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Abstract

Background: Rat liver endosomes contain activated insulin receptors and downstream signal
transduction molecules. We undertook these studies to determine whether endosomes also
contain heterotrimeric G proteins that may be involved in signal transduction from G protein-
coupled receptors.

Results: By Western blotting G,,, G, », Gj,3 and Gy were enriched in both canalicular (CM) and
basolateral (BLM) membranes but also readily detectable on three types of purified rat liver
endosomes in the order recycling receptor compartment (RRC) > compartment for uncoupling of
receptor and ligand (CURL) > multivesicular bodies (MVB) >> purified secondary lysosomes.
Western blotting with antibodies to Na, K-ATPase and to other proteins associated with plasma
membranes and intracellular organelles indicated this was not due to contamination of endosome
preparations by CM or BLM. Adenylate cyclase (AC) was also identified on purified CM, BLM, RRC,
CURL and MVB. Percoll gradient fractionation of liver postnuclear supernatants demonstrated co-
occurrence of endosomes and heterotrimeric G protein subunits in fractions with little plasma
membrane markers. By confocal microscopy, punctate staining for G, G,,; and Gg corresponded
to punctate areas of endocytosed Texas red-dextran in hepatocytes from control and cholera
toxin-treated livers.

Conclusion: We conclude that heterotrimeric G protein subunits as well as AC likely traffic into
hepatocytes on endosome membranes, possibly generating downstream signals spatially separate
from signalling generated at the plasma membrane, analogous to the role(s) of internalized insulin
receptors.

Background

Heterotrimeric G proteins, important for signal transduc-
tion in hepatocytes, attach through lipid modifications to
the cytoplasmic face of plasma membranes, particularly
lipid rafts, where they interact with G protein coupled-
receptors (GPCR) to initiate signal transduction [1,2]. G,
Gia1,2 Gigs and Gy have been identified on rat liver baso-
lateral (BLM) and canalicular (CM) membranes [3,4].

Although current concepts of signal transduction envision
interaction of the cytoplasmic tails of activated receptors
with intracellular signal transduction cascades at the
plasma membrane, insulin and epidermal growth factor
(EGF) receptors and some GPCRs are internalized in
endocytic vesicles [2,5-8]. GPCRs such as the 3, adrenergic
receptor are endocytosed with B-arrestins which regulate
receptor desensitization and recycling [2].
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Further, the internalized receptors with [B-arrestins con-
tribute to the assembly of internalized signalling com-
plexes and MAPK activation [2]. In rat liver activated
insulin and EGF receptors continue to generate signals
from endosomes [5,7] and critical elements of mitogen-
activated protein kinase (MAPK) signalling pathways are
found on endosomes [6,9]. Little is known, however,
regarding whether heterotrimeric G proteins involved in
cAMP signalling pathways and effectors like adenylate
cyclase (AC) are located on endocytic vesicles. The obser-
vations that in vitro GTP-yS stimulates acidification of rat
liver endosomes [10], that liver endosomes exhibit pro-
tein kinase A (PKA) activity [10] and that both G, ; and
regulators of G protein signalling are located on rat liver
"carrier" vesicles where they may alter endosome function
[11] suggest that heterotrimeric G proteins may be local-
ized to endosomes, play a role in vesicle trafficking and
possibly transduce signals from the cytosol, spatially sep-
arated from plasma membranes. Further, in renal cells,
G,, and PKA are found on endosomes [12,13] and anti-
bodies to Gy, G;,, and G, ; label cytoplasmic vesicles near
apical and basolateral membranes [14] while G, and G
are found on Golgi membranes in renal and pancreatic
cells [14,15]. Complex interactions may exist between
heterotrimeric G proteins and endosomes as heterot-
rimeric G proteins or cCAMP may alter fusion and/or traf-
ficking of intracellular vesicles [16], including endosomes
[17] and Golgi secretory vesicles [14]. Finally some
GPCRs, notably the B,-adrenergic receptor, are regulated
by endo- and exocytosis [2].

This study was undertaken to determine whether heterot-
rimeric G protein subunits are localized to liver endocytic
vesicles or lysosomes. Well characterized preparations of
rat liver secondary lysosomes and three types of endocytic
vesicles were employed, including: 1) compartment for
uncoupling of receptor and ligand (CURL), "sorting endo-
somes" that mediate separation of endocytosed receptors
and their ligands [18-22]; 2) recycling receptor compart-
ment (RRC), vesicles recycling receptors back to the
plasma membrane from CURL with some transcytotic ves-
icles and early endosomes [22,23]; and 3) multivesicular
bodies (MVB), late endosomes that contain endocytosed
ligands transferred from CURL, en route to lysosomes for
degradation [18,19,22-24].

Results

Western blotting

By Western blotting, G, Giy1,5 Giq3 and G were detected
on all samples of CM and BLM in amounts greater than in
homogenate (2.3-3.4-fold, p < 0.0006 except for G;,; ,in
BLM;1.6-fold, p = 0.079) (Figure 1) with slightly more in
CM than BIM (p = NS except for G;,; ,, p = 0.022). G,
Gia1,2 Gigs and Gy were detected in most samples of vesi-

cles (n = 7-9): RRC (100%), CURL (75-100%), MVB
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(63-100%) and lysosomes (50-100%) (Figure 1, data
not shown) although quantitatively at lower levels than
CM and BLM (p < 0.0001 to p = 0.027) or homogenate (p
< 0.0001 to p=NS), indicating the bulk of these proteins
was on plasma membranes. Gy, Gj,;, and Gy were
detected on vesicles in the order RRC>CURL>MVB, lyso-
somes. For G,,; the order was RRC>CURL, MVB>lyso-
somes (p values are indicated in Figure 1). The order
RRC>CURL>MVB is that identified for recycling receptors
for asialoglycoproteins, low density lipoproteins and EGF
[18,19,23,24].

Although RRC, CURL, MVB and lysosomes are considered
clean [18-25], contamination by CM or BLM containing
large amounts of G proteins is an important issue. There-
fore BLM, CM, endosomes and lysosomes were examined
for the quantity and/or relative distribution of marker
proteins. The plasma membrane marker Na, K-ATPase
exhibits variable ratios of o/f subunits: intracellular
membranes>>>apical>basolateral membranes [3,26,27],
attributed to differential trafficking [26] and turnover
[28]. Both subunits were identified on CM and BLM, how-
ever BLM exhibited more (3, than CM (Figure 2). o, was
detected in vesicles in the order RRC>CURL>MVB>lyso-
somes (RRC vs. MVB, p = 0.012; RRC vs. lysosomes, p =
0.001; CURL vs. lysosomes, p = 0.004) (Figure 2). How-
ever 3, was not detected in intracellular vesicles (Figure 2).
The antibodies were capable of detecting both subunits in
BLM over a wide range of protein (2.5-60 pg), including
amounts of BLM (2.5-5 pg) in which o, optical density
was similar to that of 60 pg of RRC and CURL (Figure 2B).
Therefore, the o/ ratio in vesicles does not support con-
tamination by plasma membranes.

Other membrane-associated marker proteins were exam-
ined qualitatively (Figure 3). Rab 5a and rab 4 bind to
early and recycling endosomes, respectively [29] and were
detected on CM and BLM but not on vesicles. Transferrin
receptor (Trf-R) recycles between BLM and TGN/recycling
vesicles [17,19,23,30,31] and was detected on BLM>CM
and vesicles in the order RRC>CURL>MVB. Two CM pro-
teins that undergo endocytosis, MDR-related protein 2
(MRP-2) and multi-drug resistance protein 1 (MDR-1)
[32-34], exhibited a different order:
MVB>CURL>RRC>lysosomes. Collectively these findings
suggest that simple contamination of intracellular vesicles
by CM or BLM cannot account for the presence of heterot-
rimeric G protein subunits in vesicles as otherwise G pro-
teins and these other proteins should have been found on
vesicles in the same order.

Percoll gradient fractionation

To further address issues of localization and contamina-
tion and to avoid bias due to selective loss of some
organelles, liver PNS was fractionated on Percoll
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G proteins on endosomes and membranes. A) Quantitative distribution of G, G;, 5, Gj,3 and Gy in different cell frac-
tions: CM (white bars), BLM (gray bars), liver homogenate (dotted bars), RRC (black bars), CURL (down slashed bars), MVB
(up slashed bars) and lysosomes (stripped bars). Optical density of bands for each cell fraction on a single blot were expressed
as a fraction of the optical density of the band for CM on the same blot and bars represent the mean * SEM of results from "n"
different preparations of each cell fraction, as indicated on the figure. Except for G, , in BLM, G protein subunits were
enriched significantly in CM and BLM compared to homogenate (p < 0.0006). G protein subunits in endosomes and lysosomes
were significantly less than in CM or BLM (p < 0.0001 to p = 0.027). In vesicles G,,, G, ,, and G were found in the order
RRC > CURL > MVB > lysosomes and G, ; in the order RRC > CURL, MVB > lysosomes. Many of these differences achieved
statistical significance: G, : RRC vs MVB, p = 0.027; RRC vs lysosomes, p = 0.007; CURL vs lysosomes, p = 0.049. G| ,: RRC
vs CURL, p = 0.05; RRC vs lysosomes, p = 0.022. G, 3: RRC vs lysosomes, p = 0.01. G: RRC vs CURL, p = 0.032; RRC vs
MVB, p = 0.002; RRC vs lysosomes, p = 0.0006; CURL vs lysosomes, p = 0.008. B) Representative Western blots illustrating

data summarized in (A). G, : |5 pg protein/lane; others: 30 pg protein/lane; Hom: homogenate.
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Figure 2

Na, K-ATPase as membrane marker. A) Quantitative distribution of o.| and 1 subunits of Na, K-ATPase in different cell
fractions: CM (white bars), BLM (gray bars), liver homogenate (dotted bars), RRC (black bars), CURL (down slashed bars),
MVB (up slashed bars) and lysosomes (stripped bars). Optical densities were normalized to values in CM as in Figure |. Bars
represent the mean + SEM of results from "n" different preparations of each cell fraction, as indicated on the figure. Both sub-
units were disenriched in endocytic vesicles and lysosomes compared to CM (p < 0.0001). B) Upper blot: detection of a.l and
B1 subunits in BLM over a wide range (2.5-60 pg) of protein/lane. Lower blot: representative Western blot illustrating data
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Plasma membrane proteins on endosomes. Detection of various plasma membrane-associated proteins in purified endo-
cytic vesicles and lysosomes. For rab 4, rab 5a and transferrin receptor (Trf-R) lanes contained 100 ug, 100 pg and 30 ug pro-
tein, respectively and blots shown are representative of studies of 6—10, 6—10 or 2 different preparations of each cell fraction,
respectively. For MRP-2 and MDR-1, lanes contained 100 pg of protein except for CM (10 pg and 5 ng, respectively) and BLM
(10 pg) and blots shown are representative of studies of 4-12 and 17—19, respectively, different preparations of each cell

fraction.

gradients. Fractions were examined for the pattern of dis-
tribution of the entire population of liver endosomes and
lysosomes (identified from internalized fluorescein iso-
thiocyanate-dextran (FITC-dextran) as described [17]),
heterotrimeric G protein subunits and marker proteins
(Figure 4). APDE I and FITC-wheat germ agglutinin
(WGA) were assessed to identify plasma membranes
[15,17]. (The data for FITC-dextran and APDE I were pub-
lished as part of another figure [17]). Low density frac-
tions 29-30 contain cytosol while fractions 20-28
contain most plasma membranes and endosomes.

Although plasma membrane markers were detected
throughout the gradient, relatively little was measured in
fractions 5-15, compared to fractions 20-28. However,
endosomes were distributed throughout the gradient,
including dense lysosomes (fractions 3-6) with lyso-
some-associated membrane protein 1 (LAMP1). Indeed in
fractions 6-14, FITC-dextran-containing endosomes were
found at mean levels up to 35% of levels in the peak endo-
some fractions 23-27. Similarly, rab 5a, which binds early
endosomes and early endosome antigen 1 (EEA1) [29],
was readily detectable throughout the gradient. EEA1,
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Figure 4

Distribution of G proteins on Percoll gradients. A) Distribution of endocytosed FITC-dextran (closed circles), BLM-
bound FITC-WGA (open triangles) and the plasma membrane marker alkaline phosphodiesterase | (APDE [) (open squares)
on Percoll gradients. The predominant positions of plasma membranes, endosomes and lysosomes are indicated at the top of
the graph. The data for the dextran and APDE | curves were previously published [ref [17], Figure 3C]. Reprinted from Hepa-
tology 32, Van Dyke RWV, Effect of cholera toxin and cyclic adenosine monophosphate on fluid phase endocytosis, distribution
and trafficking of endosomes in rat liver, pp. 1357—1369, 2000 with permission from The American Association for the Study of
Liver Disease. B) Distribution of G, G, 5, Gi,3 and Ggand various marker proteins on Percoll gradients. Blots for heterot-
rimeric G protein subunits contained 20 pg protein/lane and are representative of similar blots for 4 different liver prepara-
tions. Blots for EEAI, rab 5, Trf-R, MRP-2, TGN-38 and LAMPI contained 40, 20, 20, 30, 30 and |5 g protein/lane,
respectively, and are representative of similar blots for 4,4,4,4,3 and 4 different liver preparations, respectively.
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Adenylate cyclase on endosomes. A) Quantitative distri-
bution of AC in different cell fractions: CM (white bars), BLM
(gray bars), RRC (black bars), CURL (down slashed bars) and
MVB (up slashed bars). Optical densities were normalized to
values for CM as in Figure |. Bars represent mean + SEM of
results from 2 different preparations of BLM and 3 prepara-
tions each of RRC, CURL and MVB. RRC, CURL and MVB
exhibited significantly less AC compared to CM (p < 0.0003).
B) Representative Western blots showing detection of AC in
CM and BLM (30 pg protein/lane) and in purified endocytic
vesicles (60 pg protein/lane).
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however, was detected primarily only in cytoplasm (frac-
tions 29-30) and overlapping plasma membranes/endo-
somes in fractions 22-28. Trans-Golgi network protein 38
(TGN-38) localized to fractions 18-26, marking primarily
the TGN [17]. Trf-R localized primarily to fractions 22-26,
likely indicating plasma membranes, recycling endo-
somes and the TGN/Golgi [17,30]. MRP-2 localized to
fractions 16-26, overlapping plasma membranes and
endosomes.

Gy Gios and Gg were identified readily throughout the
gradient, principally in membrane/endosome fractions
18-26, but also in denser fractions 4-18, a pattern similar
to rab 5a and FITC-dextran (Figure 4). The similar distri-
bution of endocytosed FITC-dextran, G, G;,3and Ggand
rab 53, in a pattern distinct from that of other marker pro-
teins, suggests that Gy, Gj,; and Gy are located on intrac-
ellular vesicles. G, ,; , exhibited a different pattern, limited
to fractions 18-26, overlapping most endosomes/plasma
membranes.

Adenylate cyclase localization

AC, a major effector for G, also was detected on CM,
BLM and, in smaller amounts (p < 0.0003), on RRC,
CURL and MVB (Figure 5). The antibody employed
detects both ACV/VI. AC V1 is expressed in liver, regulated
positively by G, and negatively by G, [35] and likely is
the protein identified in the present studies.

Confocal microscopy

Confocal microscopy was employed to look for colocali-
zation of Gy, Gig1,2 Gigs and Gg with internalized Texas
red-dextran, a marker of fluid phase endocytosis from the
BLM [17]. As previously described [17], endocytosed dex-
tran is found in characteristic locations. Texas red-dextran,
endocytosed for 2 minutes, identified punctate structures
(early endosomes) beneath BLM in untreated (Figures
6A,7A,7E,8A) or cholera toxin (CTX)-treated (Figure 8C)
animals. Faint punctate structures (arrows, Figure
6A,7E,8A) in the pericanalicular area represent autofluo-
rescent lipofuscin [17]. After 20 minutes of endocytosis
(Figures 6C,7C,7G,8E), dextran was observed in punctate
structures near CM (arrows), representing "later" endo-
somes and lysosomes [17]. In CTX-treated livers Texas
red-dextran was visible also in punctate perinuclear struc-
tures (arrows, Figure GE; arrowheads, Figure 8G) that rep-
resent mistrafficked early and late endosomes [17].

In control livers (Figures 6B,6D) antibody to G, heavily
stained BLM and CM and lightly stained nuclei and small
punctate structures near both membranes. Arrows point
to overlap of Texas red-dextran fluorescence and G, stain-
ing (Figures 6C,6D). This pattern of linear membrane and
punctate vesicular labelling has been previously described
for other membrane proteins subject to endo-and
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Figure 6

G,, on endosomes. Confocal microscopy of rat liver sections showing distribution of endocytosed Texas red-dextran (A, C,
E) and G, (B, D, F) in the same, respective, images. A, B: Control liver exposed to dextran for 2 minutes. Arrows point to
punctate G, staining in the pericanalicular area (B) and region where faint punctate autofluorescence was visible(A). C, D:
Control liver exposed to dextran for 20 minutes. Arrows point to punctate G, staining in the pericanalicular area (D) and cor-
responding endocytosed Texas red-dextran (C). E, F: CTX-treated liver exposed to dextran for 20 minutes. Arrows point to
punctate G, staining in the perinuclear area (F) and corresponding endocytosed Texas red-dextran (E). All images were
obtained with anti-fluorescein Alexa 488 amplification of signal and are representative of 16 (A, B), 54 (C, D) and 56 (E, F)
images examined from 1|, 6 and 6 livers, respectively.
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Figure 7

G;,12 and G;;; on endosomes. Confocal microscopy of rat liver sections showing distribution of endocytosed Texas red-
dextran (A, C, E, G) and G, , (B, D) or G, 3 (F, H). G »: A, B: Control liver exposed to dextran for 2 minutes. C, D: Control
liver exposed to dextran for 20 minutes. G ;: E, F: Control liver exposed to dextran for 2 minutes. G, H: Control liver
exposed to dextran for 20 minutes. Arrows point to punctate G,,; staining in the pericanalicular area (F, H) and region of punc-
tate autofluorescence (E) or corresponding endocytosed Texas red-dextran (G). Images D and H were obtained with anti-flu-
orescein Alexa 488 amplification of signal. Images A-H are representative of 17 (A, B), 52 (C, D), I | (E, F) and 50 (G, H) images

examined from |, 7, | and 7 different livers, respectively.
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Figure 8

G; on endosomes. Confocal microscopy of rat liver sections showing distribution of endocytosed Texas red-dextran (A, C,
E, G) and G (B, D, F, H) in the same image. A, B: Control liver exposed to dextran for 2 minutes. C, D: CTX-treated liver
exposed to dextran for 2 minutes. E, F: Control liver exposed to dextran for 20 minutes G, H: CTX-treated liver exposed to
dextran for 20 minutes. Arrows point to punctate Gg staining in the pericanalicular area (B, F, H) and region of punctate
autofluorescence (A) or corresponding endocytosed Texas red-dextran (E, G), arrowheads point to punctate G staining in the
perinuclear area in CTX-treated livers (D, H) and region of punctate autofluorescence (C) or corresponding endocytosed
Texas red-dextran (G) and asterisks mark representative sinusoidal spaces. Images are representative of 10 (A, B), 30 (C, D),
36 (E, F) and 39 (G, H) images examined from I, |, 5 and 4 livers, respectively.
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exocytosis. In CTX-treated livers, G,, antibody also stained
punctate perinuclear structures that corresponded to mis-
trafficked Texas red-dextran (arrows, Figures GE,6F).

Antibody to G, , (Figures 7B,7D) stained predominantly
cytoplasm and nuclei. Because of the cytoplasmic stain-
ing, concurrence between Texas red-dextran and G ,
could not be identified (Figures 7A/B,7C/D). Antibody to
G;,3 (Figures 7F,7H) also produced granular cytoplasmic
staining, however linear/punctate staining at both BLM
and CM (arrows) could be appreciated after 2 minutes
(Figure 7F) or 20 minutes (Figure 7H) of dextran endocy-
tosis. Overlap of dextran fluorescence and antibody stain-
ing of G, ; could be identified, especially near the CM
(arrows, Figures 7G,7H).

Antibody to G stained cytoplasm and, in control livers
nuclei, but prominently labelled the BLM as well as
punctate structures in the perisinusoidal and pericanalic-
ular (arrows) regions of liver from control (Figures 8B,8F)
or CTX-treated (Figures 8D,8H) livers. Punctate staining
was also identified in perinuclear clusters (arrowheads,
Figures 8D,8H) in CTX-treated livers. Many areas of
overlap between Texas red-dextran fluorescence and Gg
staining were identified near the BLM after 2 minutes of
dextran endocytosis (Figures 8A/B,8C/D), near the BLM
and CM after 20 minutes of dextran endocytosis (Figures
8E/F,8G/H) and, in CTX-treated livers, near the nuclei
(Figures 8G/H).

Confocal microscopy was employed also to try to localize
rab 5 as this GTP-binding protein was distributed on gra-
dients in a pattern similar to heterotrimeric G protein sub-
units and FITC-dextran (Figure 4). In liver rab 5 would be
expected to associate with early endosomes near BLM and
CM, rather than with more mature CURL/MVB/lyso-
somes. Faint specific staining was identified in a linear
pattern along BLM and CM, diffusely throughout the cyto-
plasm and as denser diffuse staining in regions where dex-
tran-containing vesicles were visualized, adjacent to BLM
and CM and, in CTX-treated livers, in perinuclear regions
(data not shown). However, the low level of rab 5 staining
precluded any definite conclusions regarding colocaliza-
tion of rab 5 and dextran-loaded endosomes.

Discussion

Endosomes internalize integral plasma membrane and
membrane-associated proteins, which subsequently can
be recycled back to the plasma membranes, transported to
other membranes and/or delivered to lysosomes or pro-
teasomes for degradation [30]. For many proteins endocy-
tosis is simply a mechanism for transportation from one
location to another, however internalized receptors and
other proteins may function and be regulated in unique
ways [2,5,7,9,36] and thus endosomes are not simply

http://www.biomedcentral.com/1472-6793/4/1

cargo vessels. For example, internalized P, adrenergic
receptor and B-arrestins contribute to formation of signal-
ling complexes and may initiate unique signalling path-
ways [2,8]. Signal transduction from circulating
hormones is a critical function of hepatocyte plasma
membranes. Although intracellular signalling from insu-
lin receptors has been well characterized in liver [2,5-
8,36], little is known regarding the role of endocytosis in
signalling from GPCRs involved in cAMP-mediated signal
transduction [2,8,11], especially as regards the physical
location of heterotrimeric G protein subunits that couple
to GPCRs in liver.

Further, previous studies suggested that signalling
through Gs and Gi proteins may, in turn, alter endocytosis
and endosome trafficking [11,16,17,37]. Therefore a sys-
tematic study was undertaken to determine whether het-
erotrimeric G protein subunits were associated with
hepatocyte endosomes as the first step in assessing
whether internalized GPCR, like insulin and EGF recep-
tors, can generate signals from endosomes.

Three different approaches were used in the present study.
First, Western blotting was performed with purified endo-
cytic vesicles and plasma membranes. Although the prin-
cipal goal was to identify heterotrimeric G protein
subunits on intracellular endocytic vesicles, a second goal
was to compare/contrast the rank order of G proteins with
other marker proteins as evidence for internalization and
recycling and against contamination of vesicles by plasma
membranes.

A plasma membrane preparation was selected that is con-
sidered free of intracellular organelles, although exhibit-
ing 8% contamination of BLM with CM [38]. However,
CM proteins may traffic from Golgi-to-BLM-to-CM [39]
and therefore be found on BLM as well. As few methods
are available to purify rat liver endosomes, clathrin-coated
vesicles, the earliest stage of receptor-mediated endocyto-
sis, also exist in Golgi, and heterotrimeric G proteins may
be internalized in non-coated vesicles [1], a method was
chosen that allows simultaneous preparation of three dif-
ferent types of endocytic vesicles, representing different
steps in receptor-mediated endocytosis and destinations
for probes of fluid-phase endocytosis [18-20]. These vesi-
cles have been used to study liver receptor-mediated and
fluid-phase endocytosis, endosome ion transport and
association of proteins with endosomes [18-24,31]. Dur-
ing receptor-mediated endocytosis recycling receptors are
found in these vesicles in the order RRC>CURL>MVB
[17,19,23,24,30]. Purified secondary lysosomes [25] were
studied also as internalized proteins destined for degrada-
tion are transferred from early endosomes to CURL, to
MVB and on to lysosomes. Such proteins are enriched in
the order MVB>CURL>RRC [18,19,21,23,24]. Heterot-

Page 11 of 16

(page number not for citation purposes)



BMC Physiology 2004, 4

rimeric G protein subunits may be degraded primarily via
ubiquination and proteasomes [40], thus little likely
enters lysosomes.

By Western blotting three Ga and one G subunit were
found on CM and BLM, qualitatively similar to the results
of others using different membrane preparative methods
[3,4]. These G protein subunits were found in the order
CM >BLM>>>RRC>CURL>MVB>lysosomes (Figure 1), an
order expected for proteins endocytosed and then recycled
back to the plasma membrane and similar to the order
identified for Trf-R (Figure 2) [23,24,30]. Others identi-
fied a similar order for other signalling molecules includ-
ing EGF receptors, Ras, Raf-1, MAPK kinase, MAPK and
phospho-MAPK [6,9,19,24]. The heterotrimeric G protein
subunits likely were attached to the cytoplasmic surface of
endosomes, a position that allows signal transduction.
However MVB internalize their own membranes as topo-
graphically inverted internal vesicles [41], thus some of
these G proteins may be delivered to lysosomes as inter-
nalized cargo.

These results agree with those of others who identified G,
and generic G;, on RRC, CURL and MVB in the same order
(Figure 1) [24,31]. Further we also identified the G effec-
tor AC on CM, BLM and endocytic vesicles (Figure 5). AC
activity, but not protein content, was previously
demonstrated on liver BLM and CM [3]. Collectively these
findings confirm and extend the observations of others
and support the hypothesis that heterotrimeric G proteins
may participate in intracellular signal transduction.

Western blot methods critically depend on the purity of
the samples. Given the large amount of G, Gi,; 5 Gig3
and G on CM and BLM (Figure 1), contamination of
endosomes with up to 5-30% CM or BLM might explain
the results. This high a contamination seems unlikely, but
merits serious consideration. Therefore the distribution,
in vesicles, of other plasma membrane proteins was exam-
ined. If contamination was the explanation, all should
have exhibited the same pattern (rank order). Gy, Gi,; 5
Giq3 and Gy were found in the same order identified for
recycling receptors and the o, subunit of Na, K-ATPase
(Figure 2). By contrast, MDR-1 and MRP-2, which likely
traffic from Golgi-to-BLM-to-CM and are subsequently
endocytosed from CM and degraded in lysosomes [32-
34,39] were detected in the order MVB > CURL~RRC, sim-
ilar to the order of endocytosed proteins degraded in lys-
osomes [18,19,21,23,24].

We also examined distribution of rab 5 and rab 4, markers
of early and recycling endosomes [29,30], respectively,
that are also associated with plasma membranes. RRC as
a combination of early, recycling and transcytotic vesicles
[22] are expected to exhibit rab 4 and rab 5 while receptor-
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containing appendages of CURL [18] might exhibit rab 4.
Others found both rabs in the order RRC>CURL>MVB
[22-24]. However, using the same antibodies we were
unable to identify rabs in our endosomes (Figure 3), pos-
sibly as our x-ray films may not have been exposed as long
due to large amounts of rabs on plasma membrane sam-
ples. Conversely, the absence of detectable rab 5 and rab
4 in our endosomes suggests that contamination of endo-
somes by CM or BLM must be small.

Quantitative study of the distribution of Na, K-ATPase o,
and B, subunits also suggested little contamination of
endocytic vesicles by plasma membranes. As previously
reported by others for different membrane preparations
[26], both subunits were detected in CM and BLM with B,
in larger amounts in BLM. In intracellular vesicles a; was
detected in the order RRC>CURL>MVB>lysosomes, the
same found for G, Gy, o, and G (Figure 1) and recycling
receptors, which suggests a, is internalized and recycled.
Others identified a; only in RRC [22], suggesting differ-
ences in techniques or antibody lot. Although B, could
not be identified in our vesicles (Figure 2), B, is found in
rat liver early endosomes [42]. Since the antibody
employed was capable of demonstrating 3, in even small
amounts of BLM (Figure 2), the lack of 3; in RRC/CURL/
MVB/lysosomes is likely due to rapid loss of 3, after endo-
cytosis by ubiquination and proteasome degradation
[28], resulting in high o/ ratio [27].

A second method for demonstrating colocalization of
proteins and intracellular vesicles is the pattern of distri-
bution on density gradients. We used PNS to minimize
bias from selective loss of any cellular organelles and to
complement the experiments performed using highly
purified plasma membranes and endocytic vesicles. G,
Giq3 and Gg were readily detectable throughout most of
the gradient, paralleling detection of endocytosed FITC-
dextran, even in regions of the gradient where markers of
plasma membranes and Golgi vesicles were minimally
detected (Figure 4). G,,;, however, was identified
principally in regions where the bulk of endosomes and
the trans-Golgi network (identified by TGN-38) were
found, consistent with reports in other cell types [14,15].
Clean separation of plasma membranes from low density
intracellular organelles on such gradients is not possible
[15], therefore the results shown here do not constitute
conclusive proof. However these findings are consistent
with presence of at least some heterotrimeric G protein
subunits on endocytic vesicles.

The third approach was direct visualization of G, G, »,
Giq3 and Gg by confocal microscopy of liver in which
endosomes were labelled by the endocytosed fluid phase
marker Texas red-dextran [17]. Major advantages of con-
focal microscopy include verification that these proteins
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are in hepatocytes and the ability to identify co-localiza-
tion with endocytosed probes. We previously showed that
fluorescent dextrans endocytosed from blood at the BLM
first appear in punctate vesicles just under the BLM and
then rapidly traffic, presumably on microtubules, to the
pericanalicular region where endosomes, lysosomes and
elements of the Golgi Apparatus are found [17]. Vesicles
endocytosed from the CM [34] are not labelled with Texas
red-dextran. In CTX-treated livers, mistrafficked early and
late endosomes form perinuclear clusters, spatially sepa-
rated from BLM and CM [17].

G,y Giqs and Gy were identified on CM and BLM, consist-
ent with limited previous studies of mouse liver [43] and
with Western blots (Figure 1) [3,26]. In addition punctate
staining was identified adjacent to and under CM and
BLM, a pattern interpreted as indicating protein in, or
attached to, vesicles, including endosomes. This punctate
staining was visible near CM after two minutes of dextran
endocytosis when no dextran-loaded endosomes were
found there, ruling out bleed-through from the Texas red
signal (Figures 6B,7F,8B). Punctate staining also was
found in perinuclear regions in CTX-treated livers (Figures
6F,8H), where staining of plasma membranes could not
create artifacts. These findings provide strong support for
our hypothesis that heterotrimeric G proteins are indeed
located on endocytic vesicles.

G;,; was observed also faintly distributed over the cyto-
plasm, although not in a pattern specific to any known
organelle. Others have identified G;,; by immunofluores-
cence on plasma membranes, nuclei, Golgi Apparatus and
in subapical compartments in a variety of cell types
[14,15,43,44].

We were unable to localize G;,; , to membranes or endo-
cytic vesicles due to the intense nuclear and diffuse cyto-
plasmic staining. This finding differs from the ready
detection of G;,;, on membranes and endosomes by
Western blotting (Figure 1), but may reflect inadequacies
of the antibody to detect the native protein in fixed tissue
or the concurrent localization of this G protein to other
organelles [14,15]. Indeed others have identified G;,, , by
immunofluorescence in many locations including
cytosol, on intracellular organelles, nuclei, actin filaments
and/or on plasma membranes [14,15,43,44]. Thus no
definitive conclusions can be drawn from the confocal
microscopy studies regarding membrane localization of
Giocl,Z'

Conclusions

In conclusion, our studies provide strong support from
three different methods that some heterotrimeric G pro-
tein subunits are present on endocytic vesicles, possibly
with other signalling machinery such as AC (Figure 5) and
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PKA [10]. Thus, in hepatocytes, GPCR and signal trans-
duction machinery may be internalized and signal from
sites spatially separated from plasma membranes. Defini-
tive proof of this hypothesis will require additional
research to look for evidence of signalling activity in liver
endosomes.

Methods

Materials

Chemicals were obtained from Sigma (St. Louis, MO) and
Bio-Rad Laboratories (Hercules, CA). 10,000 Da Texas
red-dextran, 70,000 Da FITC-dextran, FITC-WGA and
antifluorescein Alexa 488 amplification kits were from
Molecular Probes (Eugene, OR), CTX from List Biological
Laboratories (Campbell, CA), nitrocellulose membranes
and hyperfilm from Amersham Life Science (Little Chal-
font, England) and SuperSignal chemiluminescence rea-
gents from Pierce (Rockford, IL).

Antibodies

Rabbit antibodies to Gy, Giy1,2, Giq3 and Gy from DuPont
NEN Research (Boston, MA) were used at 1:1,000 (blot-
ting) and 1:50 - 1:100 (Gg immunofluorescence). Rabbit
antibodies to Gy, (Ab951), Gi,;, (Ab982) and G;y3 o
(Ab976) from Dr. Thomas Gettys (Medical University of
South Carolina) [45-47] were used at 1:100 for immun-
ofluorescence. The latter two likely identify G, , and G; 5
in liver. Standards for G, Gj,, and G,,; were from
Calbiochem (LaJolla, CA). Polyclonal antibodies to rab 4,
rab 5a, AC V/VI [48-50] and LAMP1 from Santa Cruz Bio-
technology (Santa Cruz, CA) were used at 1:100, 1:100,
1:50 and 1:200, respectively. Rabbit antibody MDR-Ab1
from Oncogene Research Products (Cambridge, MA)
detects mdrla and mdr2 in rodent liver [51] and was used
at 1:20. Rabbit antibody to MRP-2 from Dr. Dietrich Kep-
pler (University of Heidelberg) was used at 1:50,000.
Monoclonal antibodies to Trf-R (Zymed Laboratories,
South San Francisco, CA), EEA1 (Transduction Laborato-
ries, Lexington, KY) and TGN-38 (Affinity BioReagents,
Golden, CO) were used at 1:1000, 1:50 and 1:500, respec-
tively. Standards and monoclonal antibodies to o, and B,
subunits of Na, K-ATPase from Upstate Biotechnology
(Lake Placid, NY) were used at 1:200 and 1:500, respec-
tively. Polyclonal antibody to rab 5 (Stressgen Biotechnol-
ogies, Victoria, B.C.,, Canada) was used at 1:100 for
immunofluorescence. Secondary antibodies conjugated
to horseradish peroxidase (HRP), FITC or Cy5 and pre-
immune sera were from Zymed and Jackson Immunore-
search Laboratories (West Grove, PA).

Animals

Male Sprague-Dawley rats (250-350 g) were from Harlan
Sprague-Dawley (Indianapolis, IN) and received humane
care according to guidelines from the National Academy
of Sciences. Studies were approved by the local IACUCs.
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Animals were used to prepare homogenates, PNS,
endosomes (CURL, RRC and MVB) and lysosomes
[17,18,20,25]. BLM and CM [38] were a gift from Dr.
Richard Moseley (University of Michigan). As indicated in
text and figure legends, some rats were injected 16 hours
before use with 120 pg/kg CTX to alter endosome traffick-
ing. Some rats were injected intravenously with 25 mg
Texas-red-dextran or 75 mg FITC-dextran to label endo-
somes [17]. For immunofluorescence livers were per-
fusion-fixed, cryoprotected and frozen 2 and 20 minutes
after dextran administration [17].

Percoll gradient fractionation

Rat liver PNS was fractionated on Percoll gradients [17]
and plasma membranes were identified by FITC-WGA
binding and APDE I activity [17].

Western blots

Samples were separated on polyacrylamide gels and pro-
teins transferred electrophoretically to nitrocellulose [17].
For most studies equal amounts of protein were loaded
into each well and one well contained CM. Standards for
G, Gigar Gigs and Na, K-ATPase subunits were run as pos-
itive controls. Blots were blocked and antibody-bound for
2-16 hours with primary antibody and 30-60 minutes
with HRP-conjugated secondary antibodies in Tris buff-
ered saline with Tween and 5% milk [17]. For AC high salt
buffers were substituted [48]. Bands detected by
chemiluminescence using Super Signal were recorded on
x-ray film. Conditions were optimized for each protein-
antibody pair. X-ray film was scanned and integrated opti-
cal density of bands determined using calibrated NIH
Image software. The linear range for optical density with
respect to protein concentration and exposure time was
determined and used for all analyses. Optical densities of
bands from BLM or vesicles were divided by the optical
density of bands from CM on the same blot to "normal-
ize" values and allow comparison of values between dif-
ferent blots. CM samples were chosen as they exhibited
the highest amount of G protein subunits and are consid-
ered clean [38].

Immunofluorescence

Cryostat sections of fixed and frozen rat livers were cut,
treated and antibody-bound as described [17]. For Gg,,
Gi,1_, and G;, 5, detection was enhanced by an anti-fluo-
rescein Alexa 488 amplification kit. Images optically sec-
tioned at 1 um were obtained using a Bio-Rad MRC 600
confocal microscope (Hercules, CA) and processed using
Adobe Photoshop (Adobe Systems, San Jose, CA) [17].
Control sections incubated with pre-immune serum or in
the absence of primary or secondary antibodies with or
without Alexa 488 amplification were imaged with FITC,
Cy5 and Texas red wavelengths to confirm both antibody
specificity and that results were not due to
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autofluorescence or bleed-through of signal. Images were
displayed in black and white as the intense Texas red flu-
orescence overwhelmed fluorescence from G protein anti-
bodies when images were superimposed.

Calculations and Statistics

Mean + SEM were calculated for optical densities of bands
on Western blots expressed as a ratio of values from CM
on the same blot. Student's t test was used to compare
these values to a value of "0", the value assigned when no
band could be detected. P < 0.05 was taken to indicate sta-
tistical significance.

Abbreviations
adenylate cyclase AC

alkaline phosphodiesterase I APDE 1
basolateral membrane BLM
canalicular membrane CM

cholera toxin CTX

compartment for uncoupling of receptor and ligand
CURL

early endosome antigen 1 EEA1
epidermal growth factor EGF
fluorescein isothiocyanate FITC-dextran
G protein coupled-receptor GPCR
horseradish peroxidase HRP

lysosome associated membrane protein 1 LAMP1
MDR-related protein 2 MRP-2
mitogen-activated protein kinase MAPK
multi-drug resistance protein MDR
multivesicular bodies MVB

phosphate buffered saline PBS
post-nuclear supernatant PNS

protein kinase A PKA

recycling receptor compartment RRC
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transferrin receptor Trf-R
trans-Golgi network protein 38 TGN-38
wheat germ agglutinin WGA
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