode the information in

the response about the stimulus x by applying Bayes’ rule pðx j nÞ / pðn j xÞpðxÞ, where pðx j nÞ is the

posterior distribution (the decoded information), and pðxÞ represents our prior assumptions about

the stimulus (Zemel et al., 1998). When we do not know the true encoding model, and rather fit a

statistical model to stimulus-response data, using the statistical model for Bayesian decoding and

analyzing its performance can tell us how well it captures the features of the neural code.

We analyze the performance of Bayesian decoders based on CMs by quantifying their decoding

performance, and comparing the results to other common approaches to decoding. We evaluate

decoding performance with the 10-fold cross-validation log-posterior probability log pðx j nÞ (base e)

of the true stimulus value x, for both our awake and anaesthetized V1 datasets. With regard to

choosing the number of components dK , we analyze the decoding performance of CMs that

achieved the best encoding performance based as indicated in Table 2 and depicted Figure 5. We

do this to demonstrate how well a single model can simultaneously perform at both encoding and

decoding, instead of applying distinct procedures for selecting CMs based on decoding perfor-

mance (see Materials and methods for a summary of trade-offs when choosing dK ).

In our comparisons we focus on minimal, discrete CMs as overall they achieved high performance

on both datasets (Figure 5). To characterize the importance of neural correlations to Bayesian

decoding, we compare our CMs to the decoding performance of independent Poisson models with

discrete tuning (Non-mixed IP). To characterize the optimality of our Bayesian decoders, we also

evaluate the performance of linear multiclass decoders (Linear), as well nonlinear multiclass decoders

defined as artificial neural networks (ANNs) with two hidden layers and a cross-validated number of

hidden units (for details on the training and model selection procedure, see Materials and methods).

Table 3 shows that on the awake data, the performance of the CMs is statistically indistinguish-

able from the ANN, and the CMs and the ANN significantly exceed the performance of both the Lin-

ear and Non-mixed IP models. On the anaesthetized data, the minimal CM approaches the

performance of the ANN, and the minimal CMs and ANN models again exceed the performance of

the Non-mixed IP and Linear models. Yet in this case, the Linear model is much more competitive,

whereas the Non-mixed IP model performs very poorly, possibly because of the larger magnitude of

noise correlations in this data. In Appendix 2, we also report that a Bayesian decoder based on a fac-

tor analysis (FA) encoding model performed inconsistently, and poorly relative to CMs, as it would

Table 3. CMs support high-performance decoding of neural responses in macaque V1.

We apply 10-fold cross-validation to estimate the mean and standard error of the average log-poste-

riors log pðx j nÞ on held-out data, from either awake or anaesthetized macaque V1. We compare dis-

crete, minimal, CB-CM (CB-CM) and IP-CM (IP-CM); an independent Poisson model with discrete

tuning (Non-mixed IP); a multiclass linear decoder (Linear); and a multiclass nonlinear decoder

defined as an artificial neural network with two hidden layers (Artificial NN). The number of CM com-

ponents dK was chosen to achieve peak information gain in Figure 5. The number of ANN hidden

units was chosen based on peak cross-validation performance. In all cases we also indicate the num-

ber of model parameters required to achieve the indicated performance.

Decoding performance

V1 awake data V1 anaesthetized data

Average Log-Post. Num. Params. Average Log-Post. Num. Params.

IP-CM �0:207� 0:039 2103 �0:448� 0:026 3044

CB-CM �0:206� 0:043 1706 �0:441� 0:023 2689

Non-mixed IP �0:272� 0:067 387 �0:967� 0:071 630

Linear �0:256� 0:053 352 �0:457� 0:019 568

Artificial NN �0:200� 0:032 527,108 �0:426� 0:015 408,008
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occasionally assign numerically 0 probability to the true stimulus, and thus score an average log-pos-

terior of negative infinity. In Appendix 2, we present preliminary evidence that this is because CMs

capture higher order structure that FA cannot.

On both the awake and anaesthetized data the ANN requires two orders of magnitude more

parameters than the CMs to achieve its performance gains. In addition, the CB-CM achieves margin-

ally better performance with fewer parameters than the IP-CM, indicating that although modelling

individual variability is not essential for effective Bayesian decoding, doing so still results in a more

parsimonious model of the neural code. In Appendix 3, we report a sample complexity analysis of

CM encoding and decoding performance. We found that whereas our anaesthetized V1 dataset

(sample size dT ¼ 10; 800) was large enough to saturate the performance of our models, a larger

awake V1 dataset (dT ¼ 3; 168) could yield further improvements to decoding performance.

We also consider widely used alternative measures of decoding performance, namely the Fisher

information (FI), which is an upper bound on the average precision (inverse variance) of the posterior

(Brunel and Nadal, 1998), as well as the linear Fisher information (LFI), which is a linear approxima-

tion of the FI (Seriès et al., 2004) corresponding to the accuracy of the optimal, unbiased linear

decoder of the stimulus (Kanitscheider et al., 2015a). The FI is especially helpful when the posterior

cannot be evaluated directly (such as when it is continuous), and is widely adopted in theoretical

(Abbott and Dayan, 1999; Beck et al., 2011b; Ecker et al., 2014; Moreno-Bote et al., 2014;

Kohn et al., 2016) and experimental (Ecker et al., 2011; Kafashan et al., 2021; Rumyantsev et al.,

2020) studies of neural coding. As with other models based on exponential family theory (Ma et al.,

2006; Beck et al., 2011b; Ecker et al., 2016), the FI of a minimal CM may be expressed in closed-

form, and is equal to its LFI (see Materials and methods), and therefore minimal CMs can be used to

study FI analytically and obtain model-based estimates of FI from data.

To study how well CMs capture FI, we defined 40 random subpopulations of dN ¼ 20 neurons

from both our V1 datasets, fit von Mises IP-CMs to the responses of each subpopulation, and used

these learned models as ground-truth populations. We then generated 50 responses at each of 10

evenly spaced orientations from each ground truth IP-CM, for a total of dT ¼ 500 responses per

ground-truth model. We then fit a new IP-CM to each set of 500 responses, and compared the FI of

the re-fit CM to the FI of the ground-truth CM at 50 evenly spaced orientations. Pooled over all pop-

ulations and orientations, the relative error of the estimated FI was �12:8%� 18:6% on the awake

data and �9:1%� 22:4% on the anaesthetized data, suggesting that IP-CMs can recover and even

interpolate approximate FIs of ground-truth populations from modest amounts of data.

To summarize, CMs support accurate Bayesian decoding in awake and anaesthetized macaque

V1 recordings, and are competitive with nonlinear decoders with two orders of magnitude more

parameters. Moreover, CMs afford closed-form expressions of FI and can interpolate good estimates

of FI from modest amounts of data, and thereby support analyses of neural data based on this

widely applied theoretical tool.

Constrained conditional mixtures support linear probabilistic
population coding
Having shown that minimal CMs can both capture the statistics of neural encoding and facilitate

accurate Bayesian decoding, we now aim to show how they relate to an influential theory of neural

coding known as probabilistic population codes (PPCs), which describes how neural circuits process

information in terms of encoding and Bayesian decoding (Zemel et al., 1998). In particular, linear

probabilistic population codes (LPPCs) are PPCs with a restricted encoding model, that explain

numerous features of neural coding in the brain (Ma et al., 2006; Beck et al., 2008; Beck et al.,

2011a).

In general, an exponential family of distributions that depend on some stimulus x may be

expressed as pðn j xÞ ¼ euN ðxÞ�sN ðnÞ� N ðuN ðxÞÞ�ðnÞ, where sN is the sufficient statistic, m is the base mea-

sure, and  NðuNðxÞÞ is known as the log-partition function (in Equations 1-3 we used the proportion-

ality symbol / to avoid writing the log-partition functions explicitly). A PPC is an LPPC when its

encoding model is in the so-called exponential family with linear sufficient statistics (EFLSS), which

has the form pðn j xÞ ¼ euN ðxÞ�nfðnÞ for some functions fðnÞ and uNðxÞ (Beck et al., 2011a). If we

equate the two expressions euN ðxÞ�sN ðnÞ� N ðuN ðxÞÞ�ðnÞ ¼ euN ðxÞ�nfðnÞ we see that an EFLSS is a stimulus-

dependent exponential family that satisfies two constraints: that the sufficient statistic sNðnÞ ¼ n is
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linear, and that the log-partition function  NðuNðxÞÞ ¼ a does not depend on the stimulus, so that

fðnÞ ¼ e�a�ðnÞ.

As presented, the EFLSS is a mathematical model that does not have fittable parameters. We

wish to express CMs as a form of EFLSS in order to show how a fittable model could be compatible

with LPPC theory. If we return to the general expression for a minimal CM (Equation 3) and assume

that the log-partition function is given by the constant a, then we may write

pðn j xÞ ¼
X

k

pðn;k j xÞ ¼ euN ðxÞ�nðeu
�
N �lfðnÞ�a

X

k

euK �dðkÞþn�QNK �dðkÞÞ ¼ euN ðxÞ�nfðnÞ; (4)

where fðnÞ ¼ eu
�
N �lfðnÞ�a

P
k e

uK �dðkÞþn�QNK �dðkÞ, such that the given CM is in the EFLSS. Observe that this

equation only holds due to the specific structure of minimal CMs: if the parameters u�N , uK , or QNK

would depend on the stimulus, then it would not be possible to absorb them into the function fðnÞ.

Ultimately, this equivalence between constrained CMs and EFLSSs allows LPPC theory to be

applied to constrained CMs, and provides theorists working on neural coding with an effective statis-

tical tool that can help validate their hypotheses.

Minimal conditional mixtures capture information-limiting correlations
Our last aim is to demonstrate that CMs can approximately represent a central phenomenon in neu-

ral coding known as information-limiting correlations, which are neural correlations that fundamen-

tally limit stimulus-information in neural circuits (Moreno-Bote et al., 2014; Montijn et al., 2019;

Bartolo et al., 2020; Kafashan et al., 2021; Rumyantsev et al., 2020). To illustrate this, we gener-

ate population responses with limited information, and then fit an IP-CM to these responses and

study the learned latent representation. In particular, we consider a source population of 200 inde-

pendent Poisson neurons pðn j sÞ with homogeneous, von Mises tuning curves responding to a noisy

stimulus-orientation s, where the noise pðs j xÞ follows a von Mises distribution centred at the true

stimulus-orientation x (see Materials and methods). In Figure 6A we show that, as expected, the

average FI in the source population about the noisy orientation s grows linearly with the size of ran-

domized subpopulations, although the FI about the true orientation x is theoretically bounded by

the precision (inverse variance) of the sensory noise.

Even though the neurons in the source model are uncorrelated, sensory noise ensures that the

encoding model pðn j xÞ ¼
R
pðn j sÞpðs j xÞds contains information-limiting correlations that bound

the FI about x(Moreno-Bote et al., 2014; Kanitscheider et al., 2015b). Information-limiting correla-

tions can be small and difficult to capture, and to understand how CMs learn in the presence of

information-limiting noise correlations, we fit a von Mises IP-CM qðn j xÞ with dK ¼ 20 mixture com-

ponents to dT ¼ 10; 000 responses from the information-limited model pðn j xÞ. Figure 6A (purple)

shows that the FI of the learned CM qðn j xÞ appears to saturate near the precision of the sensory

noise, indicating that the learned CM approximates the information-limiting correlations present in

pðn j xÞ.

To understand how the learned CM approximates these information-limiting correlations, we

study the relation between the latent structure of the model and how it generates population activ-

ity. For an IP-CM, the orientation-dependent index-probabilities may be expressed as

pðk j xÞ / e
uK �dðkÞþ

PdN

i¼1
�ikðxÞ, where �ikðxÞ is the tuning curve of the i th neuron under component k. In

Figure 6B, we plot the sum of the tuning curves
PdN

i¼1
�ikðxÞ for each component k as a function of

orientation, and we see that each component concentrates the tuning of the population around a

particular orientation. This encourages the probability of each component to also concentrate

around a particular orientation, and in Figure 6C we see that, given the true orientation x ¼ 90
�,

there are three components with probabilities substantially greater than 0.

Because there are essentially three components that are relevant to the responses of the IP-CM

to the true orientation x ¼ 90
�, generating a response from the CM approximately reduces to gener-

ating a response from one of the three possible component IP distributions. In Figure 6D–F, we

depict a response to x ¼ 90
� from each of the three component IP distributions, as well as the opti-

mal posterior based on the learned IP-CM (purple lines), and a suboptimal posterior based on the

source model (i.e. ignoring noise correlations; green lines). We observe that the trial-to-trial variabil-

ity of the learned IP-CM results in random shifts of the peak neural activity away from the true orien-

tation, thus limiting information. Furthermore, when the response of the population is concentrated

Sokoloski et al. eLife 2021;10:e64615. DOI: https://doi.org/10.7554/eLife.64615 13 of 36

Research article Neuroscience

https://doi.org/10.7554/eLife.64615


Figure 6. CMs can capture information-limiting correlations in data. We consider a von Mises-tuned, independent Poisson source model (green) with

dK ¼ 200 neurons, and an information-limited, IP-CM (purple) with dK ¼ 25 components, fit to 10,000 responses of the source-model to stimuli obscured

by von Mises noise. In B-F we consider a stimulus-orientation x ¼ 90
� (blue line). (A) The average (lines) and standard deviation (filled area) of the FI

over orientations, for the source (green) and information-limited (purple) models, as a function of random subpopulations, starting with ten neurons,

and gradually reintroducing missing neurons. Dashed black line indicates the theoretical upper bound. (B) The sum of the firing rates of the modulated

IP-CM for all indices k>1 (lines) as a function of orientation, with three modulated IP-CMs highlighted (red, yellow, and orange lines) corresponding to

the highlighted indices in C. (C) The index-probability curves (lines) of the IP-CM for indices k>1 and the intersection (red, yellow, and orange circles) of

the stimulus with three curves (orange, yellow, and orange lines). (D-F) Three responses from the yellow (D; yellow points), red (E; red points), and

Figure 6 continued on next page
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at the true orientation (Figure 6E), the suboptimal posterior assigns a high probability to the true

orientation, whereas when the responses are biased away from the true orientation (Figure 6D and

F) the suboptimal posterior assigns nearly 0 probability to the true orientation. This is in contrast to

the optimal posterior, which always assigns a significant probability to the true orientation.

In summary, CMs can effectively approximate information-limiting correlations, and the simple

latent structure of CMs could help reveal the presence of information-limiting correlations in data.

Discussion
We introduced a latent variable exponential family formulation of Poisson mixtures. We showed how

this formulation allows us to effectively extend Poisson mixtures both to capture sub-Poisson vari-

ability, and to incorporate stimulus dependence using conditional mixtures. Our analyses and simula-

tions showed that these conditional mixtures (CMs) can be fit efficiently and recover ground truth

models in synthetic data, capture a wide range of V1 response statistics in real data, and can be eas-

ily inverted to obtain accurate Bayesian decoding that is competitive with nonlinear decoders, while

using orders of magnitude less parameters. In addition, we illustrated how the latent structure of

CMs can represent a fundamental feature of the neural code, namely information-limiting

correlations.

Our framework is particularly relevant for probabilistic theories of neural coding based on the the-

ory of exponential families (Beck et al., 2007), which include theories that address the linearity of

Bayesian inference in neural circuits (Ma et al., 2006), the role of phenomena such as divisive nor-

malization in neural computation (Beck et al., 2011a), Bayesian inference about dynamic stimuli

(Makin et al., 2015; Sokoloski, 2017), and the metabolic efficiency of neural coding (Ganguli and

Simoncelli, 2014; Yerxa et al., 2020). These theories have proven difficult to validate quantitatively

with neural data due to a lack of statistical models which are both compatible with their exponential

family formulation (see Equation 4), and can model correlated activity in recordings of large neural

populations. Our work suggests that CMs can overcome these difficulties, and help connect this rich

mathematical theory of neural coding with the state-of-the-art in parallel recording technologies.

CMs are not limited to modelling neural responses to stimuli and can model how arbitrary experi-

mental variables modulate neural variability and covariability. Examples of experimental variables

that have measurable effects on neural covariability include the spatial and temporal context around

a stimulus (Snyder et al., 2014; Snow et al., 2016; Snow et al., 2017; Festa et al., 2020), as well

as task-variables and the attentional state of the animal (Cohen and Maunsell, 2009; Mitchell et al.,

2009; Ruff and Cohen, 2014; Maunsell, 2015; Rabinowitz et al., 2015; Verhoef and Maunsell,

2017; Bondy et al., 2018). Each of these variables could be incorporated into a CM by either replac-

ing the stimulus-variable in our equations with the variable of interest, or combining it with the stim-

ulus-variable to construct a CM with multivariate dependence. This would allow researchers to

explore how the stimulus and the experimental variables mutually interact to shape variability and

covariability in large populations of neurons.

To understand how this variability and covariability effects neural coding, latent variable models

such as CMs are often applied to extract interpretable features of the neural code from data

(Whiteway and Butts, 2019). The latent states of a CM provide a soft classification of neural activity,

and we may apply CMs to model how an experimental variable modulates the class membership of

population activity. In the studies on experimental variables listed above, models of neural activity

yielded predictions of perceptual and behavioural performance. Because CMs support Bayesian

decoding, a CM can also make predictions about how a particular class of neurons is likely to modu-

late perception and behaviour, and we may then test these predictions with experimental interven-

tions on the neurons themselves (Panzeri et al., 2017). In this manner, we believe CMs could form a

critical part of a rigorous, Bayesian framework for ‘cracking the neural code’ in large populations of

neurons.

Figure 6 continued

orange modulated IP-CMs (F; orange points) indicated in C. For each response we plot the posterior based on the source model (green line) and the

information-limited model (purple line).
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Outside of the framework of mixture models, there are broader possibilities for designing condi-

tional, latent-variable models which have the minimal, exponential family structure of Equation 3,

yet for which the latent variable is not a finite index. We make use of finite mixture models in this

paper primarily because mixture models are analytically tractable, even when mixing Poisson distri-

butions. In contrast, models with Gaussian latent variables are analytically tractable when the obser-

vations are also Gaussian, but not in general. Nevertheless, if the relevant formulae and

computations can be effectively approximated, then many of the advantages of CMs could be pre-

served even when using continuous latent variables. For example, if the expectation step in our EM

algorithm does not have a closed-form expression, it might be possible to approximate it with con-

trastive divergence (Hinton, 2002).

In our applications, we considered one-dimensional stimuli and implemented the stimulus-depen-

dence of the CM parameters with linearly parameterized functions. Nevertheless, this stimulus

dependence can be implemented by arbitrary parametric functions of high-dimensional variables

such as deep neural networks, and CMs can also incorporate history-dependence via recurrent con-

nectivity (see Appendix 4). As such, CMs have the potential to integrate encoding models of higher

cortical areas (Yamins et al., 2014) with models of the temporal features of the neural code

(Pillow et al., 2008; Park et al., 2014; Runyan et al., 2017), towards analyzing the neural code in

dynamic, correlated neural populations in higher cortex. Finally, outside of neuroscience, high-

dimensional count data exists in many fields such as corpus linguistics and genomics (Inouye et al.,

2017), and researchers who aim to understand how this data depends on history or additional varia-

bles could benefit from our techniques.

Materials and methods

Notation
We use capital, bold letters (e.g. Q) to indicate matrices; small, bold letters (e.g. u) to indicate vec-

tors; and regular letters (e.g. �) to indicate scalars. We use subscript capital letters to indicate the

role of a given variable, so that, in Equation 1 for example, uK are the natural parameters that bias

the index-probabilities, uN are the baseline natural parameters of the neural firing rates, and QNK is

the matrix of parameters through which the indices and rates interact.

We denote the i th element of a vector u by �i, or e.g. of the vector uK by �K;i. We denote the i th

row or j th column of Q by ui or uj, respectively, and always state whether we are considering a row

or column of the given matrix. When referring to the jth element of a vector ui indexed by i, we write

�ij. Finally, when indexing data points from a sample, or parameters that are tied to individual data

points, we use parenthesized, superscript letters, e.g. xðiÞ, or u
ðiÞ
N .

Poisson mixtures and their moments
The following derivations were presented in a more general form in Karlis and Meligkotsidou,

2007, but we present the simpler case here for completeness. A Poisson distribution has the form

pðn;lÞ ¼ lne�l

n!
, where n is the count and l is the rate (in our case, spike count and firing rate, respec-

tively). We may use a Poisson model to define a distribution over dN spike counts n ¼ ðn1; . . . ; ndN Þ by

supposing that the neurons generate spikes independently of one another, leading to the indepen-

dent Poisson model pðn; lÞ ¼
QdN

i¼1
pðni; liÞ with firing rates l ¼ ðl1; . . . ; ldN Þ. Finally, if we consider

the dK rate vectors l1; . . . ; ldK , and dK weights w1; . . . ;wdK , where 0 � wk for all k, and

w1 ¼ 1�
PdK

k¼2
wk, we then define a mixture of Poisson distributions as a latent variable model

pðnÞ ¼
P

k pðn j kÞpðkÞ ¼
P

k pðn; kÞ, where pðn j kÞ ¼ pðn; lkÞ, and pðkÞ ¼ wk.

The mean �i of the i th neuron of a mixture of independent Poisson distributions is

�i ¼
X¥

ni¼0

XdK

k¼1

pðni j kÞpðkÞni ¼
XdK

k¼1

pðkÞ
X¥

ni¼0

pðni j kÞni ¼
XdK

k¼1

wklik: (5)

The variance s2

i of neuron i is
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s2

i ¼
P

¥

ni¼0
pðniÞn

2

i ��
2

i ¼
PdK

k¼1
pðkÞ

P
¥

ni¼0
pðni j kÞn

2

i ��
2

i

¼
PdK

k¼1
pðkÞðs2

ik þl2ikÞ��
2

i ¼ �i þ
PdK

k¼1
wkðlik ��iÞ

2
;

(6)

where s2

ik ¼ lik is the variance of the i th neuron under the k th component distribution, that is the

variance of pðni j kÞ, and where
P

¥

ni¼0
pðni j kÞn

2

i ¼ s2

ik þl2ik, and
PdK

k¼1
wkl

2

ik ��
2

i ¼
PdK

k¼1
wkðlik ��iÞ

2

both follow from the fact that a distribution’s variance equals the difference between its second

moment and squared first moment.

The covariance s2

ij between spike-counts ni and nj for i 6¼ j is then

s2

ij ¼
X¥

ni¼0

X¥

nj¼0

pðni;njÞðni ��iÞðnj��jÞ ¼
XdK

k¼1

pðkÞ
X¥

ni¼0

X¥

nj¼0

pðni;nj j kÞðni��iÞðnj ��jÞ

¼
XdK

k¼1

pðkÞ
X¥

ni¼0

pðni j kÞðni ��iÞ
X¥

nj¼0

pðnj j kÞðnj��jÞ ¼
XdK

k¼1

wkðlik ��iÞðljk ��jÞ:

(7)

Observe that if wk ¼
1

dK�1
, then s2

ij is simply the sample covariance between i and j, where the sam-

ple is composed of the rate components of the i th and j th neurons. Equation 7 thus implies that

Poisson mixtures can model arbitrary covariances. Nevertheless, Equation 6 shows that the variance

of individual neurons is restricted to being larger than their means.

Exponential family mixture models
In this section, we show that the latent variable form for Poisson mixtures we introduced above is a

member of the class of models known as exponential families. An exponential family distribution pðxÞ

over some data x has the form pðxÞ ¼ eu�sðxÞ� ðuÞbðxÞ, where u are the so-called natural parameters,

sðxÞ is a vector-valued function of the data called the sufficient statistic, bðxÞ is a scalar-valued func-

tion called the base measure, and  ðuÞ ¼ log
R
eu�sðxÞbðxÞdx is the log-partition function

(Wainwright and Jordan, 2008). In the context of Poisson mixture models, we note that an inde-

pendent Poisson model pðn; lÞ is an exponential family, with natural parameters uN given by

�N;i ¼ logli, base measure bðnÞ ¼ 1Q
i
n!
and sufficient statistic sNðnÞ ¼ n, and log-partition function

 NðuNÞ ¼
PdN

i¼1
e�N;i . Moreover, the distribution of component indices pðkÞ ¼ wk (also known as a cate-

gorical distribution) also has an exponential family form, with natural parameters �K;k ¼ log wkþ1

w1

for

1 � k<dK , sufficient statistic dðkÞ ¼ ðd2ðkÞ; . . . ; ddK ðkÞÞ, base measure bðkÞ ¼ 1, and log-partition func-

tion  KðuKÞ ¼ logð1þ
PdK�1

k¼1
e�K;k Þ. Note that in both cases, the exponential parameters are well-

defined only if the rates and weights are strictly greater than 0 — in practice, however, this is not a

significant limitation.

We claim that the joint distribution of a multivariate Poisson mixture model pðn; kÞ can be repara-

meterized in the exponential family form

pðn;kÞ ¼
euN �nþuK �dðkÞþn�QNK �dðkÞ� NK ðuN ;uK ;QNK Þ

Q
i ni!

; (8)

where  NKðuN ;uK ;QNKÞ ¼ log
P

k e
uk �dðkÞþ N ðuNþQNK �dðkÞÞ is the log-partition function of pðn;kÞ. To show

this, we show how to express the natural parameters uN ;uK , and QNK as (invertible) functions of the

component rate vectors l1; . . . ;ldK , and the weights w1; . . . ;wdK . In particular, we set

uN ¼ logl1; (9)

where log is applied element-wise. Then, for 1� k<dK , we set the k th row uNK;k of QNK to

uNK;k ¼ logukþ1� logl1; (10)

and the k th element of uK to

uK;k ¼ log
wkþ1

w1

þ ðuNÞ� NðuN þQNK � dðkÞÞ: (11)
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This reparameterization may then be checked by substituting Equations 9, 10, and 11 into Equa-

tion 8 to recover the joint distribution of the mixture model pðn;kÞ ¼ pðn j kÞpðkÞ ¼wkpðn;lKÞ; for a

more explicit derivation see Sokoloski, 2019.

The equation for pðn; kÞ ensures that the index-probabilities are given by

pðkÞ ¼wk ¼ euK �dðkÞ� NK ðuN ;uK ;QNK Þ
P

n

en�ðuNþQNK �dðkÞÞQ
i
ni!

¼ euK �dðkÞ� NK ðuN ;uK ;QNK Þþ N ðuNþQNK �dðkÞÞ:

(12)

Consequently, the component distributions in exponential family form are given by

pðn j kÞ ¼
pðn;kÞ

pðkÞ
¼
en�ðuNþQNK �dðkÞÞ� N ðuNþQNK �dðkÞÞ

Q
i ni!

: (13)

Observe that pðn j kÞ is a multivariate Poisson distribution with parameters uN þQNK � dðkÞ, so that

for k>1, the parameters are the sum of uN and row k� 1 of QNK . Because the exponential family

parameters are the logarithms of the firing rates of n, each row of QNK modulates the firing rates of

n multiplicatively. When uNðxÞ depends on a stimulus and we consider the component distributions

pðn j x;kÞ, each row of QNK then scales the tuning curves of the baseline population (i.e. pðn j x;kÞ for

k¼ 1); in the neuroscience literature, such scaling factors are typically referred to as gain

modulations.

The exponential family form has many advantages. However, it has a less intuitive relationship

with the statistics of the model such as the mean and covariance. The most straightforward method

to compute these statistics given a model in exponential family form is to first reparameterize it in

terms of the weights and component rates, and then evaluate Equations 5, 6, and 7.

CoM-Poisson distributions and their mixtures
Conway-Maxwell (CoM) Poisson distributions decouple the location and shape of count distributions

(Shmueli et al., 2005; Stevenson, 2016; Chanialidis et al., 2018). A CoM Poisson model has the

form pðn; l; nÞ / ð l
n

n!
Þ
n
. The floor function lb c of the location parameter l is the mode of the given

distribution. With regards to the shape parameter n, pðn; l; nÞ is a Poisson distribution with rate l

when n ¼ 1, and is under- or over-dispersed when n>1 or n<1, respectively. A CoM-Poisson model

pðn; l; nÞ is also an exponential family, with natural parameters uC ¼ ðn logl;�nÞ, sufficient statistic

sCðnÞ ¼ ðn; log n!Þ, and base measure bðnÞ ¼ 1. The log-partition function does not have a closed-form

expression, but it can be effectively approximated by truncating the series
P

¥

n¼0
esCðnÞ�uC

(Shmueli et al., 2005). More generally, when we consider a product of independent CoM-Poisson

distributions, we denote its log-partition function by  CðuN ; u
�
NÞ ¼

PdN
i¼1

log
P

¥

n¼0
en�N;iþlogðnÞ!��

N;i , where

uC;i ¼ ð�N;i; �
�
N;iÞ are the parameters of the i th CoM-Poisson distribution. In this case we can also

approximate the log-partition function  C by truncating the dN constituent series
P

¥

n¼0
en�N;iþlogðnÞ!��

N;i

in parallel.

We define a multivariate CoM-based (CB) mixture as

pðn;kÞ ¼ euN �nþu�N �lfðnÞþuK �dðkÞþn�QNK �dðkÞ� CK ðuN ;u
�
N ;uK ;QNK Þ; (14)

where lfðnÞ ¼ ðlogðn1!Þ; . . . ; logðndN !ÞÞ is the vector of log-factorials of the individual spike-counts, and

 CKðuN ;u
�
N ;uK ;QNKÞ ¼ log

P
k e

uk �dðkÞþ CðuNþQNK �dðkÞ;u
�
N Þ is the log-partition function. This form ensures that

the index-probabilities satisfy

pðkÞ ¼ euK �dðkÞ� CK ðuN ;u
�
N ;uK ;QNK Þþ CðuNþQNK �dðkÞ;u

�
N Þ; (15)

and consequently that each component distribution pðn j kÞ is a product of independent CoM Pois-

son distributions given by

pðn j kÞ ¼ en�ðuNþQNK �dðkÞÞþu�N �lfðnÞ� CðuNþQNK �dðkÞ;u
�
N Þ: (16)

Observe that, whereas the parameters uN þQNK � dðkÞ of pðn j kÞ depend on the index k, the

parameters u�N of pðn j kÞ are independent of the index and act exclusively as biases. Therefore, real-

izing different indices k has the effect increasing or decreasing the location parameters, and thus the
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modes of the corresponding CoM-Poisson distributions. As such, although the different components

of a CB mixture are not simply rescaled versions of the first component pðn j k¼ 1Þ, in practice they

behave approximately in this manner.

The moments of a CoM-Poisson distribution are not available in closed-form, yet they can also be

effectively approximated through truncation. We begin by computing approximate means �ik and

variances s2

ik of pðni j kÞ through truncation, and then the mean of ni is �i ¼
PdK

k¼1
pðkÞ�ik, and its vari-

ance is

s2

i ¼ �s2

i þ
XdK

k¼1

pðkÞð�ik ��iÞ
2
; (17)

where �s2

i ¼
PdK

k¼1
pðkÞs2

ik. Similarly to Equation 7, the covariance sij between ni and nj is

sij ¼
PdK

k¼1
pðkÞð�ik ��iÞð�jk ��jÞ.

By comparing Equations 6 and 17, we see that the CB mixture may address the limitations on

the variances s2

i of the IP mixture by setting the average variance �s2

i of the components in Equa-

tion 17 to be small, while holding the value of the means �i fixed, and ensuring that the means of

the components �ik cover a wide range of values to achieve the desired values of s2

i and sij. Solving

the parameters of a CB mixture for a desired covariance matrix is unfortunately not possible since

we lack closed-form expressions for the means and variances. Nevertheless, we may justify the effec-

tiveness of the CB strategy by considering the approximations of the components means and varian-

ces �ik »lik þ
1

2nik
� 1

2
and s2

ik »
lik
nik
, which hold when neither lik or nik are too small (Chanialidis et al.,

2018). Based on these approximations, observe that when nik is large, s2

ik is small, whereas �ik is

more or less unaffected. Therefore, in the regime where these approximations hold, a small value for

�s2

i can be achieved by reducing the parameters nik, without significantly restricting the values of �ik
or �i.

Fisher information of a minimal CM
The Fisher information (FI) of an encoding model pðn j xÞ with respect to x is

IðxÞ ¼
P

n
pðn j xÞðqx log pðn j xÞÞ2(Cover and Thomas, 2006). With regard to the FI of a minimal CM,

qx logpðn j xÞ ¼

P
k qxpðn;k j xÞ

pðn j xÞ
¼

P
k qxe

uN ðxÞ�nþu�N �lfðnÞþuK �dðkÞþn�QNK �dðkÞ� CK ðuN ðxÞ;u
�
N ;uK ;QNK Þ

pðn j xÞ

¼ qxðuNðxÞ �n� CKðuNðxÞ;u
�
N ;uK ;QNKÞÞ

P
k pðn;k j xÞ

pðn j xÞ
¼ qxuNðxÞ � ðn�mNðxÞÞ;

where qx CKðuNðxÞ;u
�
N ;uK ;QNKÞ ¼mNðxÞ � qxuNðxÞ follows from the chain rule and properties of the log-

partition function (Wainwright and Jordan, 2008). Therefore

IðxÞ ¼
X

n

pðn j xÞðqxuNðxÞ � ðn�mNðxÞÞÞ
2 ¼ qxuNðxÞ �SNðxÞ � qxuNðxÞ;

where SNðxÞ is the covariance matrix of pðn j xÞ. Moreover, because qxuNðxÞ ¼S�1

N ðxÞ � qxmðxÞ

(Wainwright and Jordan, 2008), the FI of a minimal CM may also be expressed as

IðxÞ ¼ qxmNðxÞ �S
�1

N ðxÞ � qxmNðxÞ, which is the linear Fisher information (Beck et al., 2011b).

Note that when calculating the FI or other quantities based on the covariance matrix, IP-CMs

have the advantage that their covariance matrices tend to have large diagonal elements and are

thus inherently well-conditioned. Because decoding performance is not significantly different

between IP- and CB-CMs (see Table 3), IP-CMs may be preferable when well-conditioned covariance

matrices are critical. Nevertheless, the covariance matrices of CB mixtures can be made well-condi-

tioned by applying standard techniques.

Expectation-maximization for CMs
Expectation-maximization (EM) is an algorithm that maximizes the likelihood of a latent variable

model given data by iterating two steps: generating model-based expectations of the latent varia-

bles, and maximizing the complete log-likelihood of the model given the data and latent
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expectations. Although the maximization step optimizes the complete log-likelihood, each iteration

of EM is guaranteed to not decrease the data log-likelihood as well (Neal and Hinton, 1998).

EM is arguably the most widely applied algorithm for fitting finite mixture models

(McLachlan et al., 2019). As a form of latent variable exponential family, the expectation step for a

finite mixture model reduces to computing average sufficient statistics, and the maximization step is

a convex optimization problem (Wainwright and Jordan, 2008). In general, the average sufficient

statistics, or mean parameters, correspond to (are dual to) the natural parameters of an exponential

family, and where we denote natural parameters with q, we denote their corresponding mean

parameters with h.

Suppose we are given a dataset ðnð1Þ; . . . ; nðdT ÞÞ of neural spike-counts, and a CB mixture with nat-

ural parameters uN , u
�
N , uK , and QNK (see Equation 14). The expectation step for this model reduces

to computing the data-dependent mean parameters h
ðiÞ
K given by

u
ðiÞ
K ¼ uK þn

ðiÞ �QNK ;h
ðiÞ
K;k ¼

e
�
ðiÞ

K;k

1þ
P

l e
�
ðiÞ

K;l

;

for all 0<i� dT . The mean parameters h
ðiÞ
K are the averages of the sufficient statistic dkðkÞ under the

distribution pðk j nðiÞÞ, and are what we use to complete the log-likelihood since we do not observe k.

Given h
ðiÞ
K , the maximization step of a CB mixture thus reduces to maximizing the complete log-

likelihood
PdT

i¼1
LðuK ; uN ; u

�
N ;QNK ;h

ðiÞ
K ; n

ðiÞÞ, where we substitute h
ðiÞ
K into the place of dðkÞ in Equa-

tion 14, such that

LðuK ;uN ;u
�
N ;QNK ;h

ðiÞ
K ;n

ðiÞÞ ¼ uN �nðiÞþ u�N � lfðnðiÞÞþ uK �h
ðiÞ
K þn

ðiÞ �QNK �h
ðiÞ
K � CKðuN ;u

�
N ;uK ;QNKÞ:

This objective may be maximized in closed-form for an IP mixture (Karlis and Meligkotsidou,

2007), but this is not the case when the model has CoM-Poisson shape parameters or depends on

the stimulus. Nevertheless, solving the resulting maximization step is still a convex optimization

problem (Wainwright and Jordan, 2008), and may be approximately solved with gradient ascent.

Doing so requires that we first compute the mean parameters hN , h
�
N , hK , and HNK that are dual to

uN , u
�
N , uK , and QNK , respectively.

We compute the mean parameters by evaluating

�†K;k ¼ �K;k þ CðuN þQNK � dðkÞ;u�NÞ� ðuNÞ hK;k ¼
e
�
†

K;k

1þ
PdK�1

k¼1
e
�
†

K;k

; �jk ¼
P

¥

nj¼0
nj pðnj j kÞ;

h�
N;j ¼

PdK
k¼1

pðkÞ
P

¥

nj¼0
lognj! pðnj j kÞ; hN;j ¼

PdK
k¼1

pðkÞ�jk; hNK;jk ¼ hK;k�jðkþ1Þ;

where hK;k is the k th element of hK , hN;j is the j th element of hN , h
�
N;j is the j th element of h�

N , and

hNK;jk is the j th element of the k th column of HNK . Note as well that we truncate the series
P

nj
nj pðnj j kÞ and

P
nj
lognj! pðnj j kÞ to approximate �jk and h�

N;j. Given these mean parameters, we

may then express the gradients of LðiÞ ¼LðuK ;uN ;u
�
N ;QNK ;hK;i;n

ðiÞÞ as

q�NL
ðiÞ ¼ n

ðiÞ�hN ; q��N
LðiÞ ¼ lfðnðiÞÞ�h�

N ;

q�KL
ðiÞ ¼ h

ðiÞ
K �hK ; qQNK

LðiÞ ¼ n
ðiÞ
h

ðiÞ
K �HNK ;

where ˜ is the outer product operator, and where the second term in each equation follows from

the fact that the derivative of  CK with respect to uN , u
�
N , uK , or QNK yields the dual parameters hN ,

h�
N , hK , and HNK , respectively. By ascending the gradients of

PdT
i¼1

LðiÞ until convergence, we approx-

imate a single iteration of the EM algorithm for a CB mixture.

Finally, if our dataset ððnð1Þ; xð1ÞÞ; . . . ; ðnðdT Þ; xðdT ÞÞÞ includes stimuli x, and the parameters uN depend

on the stimulus, then the gradients of the parameters of �N must also be computed. For a von Mises

CM where uNðxÞ ¼ u0N þQNX � vmðxÞ, the gradients are given by

qu0N
LðiÞ ¼ q

u
ðiÞ
N

LðiÞ; qQNX
LðiÞ ¼ q

u
ðiÞ
N

LðiÞ
 vmðxðiÞÞ;

where u
ðiÞ
N ¼ uNðx

ðiÞÞ is the output of uN at xðiÞ. Although in this paper we restrict our applications
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to Von Mises or discrete tuning curves for one-dimensional stimuli, this formalism can be readily

extended to the case where the baseline parameters uNðxÞ are a generic nonlinear function of the

stimulus, represented by a deep neural network. Then, the gradients of the parameters of uN can be

computed through backpropagation, and q
u
ðiÞ
N

LðiÞ is the error that must be backpropagated through

the network to compute the gradients.

If we ignore stimulus dependence, the single most computationally intensive operation in each

gradient ascent step is the computation of the outer product when evaluating qQNK
LðiÞ, which has a

time complexity of OðdKdNÞ. As such, the training algorithm scales linearly in the number of neurons,

and CMs could realistically be applied to populations of tens to hundreds of thousands of neurons.

That being said, larger values of dK will typically be required to maximize performance in larger pop-

ulations, and fitting the model to larger populations typically requires larger datasets and more EM

iterations.

CM initialization and training procedures
To fit a CM to a dataset ððnð1Þ; xð1ÞÞ; . . . ; ðnðdT Þ; xðdT ÞÞÞ, we first initialize the CM and then optimize its

parameters with our previously described EM algorithm. Naturally, initialization depends on exactly

which form of CM we consider, but in general we first initialize the baseline parameters uN , then add

the categorical parameters uK and mixture component parameters QNK . When training CB-CMs we

always first train an IP-CM, and so the initialization procedure remains the same for IP and CB

models.

To initialize a von Mises CM with dN neurons, we first fit dN independent, von Mises-tuned neu-

rons by maximizing the log-likelihood
PdT

i¼1
log pðnðiÞ j xðiÞÞ of uNðxÞ ¼ u0N þQNX � vmðxÞ. This is a con-

vex optimization problem and so can be easily solved by gradient ascent, in particular by following

the gradients

qu0N

XdT

i¼1

logpðnðiÞ j xðiÞÞ ¼
XdT

i¼1

n
ðiÞ� logðuNðx

ðiÞÞÞ;

qQNX

PdT
i¼1

logpðnðiÞ j xðiÞÞ ¼
PdT

i¼1
logðnðiÞ� loguNðx

ðiÞÞÞ
 vmðxðiÞÞ;

to convergence. For both discrete and maximal CMs, where there are dX distinct stimuli, we initialize

uNðxÞ ¼ u0N þQNX � dðxÞ by computing the average rate vector at each stimulus-condition and creating

a lookup table for these rate vectors. Formally, where xl is the l th stimulus value for 0<l� dX , we

may express the l th rate vector as ll ¼
1PdT

i¼1
dðxl;xðiÞÞ

PdT
i¼1

dðxl;x
ðiÞÞnðiÞ, where dðxl;x

ðiÞÞ is one when

xl ¼ xðiÞ, and 0 otherwise. We then construct a lookup table for these rate vectors in exponential fam-

ily form by setting u0N ¼ logl1, and by setting the l th row uNX;l of QNX to uNX;l ¼ logllþ1 � logl1.

In general, we initialize the parameters uK by sampling the weights w1; . . . ;wdK of a categorical

distribution from a Dirichlet distribution with a constant concentration of 2, and converting the

weights into the natural parameters of a categorical distribution uK . For discrete and maximal CMs,

we initialize the modulations QNK by generating each element of QNK from a uniform distribution

over the range ½�0:0001; 0:0001�. For von Mises CMs we initialize each row uNK;k of QNK as shifted

sinusoidal functions of the preferred stimuli of the independent von Mises neurons. That is, given u0N

and QNX , we compute the preferred stimulus of the i th neuron given by �i ¼ atan2ðu0N þ uNX;iÞ, where

uNX;i is the i th row of QNX . We then set the i th element �NK;k;i of uNK;k to �NK;k;i ¼ 0:2 sinð�i þ
k

360

�
Þ. Ini-

tializing von Mises CMs in this way ensures that each modulation has a unique peak as a function of

preferred stimuli, which helps differentiate the modulations from each other, and in our experience

improves training speed.

With regard to training, the expectation step in our EM algorithm may be computed directly, and

so the only challenge is solving the maximization step. Although the optimal solution strategy

depends on the details of the model and data in question, in the context of this paper we settled on

a strategy that is sufficient for all simulations we perform. For each model we perform a total of

dI ¼ 500 EM iterations, and for each maximization step we take dS ¼ 100 gradient ascent steps with

the Adam gradient ascent algorithm (Kingma and Ba, 2014) with the default momentum parameters

(see Kingma and Ba, 2014). We restart the Adam algorithm at each iteration of EM and gradually
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reduce the learning rate. Where �þ ¼ 0:002 and �� ¼ 0:0005 are the initial and final learning rates, we

set the learning rate �t at EM iteration t to

�t ¼ exp ð
ðdI � 1� tÞ logð�þÞþ t logð��Þ

dI � 1
Þ;

where we assume t starts at 0 and ends at dI � 1.

Because we must evaluate large numbers of truncated series when working with CB-CMs, training

times are typically one to two orders of magnitude greater. To minimize training time of CB-CMs

over the dI EM iterations, we therefore first train a IP-CM for 0:8dI iterations. We then equate the

parameters uN , uK , and QNK of the IP-CM (see Equation 8) with a CB-CM (see Equation 14) and set

u�N ¼ �1, which ensures that resulting CB model has the same density function pðn; k j xÞ as the origi-

nal IP model. We then train the CB-CM for 0:2dI iterations. We found this strategy results in practi-

cally no performance loss, while greatly reducing training time.

Strategies for choosing the CM form and latent structure
There are a few choices with regards to the form of the model than one must make when applying a

CM: The form of the dependence, whether or not to use the CoM-based (CB) extension, and the

number of components dK . The form of the dependence is very open-ended, yet should be fairly

clear from the problem context: one should use a minimal model if one wishes to make use of its

mathematical features, and otherwise a maximal model may provide better performance. If one

wishes to interpolate between stimulus conditions, or the number of stimulus-conditions in the data

is high, then a continuous stimulus-dependence model (e.g. von Mises tuning curves) should be

used, otherwise discrete tuning curves may provide better performance. Finally, if one wishes to

model correlations in a complex neural circuit, one may use for example a deep neural network, and

induce correlations in the output layer with the theory of CMs.

Similarly, CB-CMs have clear advantages for modelling individual variability, and as we show in

Appendix 2, this includes higher-order variability. Nevertheless, from the perspective of decoding

performance, IP-CMs and CB-CMs perform more-or-less equally well, and training CB-CMs is more

computationally intensive. As such, IP-CMs may often be the better choice.

The number of components dK provides a fine-grained method of adjusting model performance.

If the goal is to maximize predictive encoding performance, then the standard way to do this is to

choose a dK that maximizes the cross-validated log-likelihood, as we demonstrated in Figure 5. Nev-

ertheless, one may rather aim to maximize decoding performance, in which case maximizing the

cross-validated log-posterior may be a more appropriate objective. In both cases, for very large pop-

ulations of neurons, choosing a dK solely to maximize performance may be prohibitively, computa-

tionally expensive. As demonstrated in Figure 5 and Appendix 3, a small dK can achieve a large

fraction of the performance gain of the optimal dK , and choosing a modest dK that achieves qualita-

tively acceptable performance may prove to be the most productive strategy.

CM parameter selection for simulations
In the section Extended Poisson mixture models capture stimulus-dependent response statistics and

the section Conditional mixtures facilitate accurate and efficient decoding of neural responses we

considered minimal CB-CMs with randomized parameters uNðxÞ, u
�
N , uK , and QNK , which for simplicity

we refer to as models 1 and 2, respectively. We construct randomized CMs piece by piece, in a simi-

lar fashion to our initialization procedure.

Firstly, where dN is the number of neurons, we tile their preferred stimuli �i over the circle such

that �i ¼
i
dN
360

�. We then generate the concentration ki and gain gi of the i th neuron by sampling

from normal distributions in log-space, such that log ki ~Nð�0:1; 0:2Þ, and loggi ~Nð0:2; 0:1Þ. Finally,

for von Mises baseline parameters uNðxÞ ¼ u0N þQNX � vmðxÞ, we set each row uNX;i of QNX to

uNX;i ¼ ðki cos �i; ki sin �iÞ, and each element �0N;i of u
0

N to �0N;i ¼ loggi �  XðuNX;iÞ, where  X is the loga-

rithm of the modified Bessel function of order 0, which is the log-partition function of the von Mises

distribution.

We then set uK ¼ 0, and generated each element �NK;i;k of the modulation matrix uNK in the same

matter as the gains, such that �NK;i;k ~Nð0:2; 0:1Þ. Finally, to generate random CB parameters we gen-

erate each element ��N;i of u
�
N from a uniform distribution, such that u�N;i ~Uð�1:5;�0:8Þ.
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Model two entails two more steps. Firstly, when sampling from larger populations of neurons, sin-

gle modulations often dominate the model activity around certain stimulus values. To suppress this

we consider the natural parameters u0KðxÞ of pðk j xÞ (see Equation 15), and compute the maximum

value of these natural parameters over the range of stimuli �þK;k ¼ maxxf�
0

K;kðxÞg. We then set each

element �K;k of the parameters uK of the CM to �K;k ¼ ��þK � �þK;k, where
��þK ¼

PdK
i¼1

�K;k
dK
, which helps

ensure that multiple modulations are active at any given x. Finally, since model two is a discrete CM,

we replace the von Mises baseline parameters with discrete baseline parameters, by evaluating

u0N þQNX � vmðxÞ at each of the dX valid stimulus-conditions, and assemble the resulting collection of

natural parameters into a lookup table in the manner we described in our initialization procedures.

Decoding models
When constructing a Bayesian decoder for discrete stimuli, we first estimate the prior pðxÞ by com-

puting the relative frequency of stimulus presentations in the training data. For the given encoding

model, we then evaluate pðn j xÞ at each stimulus condition, and then compute the posterior

pðx j nÞ / pðn j xÞpðxÞ by brute-force normalization of pðn j xÞpðxÞ. When training the encoding model

used for our Bayesian encoders, we only trained them to maximize encoding performance as previ-

ously described, and not to maximize decoding performance.

We considered two decoding models, namely the linear network and the artificial neural network

(ANN) with sigmoid activation functions. In both cases, the input of the network was a neural

response vector, and the output the natural parameters uX of a categorical distribution. The form of

the linear network was uXðnÞ ¼ uX þQXN � n, and is otherwise fully determined by the structure of the

data. For the ANN on the other hand, we had to choose both the number of hidden layers, and the

number of neurons per hidden layer. We cross-validated the performance of both 1 and 2 hidden

layer models, over a range of sizes from 100 to 2000 neurons. We found the performance of the net-

works with two hidden layers generally exceeded that of those with one hidden layer, and that 700

and 600 hidden neurons was optimal for the awake and anaesthetized networks, respectively.

Given a dataset ððnð1Þ; xð1ÞÞ; . . . ; ðnðdT Þ; xðdT ÞÞÞ, we optimized the linear network and the ANN by

maximizing
PdT

i¼1
log pðxðiÞ j nðiÞÞ via stochastic gradient ascent. We again used the Adam optimizer

with default momentum parameters, and used a fixed learning rate of 0.0003, and randomly divided

the dataset into minibatches of 500 data points. We also used early stopping, where for each fold of

our 10-fold cross-validation simulation, we partitioned the dataset into 80% training data, 10% test

data, and 10% validation data, and stopped the simulation when performance on the test data

declined from epoch to epoch.

Experimental design
Throughout this paper, we demonstrate our methods on two sets of parallel response recordings in

macaque primary visual cortex (V1). The stimuli were drifting full contrast gratings at nine distinct ori-

entations spread evenly over the half-circle from 0˚ to 180˚ (2˚ diameter, two cycles per degree, 2.5

Hz drift rate). Stimuli were generated with custom software (EXPO by P. Lennie) and displayed on a

cathode ray tube monitor (Hewlett Packard p1230; 1024 � 768 pixels, with ~ 40 cd/m2 mean lumi-

nance and 100 Hz frame rate) viewed at a distance of 110 cm (for anaesthetized dataset) or 60 cm

(for awake dataset). Grating orientations were randomly interleaved, each presented for 70 ms (for

anaesthetized dataset) or 150 ms (for awake dataset), separated by a uniform gray screen (blank

stimulus) for the same duration. Stimuli were centered in the aggregate spatial receptive field of the

recorded units.

Neural activity from the superficial layers of V1 was recorded from a 96 channel microelectrode

array (400 mm spacing, 1 mm length). (400 mm spacing, 1 mm length). Standard methods for wave-

form extraction and pre-processing were applied (see Aschner et al., 2018). We computed spike

counts in a fixed window with length equal to the stimulus duration, shifted by 50 ms after stimulus

onset to account for onset latency. We excluded from further analyses all neurons that were not

driven by any stimulus above baseline + 3std.

In the first dataset, the monkey was awake and performed a fixation task. Methods and protocols

are as described in Festa et al., 2020. There were dT ¼ 3; 168 trials of the responses of dN ¼ 43 neu-

rons in the dataset. We refer to this dataset as the awake V1 dataset.
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In the second dataset, the monkey was anaesthetized and there were dT ¼ 10; 800 trials of the

responses of dN ¼ 70 neurons; we refer to this dataset as the anaesthetized V1 dataset. The protocol

and general methods employed for the anaesthetized experiment have been described previously

(Smith and Kohn, 2008).

All procedures were approved by the Institutional Animal Care and Use Committee of the Albert

Einstein College of Medicine, and were in compliance with the guidelines set forth in the National

Institutes of Health Guide for the Care and Use of Laboratory Animals under protocols 20180308

and 20180309 for the awake and anaesthetized macaque recordings, respectively.

Code
All code used to run the simulations and generate the figures, as well as the awake and anaesthe-

tized datasets, are available at the Git repository https://gitlab.com/sacha-sokoloski/neural-mixtures

(Sokoloski, 2021; copy archived at swh:1:rev:8e82799f8934c47961ea02c5b7c25bd952abb961).

Instructions are provided for installation, and scripts are provided that may be run on alternative

datasets with a similar structure to what we have considered in this manuscript without modifying

the code.
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Appendix 1

Comparing conditional mixtures with factor analysis
In Conditional mixtures effectively model neural responses in macaque V1, we assess encoding per-

formance with the cross-validated, average log-likelihood of the given conditional mixture (CM) on

the given dataset. However, in some cases, one might only be concerned with how well a model

captures particular statistics of a dataset. In particular, response models based on Gaussian distribu-

tions treat spike-counts as continuous values, and assign positive probability to both negative and

non-integer values. Although their log-likelihood performance consequently tends to suffer relative

to spike-count models, they can still prove highly effective at capturing the mean and covariance of

data.

Here, we compare CMs with factor analysis (FA), which is widely applied to modelling neural

responses (Santhanam et al., 2009; Cowley et al., 2016; Semedo et al., 2019). FAs model data as

Gaussian distributed, and have a latent structure that facilitates both interpretability and predictive

performance. The easiest way to design an encoding model based on FA is with a simple lookup-

table, so that we fit an independent FA model at each stimulus condition. This is also how we define

maximal CMs, and so to keep our comparison straightforward we compare FA encoding models

with maximal CMs. In particular, we compare FA to both independent Poisson (IP) and CoM-Based

(CB) maximal CMs on how well they capture response statistics on the two datasets from the article

(anaesthetized and awake macaque V1). In general, we trained the CMs with expectation-maximiza-

tion (EM) as described in Materials and methods, and the FA model with standard EM.

In Appendix 1—figure 1A and B, we depict scatter plots that compare the data noise correla-

tions from our awake and anaesthetized datasets at the stimulus orientation x ¼ 40
�, to the noise

correlations learned by CB and IP mixtures, and FA trained on the complete datasets. Each model

was defined with dK ¼ 5 latent states/dimensions. We also state the coefficient of determination r2

for each model, and see that although all models perform comparably on the anaesthetized data,

FA has a clear advantage over the mixture models on the awake data. To see if this performance

advantage holds on held-out data, in Appendix 1—figure 1C and D we depict the results of 10-fold

cross-validation of the coefficient of determination r2 between the data noise correlations and the

various model noise correlations over all nine stimulus orientations, as a function of the number of

latant states/dimensions dK . We see that the predictive performance advantage of FA on the awake

data is small, and that CB-CMs exceed the performance of FA on anaesthetized data. At the same

time, FA achieves peak performance on both datasets with a smaller number of parameters. Never-

theless, FA is designed precisely to capture second-order correlations, and that our mixture models

achieve comparable performance speaks favourably to the overall strengths of the mixture model

approach.

Sokoloski et al. eLife 2021;10:e64615. DOI: https://doi.org/10.7554/eLife.64615 29 of 36

Research article Neuroscience

https://doi.org/10.7554/eLife.64615


Appendix 1—figure 1. Mixture models capture spike-count correlations. (A, B) Scatter plots of the

data noise correlations versus the noise correlations modelled by IP (blue) and CB (red) mixtures,

and FA (purple), in both the awake (A) and anaesthetized (B) datasets at orientation x ¼ 40
�. Each

point represent a pair of neurons (dN ¼ 43 and dN ¼ 70 neurons in the awake and anaesthetized

datasets, respectively). (C, D) We evaluate the noise correlation r2 over all stimulus-orientations with

10-fold cross-validation. We plot the average (lines) and standard error (error bars) of the cross-

validated noise correlation r2 as a function of number of latent states/dimensions dK , in both the

awake (C) and anaesthetized (D) datasets. We also indicate the peak performance achieved for each

model, and requisite number of latent states/dimensions dK .

In Appendix 1—figure 2, we depict scatter plots between the data Fano factors (FFs) and

learned FFs of our models at stimulus orientation x ¼ 40
�, and find that both the CB mixture and FA
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almost perfectly capture the data FFs. In Appendix 1—figure 2C–D, we see that the CB mixture

and FA also achieve good cross-validated r2 scores on FFs. Unsurprisingly, however, the IP mixture

struggles to effectively capture FFs.

Appendix 1—figure 2. Mixture models capture spike-count Fano factors. We repeat the analyses

from Appendix References Figure 7 on Fano factors (FFs). (A, B) Scatter plots of the data FFs versus

the FFs modelled by IP (blue) and CB mixtures (red), and FA (purple) in both the awake (A) and

anaesthetized (B) datasets at orientation x ¼ 40
�. (C, D) As a function of the number of latent states/

dimensions, we plot the average (lines) and standard error (bars) of the cross-validated r2 between

the data and modelled Fano factors over all stimulus orientations, in both the awake (C) and

anaesthetized (D) datasets.
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Appendix 2

Higher order moments and neural decoding
FA-based encoding models are highly effective at capturing the first- and second-order statistics of

neural responses, yet in our simulations we found that Bayesian decoders based on FA encoding

models perform poorly when compared to the other decoding models considered in Conditional

mixtures facilitate accurate and efficient decoding of neural responses. There we evaluate decoding

performance by fitting a candidate model to training data, and computing the mean and standard

error of the log-posterior at the true stimulus on held-out data. On the awake data FA scores

�0:246� 0:066, which is comparable to an optimal linear decoder, yet still significantly worse than a

nonlinear decoder, or a Bayesian decoder based on a CM. On the anaesthetized data FA scored

�¥, as it would occasionally assign numerically 0 posterior probability to the true stimulus; when we

filtered out �¥ values from the average, the FA encoder still only achieved performance of

�2:21� 0:31.

Normal distributions — and the FA observable distribution by extension — are essentially defined

by their first- and second-order statistics, which suggests that there are higher-order statistics that

are important for decoding that FA cannot capture. The third and fourth order statistics known as

the skewness and excess kurtosis measure the asymmetry and heavy-tailedness of a given distribu-

tion, respectively. Normal distributions have a skewness and excess kurtosis of 0. Here, we study

how well this normality assumption is reflected in our neural recordings, and how well our mixture

models capture these higher order statistics.

In Figure 1, we present scatter plots of the empirical skewness and kurtosis of all the neurons in

our datasets at orientation x ¼ 40
�, and the model skewness and kurtosis learned by our mixture

models. Exactly quantifying the non-normality of higher order moments in multivariate distributions

is a complicated and evolving subject (Mardia and El-atoum, 1976; Cain et al., 2017), nevertheless

in Figure 1 the empirical skewness and kurtosis of the recorded neurons appear to qualitatively devi-

ate from zero. On the awake data, both the CB and IP mixture achieve high r2 when compared with

the data skewness (Figure 1A) and kurtosis (Figure 1B), although the CB mixtures achieves notably

better performance. On the anaesthetized data (Figure 1C and D), the CB mixture continues to

achieve a high r2, but the IP mixture performs extremely poorly; although the disparity in r2 is not

immediately apparent in the scatter plots, this is because some of the model skewness of the IP mix-

tures are outside the plot bounds.
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Appendix 2—figure 1. CoM-based mixtures capture data skewness and kurtosis. (A, B) Scatter

plots of the data skewness (A) and kurtosis (B) versus the skewness and kurtosis modelled by IP

mixtures (blue) and CB mixtures (red). The skewness and kurtosis of 1 of 43 neurons modelled by

the IP mixture were outside the bounds of each scatter plot. C,D: Same as A-B but on the

anaesthetized data; the skewness of 11 of 43, and kurtosis of 12 of 43 neurons modelled by the IP

mixture were outside the bounds of each scatter plot.

When fit to the complete datasets, and averaged over all stimulus conditions, the CB mixtures

achieved a skewness r2 average and standard error of r2 ¼ 0:87� 0:08 and r2 ¼ 0:94� 0:03, and a

kurtosis r2 average and standard error of r2 ¼ 0:61� 0:20 and r2 ¼ 0:82� 0:13 on the awake and

anaesthetized data, respectively; in contrast, the presence of outliers caused the average scores for

the IP mixture to be dramatically negative in all cases. These results suggest that the CoM-based

parameters of the CB mixture provide important degrees of freedom for capturing individual vari-

ability. That being said, when we cross-validated the r2 performance on the higher-order moments,

the results were not significantly higher than 0 for the CB mixture, and as such, accurately estimating

higher order moments requires larger datasets than what we have considered here.

Nevertheless, in spite of the inability to capture predictive performance on these moments, we

speculate that when combined across higher order moments and cross-moments, the ability of mix-

ture models to capture higher order structure in the data is necessary for maximizing decoding per-

formance, and that these moments might play an important role in neural coding. As the complexity

of neural datasets increases, a careful study of such higher-order statistics would become both feasi-

ble and warranted, and our mixture model approach could prove to be a useful tool in such work.
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Appendix 3

Sample complexity of conditional mixtures
To develop a sense of the sample complexity of CMs, we repeated the cross-validation simulations

with discrete CMs on subsets of our two datasets (see Conditional mixtures effectively model neural

responses in macaque V1 and Conditional mixtures facilitate accurate and efficient decoding of neu-

ral responses). In particular, we ran a 10-fold cross-validation simulation on a single subsample of

25%, 50%, 75%, and 100%, of each of our datasets. On our anaesthetized dataset this occasionally

resulted in some neurons recording 0 spikes in a giving training set, which tends to cause our train-

ing algorithm to diverge, and so we filtered out neurons with low firing rates, leaving 50 neurons in

our anaesthetized dataset.

Appendix 3—figure 1. Sample complexity of discrete CMs. 10-fold cross-validation of discrete CMs

with 3, 10, 20, and 40 components, on subsamples of 25%, 50%, 75%, and 100% of the awake and

anaesthetized datasets, with dN ¼ 43 and dN ¼ 50 neurons, respectively. Left column: Cross-validated

average log-likelihood of the models given test data (i.e. encoding performance). Right column:

Cross-validated average log-posterior (i.e. decoding performance). Error bars represent standard

error. In all panels, we added an offset on the abscissa for better visualization of the error bars.
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We present the results of our simulations in Figure 1. In the left column (Figure 1A–D), we pres-

ent the cross-validated log-likelihood of the vanilla and CoM-models, on the awake and anaesthe-

tized data, respectively, and we see that, as we would expect, models with fewer components

maximize their performance on smaller datasets. Even with large amounts of data, however, the per-

formance difference between models with more than 10 components is nearly statistically indistin-

guishable. In the right column (Figure 1E–H), we present the cross-validated log-posterior

performance of the models, and the results mirror those of the log-likelihood simulations, except the

benefits of larger models becomes even more marginal.
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Appendix 4

Conditional mixtures and generalized linear models
CMs are closely related to generalized linear models (GLMs), which are widely applied in neurosci-

ence. The application of GLMs to modelling stimulus-driven spike-trains was pioneered in

Pillow et al., 2008, in which the authors develop a Poisson encoding model

pðnt j x;m1; . . . ;mdN Þ / e�N ðx;m1 ;...;mdN
Þnt , where dN is the number of recorded neurons, nt is the spike-

count of the modelled neuron in timebin t, x is the stimulus (here the stimulus is an image and repre-

sented as a vector), and where each mi is the spike-count history of the i th recorded neuron up to

time t � 1. The log-rate �N of the modelled neuron at time t depends linearly on the stimulus and the

spike-history, and is given by

�Nðx;m1; . . . ;mdN Þ ¼ x �kþ
XdN

i¼1

hi �mi; (18)

where k and hi are vectors; in Pillow et al., 2008 both k and hi are represented by basis functions

with a manageable number of fittable parameters.

This model may be trivially combined with a CM in order to extend the GLM formulation with a

latent source of shared-variability that affords analytic expressions for various quantities of interest.

The definition of a CB-CM is pðn; k j xÞ / euN ðxÞ�nþu�N �lfðnÞþuK �dðkÞþn�QNK �dðkÞ, and we may simply replace the

variable x with all the independent variables in the GLM formulation, namely x and m1; . . . ;mdN , and

define the baseline log-firing rates uNðx;m1; . . . ;mdN Þ as dN copies of the function defined by Equa-

tion 18, each with its own independent parameters. In principle, the expectation-maximization

framework we have presented for training CMs can be directly applied to a model with this struc-

ture. That being said, choosing the right parameterization of k and h1; . . . ; hdN would pose a unique

challenge in a combined GLM-CM model, and whether such a model would be practically useful is

an empirical question that is beyond the scope of this paper.

Here, we also clarify that although a CM is closely related to both mixture models and GLMs, it

should not be confused with the models known as ‘mixtures of GLMs’ (Grün and Leisch, 2008). A

mixture of GLMs has the form pðy j xÞ ¼
PdK

k¼1
wkpðy j x; ukÞ, where dK is the number of GLMs to be

mixed, wk are the weight parameters, and pðy j x; ukÞ is a GLM with parameters uk. This model differs

from a CM in many subtle ways, and the easiest to note is that the weights wk do not depend on the

stimulus x as they do in a CM, which, as shown in Figures 4 and 6 of the main paper, is critical to

how CMs represent data.
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