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Abstract: The rheological model for yield stress exhibiting fluid and the basic laws for fluid flow and
transport of heat and mass are used for the formulation of problems associated with the enhancement
of heat and mass due to dispersion of nanoparticles in Casson. The heat and mass transfer obey
non-Fourier’s laws and the generalized Fick’s law, respectively. Model problems are incorporated
by thermal relaxation times for heat and mass. Transfer of heat energy and relaxation time are
inversely proportional, and the same is the case for mass transport and concentration relaxation
time. A porous medium force is responsible for controlling the momentum thickness. The yield
stress parameter and diffusion of momentum in Casson fluid are noticed to be inversely proportional
with each other. The concentration gradient enhances the energy transfer, and temperature gradient
causes an enhancement diffusion of solute in Casson fluid. FEM provides convergent solutions. The
relaxation time phenomenon is responsible for the restoration of thermal and solutal changes. Due
to that, the thermal and solutal equilibrium states can be restored. The phenomenon of yield stress
is responsible for controlling the momentum boundary layer thickness. A porous medium exerts a
retarding force on the flow, and therefore, a deceleration in flow is observed. The thermal efficiency
of MoS2 − SiO2− Casson fluid is greater than the thermal efficiency of SiO2− Casson fluid.

Keywords: yield stress; thermal relaxation time; generalized Fick’s law; hybrid nanostructures;
thermal conductivity effectiveness

1. Introduction

The diverse rheological behavior of non-Newtonian fluid motivated researchers to
propose diverse rheological models. Each model captures some specific rheological features.
Casson rheological model is a non-Newtonian rheological model and captures yield stress
rheological features. This means, to some extent, Casson fluid behaves like a solid and, after
some specific value of applied stress, it starts behaving like a fluid. This specific value of
applied stress is called yield stress. The simplest rheological model for the incompressible
flow of Casson fluid is given by

τ = −PI +
(

1 +
1
β

)
µA1 (1)

where β is the Casson fluid parameter and for β→ ∞ , Equation (1) reduces to the rheolog-
ical tensor of an incompressible Newtonian fluid. Numerical studies on various aspects
related to Casson fluid have been published so far. For example, Hamid et al. [1] wrote a
study on the existence of dual solutions for the problem related to heat transfer in Casson
fluid over the stretchable surface. Nadeem et al. [2] discussed the 3D flow of Casson
fluid induced by wall moving with the exponential surface. Mukhopadhyay et al. [3]
theoretically studied the transfer of heat energy in Casson fluid over a surface moving with
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nonlinear velocity. Hayat et al. [4] examined the effects of temperature gradient and con-
centration gradients on mass and heat transfer in Casson fluid, respectively. Khan et al. [5]
examined the simultaneous effects of homogeneous–heterogeneous chemical reactions on
mass transfer in Casson fluid. The author has carefully reviewed the literature and has
come to know that no study using hybrid nanostructures (MoS2 and SiO2) in Casson fluid
with the novel model (given by Equations (2)–(5)) is published yet.

The energy crisis is the biggest challenge to humankind. Energy storage and its
efficient utilization is the need of the hour. Techniques for minimizing energy losses are
highly required. With this need in mind, researchers working in the field of thermal
and cooling systems have been striving for introducing novel techniques for efficient
transport of heat energy and the efficient usage of stored energy. Recently, a technique
of inclusion of nanosized solid structures in the fluid has been introduced to obtain the
fluid mixtures of very good thermal conductivity. Such mixtures serve as better working
fluids, and consequently, the thermal performance of the fluid increases. Because of
numerous applications of fluids with nanoparticles, researchers have studied much of the
dynamics of such fluids. For instance, Sheikholeslami et al. [6] investigated the effects of
nanoparticles Fe3O4 on heat transfer in water. Sheikholeslami et al. [7] conducted finite
element numerical experiments for the analysis of thermal enhancement in fluid subjected
to the variable magnetic field. Dogonchi et al. [8] also analyzed the impact of nanoparticles
and thermal radiations on the transfer of heat in the mixed convection flow of fluid over a
moving body. Dogonchi et al. [9] studied the role of Cu− nanoparticles on the enhancement
of heat energy in the presence of homogeneous–heterogeneous chemical reactions in water
subjected to the uniform heat source. Ayub et al. [10] used novel heat flux models for the
modeling of heat transfer in viscoelastic fluid with nanoparticles. Rana et al. [11] used
Koo-Kleinstreuer and Li models with novel heat flux theory to model heat transfer in Sutter
by fluid with nanoparticles. Studies [6–11] and the references therein are limited to thermal
enhancement via mono-nanoparticles. The recent advancement in the field reveals that the
better method is the inclusion of nanoparticles of more than one kind. Therefore, several
studies have been published. The reasoning and justification are given below.

The advancement in technologies and success in the synthesis of nanosized particles
has brought a great revolution for introducing a class of special class of fluids called hybrid
nanofluids. These are fluids that are homogeneous mixtures of nanoparticles of more than
one kind. It is a proven fact that hybrid nanofluids are better coolants in comparison to
nanofluids. Due to this factual reason, hybrid nanofluids have been frequently studied. The
recent advancement in the field of thermal enhancement has revealed that the dispersion of
nanoparticles of more than one kind is more effective than the dispersion of nanoparticles
of a single kind. The fluid with more than one nanoparticle is a hybrid nanofluid. Several
studies on this topic have been published. For example, Ahmed et al. [12] studied the
impact of hybrid nanoparticles on heat transfer in a pulsating flow exposed to the magnetic
field and thermal radiations. Iftikhar et al. [13] discussed the role of Cu and SiO2 in
enhancing heat transfer in water. Benkhedda et al. [14] studied the importance of hybrid
nanoparticles in enhancing thermal transfer in fluid in a pipe. Aziz et al. [15] examined
the role of hybrid nanoparticles on entropy generation in Erying–Powell fluid subjected
linear thermal radiations and viscous dissipation. Subhani et al. [16] theoretically analyzed
the impact of hybrid nanoparticles on heat-transfer enhancement in the micropolar fluid.
Wiani et al. [17] discussed the role of hybrid nanoparticles on heat transfer in fluid mov-
ing on a curved surface. Kaneez et al. [18] numerically analyzed the influence of hybrid
nanoparticles on thermal enhancement in Casson fluid with dust particles. It is important
to mention that this study on an enhancement of heat in Casson fluid with hybrid nanopar-
ticles. However, the present study is about the impact of hybrid nanoparticles on heat
and mass transport in Casson fluid with hybrid nanoparticles. Further, the present work
considers the flow and heat transfer in Casson fluid over a vertical surface. In this case, the
buoyance force is significant and is considered here. This is another aspect due to which
the present work differs from the work of Kaneez et. al. [18].
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The electrically conducting fluids moving in the presence of magnetic fluid have been
found in many natural and man-made applications. The flows of such fluids are called
MHD flows and have been investigated a lot in the present era. For instance, Nawaz
et al. [19] examined the impact of magnetic fields on the flow of micropolar fluid composed
of ionized particles. Nawaz et al. [20] studied the magnetic field on the mass and heat
diffusion in the Newtonian fluid between two walls moving with nonuniform velocity
in the radial direction. Asif et al. [21] investigated the thermal performance of the fluid-
exposed magnetic field. In light of these studies [19–21], the authors were inspired and
considered how magnetic field applied to the flow because Casson fluid is an electrically
conducting fluid and experiences Lorentz force arises due to the change in magnetic flux.
Flows over vertical boundaries are greatly affected by a buoyancy force that arises due
to density differences caused by temperature and concentration differences. Downward
flows experience positive a buoyancy force, whereas upward flows experience a negative
buoyancy force. Momentum equations are modified in terms of buoyancy force. Such
flows are called mixed convective flows over moving boundaries. Such flows have been
studied intensely in recent years. The suitable references are listed [22–27].

Brownian motion and thermophoretic effects affect flow characteristics and, therefore,
are neglected. Several kinds of research have discussed these effects. For instance, Sheik-
holeslam et al. [28] studied the influence of thermophoresis and Brownian motion on heat
and mass in a mixed convection flow of electrically conducting fluid containing copper
nanoparticles and subjected to the magnetic field. Kandasamy et al. [29] also studied the
influence of thermophoresis and Brownian motion on the simultaneous impact of heat
and mass transfer subjected to the thermal stratification in fluid containing nanoparticles.
Makinde et al. [30] examined the role of thermophoresis and Brownian motion on the
biconvective flow of MHD fluid over a surface of paraboloid revolution. Lin et al. [31]
discussed the influence of thermophoresis and Brownian motion on heat transfer in fluid
in a groove rotating with constant angular velocity. Some further applications and related
aspects are mentioned in recent published work. Non-newtonian casson fluid flow over a
stretching, exponentially embedded surface was examined by Animasaun, I et al. [32] for
the laminar free convective MHD boundary layer. The effect of all of the influencing factors
on the velocity and temperature profiles of the flow at the boundary was studied with
an approximate solution (HAM) approach. Alruwashid et al. [33] analyzed the effects of
graphene concentration on the electrochemical properties of cobalt ferrite nanocomposite
materials. Pal et al. [34] developed novel nanostructures using pentablock polymers. Nasr
et al. [35] introduced the technique of surface enhancement for nanosheets. Zemtsova
et al. [36] published a comprehensive study on the feature of the synthesis of the disposed
TiC with a nickel nanostructures.

A comprehensive review of the literature has shown that no study on the impact of
hybrid nanoparticles (MOS2 − SiO2) on thermal performance of Casson under Brownian
and thermophoretic effects has been conducted so far. Secondly, the researches on thermal
enhancement are conducted numerically using numerical techniques other than FEM.
FEM is a powerful method and is less constrained. It converges rapidly, and the accuracy
of results is quite sound. The stated problems are solved numerically by FEM. Further,
no author has discussed the Brownian motion and thermophoretic mechanism in the
presence of hybrid nanofluid so far. This means the impact of dispersion of nanoparticles
on simultaneous heat and mass transfer has not been studied yet. This research is arranged
in five sections. Section 1 is related to the background. Section 2 contains the formulation
of problems. Section 3 discusses numerical methodology. Section 4 is about the discussion
of results based on numerical simulations. Section 5 contains the key results of this study.

2. Formulation of Problem

The boundary layer approximations give the following governing models:

∂u
∂x

+
∂v
∂y

= 0 (2)
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u
∂u
∂x

+ v
∂u
∂y

=
1

ρhn f

(
µhn f +

py√
2πc

)
∂2u
∂2y

+ (βhn f )T g(T − T∞) + (βhn f )Cg(C− C∞)−
σhn f B2

0u
ρhn f

− µhn f
u

K1
(3)

u ∂T
∂x + v ∂T

∂y + τ0

 u ∂2T
∂x2 + v ∂2T

∂y2 + u ∂v
∂x

∂T
∂y + v ∂u

∂y
∂T
∂x + 2uv ∂2T

∂x∂y −
Q0

(ρcp)hn f

(
u ∂T

∂x − v ∂T
∂y

)
− 1
(ρcp)hn f

(
µhn f +

py√
2πc

)
∂u
∂x

(
u ∂u

∂x − v ∂2u
∂y2

)
− σhn f B2

0

(ρcp)hn f

(
u ∂2u

∂y2 − v ∂2u
∂x∂y

)


=
Khn f

(ρcp)hn f

∂2u
∂2y + 1

(ρcp)hn f

(
µhn f +

py√
2πc

)(
∂u
∂y

)2
+

σhn f B2
0u2

(ρcp)hn f
+ Q0

(ρcp)hn f
(T − T∞)

(4)

u ∂C
∂x + v ∂C

∂y + τ1

(
u ∂2C

∂x2 + v ∂2C
∂y2 + u ∂v

∂x
∂C
∂y + v ∂u

∂y
∂C
∂x + 2uv ∂2C

∂x∂y

)
= Dhn f

∂2C
∂2y (5)

The conditions implemented to solve the above system of PDEs are

u(x, 0) = ax, v(x, 0) = 0,−γ0k f
∂T
∂y (x, 0) = h f (T − T(x, 0), T(x, ∞) = T∞

−γ0D f
∂C
∂y (x, 0) = hc(C− C(x, 0)), u(x, ∞) = 0, C(x, ∞) = C∞,

}
(6)

where [u, v, 0] is the velocity; g is the gravitational acceleration; ρ is the density; µ is
the kinematic viscosity and cp specific heat constant; k is the thermal conductivity; the
subscript hn f stands for hybrid nanofluid; D is the mass diffusion coefficient; τ0 is the
thermal relaxation time; τ1 is the concentration relaxation time; and γ0 is the parameter
associated with thermal slip. The flow diagram of the problem is represented in Figure 1.
The following model for nanoparticles is incorporated

ρhn f
ρ f

= (1− ϕ2)
{
(1− ϕ1) +

ϕ1ρs1
ρ f

}
+

ϕ2ρs2
ρ f

(ρcp)hn f

(ρcp) f
= (1− ϕ2)

{
(1− ϕ1) +

ϕ1(ρcp)s1
(ρcp) f

}
+

ϕ2(ρcp)s2
(ρcp) f

µhn f
µ f

= 1
(1−ϕ1)

2.5(1−ϕ2)
2.5

σhn f
σb f

=
σs2+(n−1)σb f−(n−1)ϕ2(σb f−σs2)

σs2+2σb f +ϕ2(σb f−σs2)
,

σb f
σf

=
σs1+2σf−(n−1)ϕ1(σf−σs1)

σs1+2σf +ϕ1(σf−σs1)

khn f
kb f

=
ks2+2kb f−(n−1)ϕ2(kb f−ks2)

ks2+2kb f +ϕ2(kb f−ks2)
,

kb f
k =

ks1+2k f−(n−1)ϕ1(k f−ks1)
ks1+2k f +ϕ1(k f−ks1)

Dhn f
D f

= 1
(1−ϕ1)(1−ϕ2)

(7)

Equations (2)–(7) in dimensionless form can be changed via the following change of
variable:

u = ax f ′(η), v = −√aυ f f (η), η =
√

a
υ f

y, θ(η) = T−T∞
Tw−T∞

ψ(η) =
√aυ f x f (η), φ(η) = C−C∞

Cw−C∞

}
(8)

Hence, one obtains:

υhn f
ν f

(
1 + 1

β

(
µ f

µhn f

))
f ′′′ − [( f ′)2 − f f ′′ ] + (Gr)tθ(η) + (Gr)Cφ(η)

−M
(

σhn f
σf

)(
ρ f

ρhn f

)
f ′ − µhn f

µ f
K f ′ = 0

 (9)
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( khn f
k f

)(
ρ f

ρhn f

)( (Cp) f
(Cp)hn f

)
θ′′ + Pr f θ′ +

(
ρ f

ρhn f

)( (Cp) f
(Cp)hn f

)
Prβ∗θ − γPr f 2θ′′

−γPr f f ′θ′ −
(

ρ f
ρhn f

)( (Cp) f
(Cp)hn f

)
γPrβ∗ f θ′ +

(
υhn f
ν f

)( (Cp) f
(Cp)hn f

)(
1 + 1

β

(
µ f

µhn f

))
PrEc( f ′′ )2

+
(

σhn f
σf

)( (Cp) f
(Cp)hn f

)(
ρ f

ρhn f

)
MPrEc( f ′)2

−2
(

υhn f
ν f

)( (Cp) f
(Cp)hn f

)(
1 + 1

β

(
µ f

µhn f

))
γPrEc

{
f f ′′ f ′′′ − f ′( f ′′ )2

}
−2
(

υhn f
ν f

)( (Cp) f
(Cp)hn f

)
γMEcPr

{
f f ′ f ′′ − ( f ′)3

}
= 0



(10)

Dhn f

D f
φ′′ + Sc f φ′ − γ1Sc f 2φ′′ − γ1Sc f f ′φ′ = 0 (11)

The associated boundary conditions are dimensionalized, and hence, one obtains:

f ′(0) = 1, f (0) = 0, θ′(0) = Bi
γ0
(1− θ(0)), φ′(0) = Ei

γ0
(1− φ(0))

f ′(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0

}
(12)
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Derivatives concerning η are denoted by prime. M is a magnetic parameter; (Gr)t and
(Gr)c are the Grashof numbers for temperature and concentration, respectively; β∗ is heat
generation parameter; K is the porous medium parameter; Pr is the Prandtl-number; Sc is
the Schmidt number; Ec is the Eckert number; γ is the thermal relaxation time parameter;
γ1 is the concentration relaxation time parameter; and Bi and Ei are Biot numbers. These
are expressed as

(Gr)t =
g(Tw−T∞)(βhn f )T

a2x , (Gr)c =
g(Cw−C∞)(βhn f )C

a2x , M =
σf B2

0
ρ f a , K =

µ f
aK1

Ec = a2x2

cp(Tw−T∞)
, Pr =

µ f (cp) f
k f

, β∗ = Q0
a(ρcp) f

, D f =
DkT(Cw−C∞)
CsCp(Tw−T∞)

,

Sc =
υ f
D f

, Bi =
h f
k f

√
υ f
a , γ = τ0a, γ1 = τ1a, Ei = hc

D f

√
υ f
a


(13)
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The skin friction and Nusselt and Sherwood numbers are obtained as

C f =
τxy|y=0

ρ f U2
0

= f ′′ (0)

Re
1
2
x (1−ϕ1)

2.5(1−ϕ2)
2.5

,

Nu =
−xkhn f

∂T
∂y

∣∣∣
y=0

k f (Tw−T∞)
=
−Re

1
2
x khn f
k f

θ′(0),

Sh =
−xDhn f

∂C
∂y

∣∣∣
y=0

D f (Cw−C∞)
= −Re

1
2
x

(1−ϕ1)(1−ϕ2)
φ′(0),


(14)

where τw is the wall shear stress and Rex = ax2

ν f
is the Reynolds number.

Thermophysical properties are tabulated in Table 1.

Table 1. Values of properties of pure fluid and nanostructure.

Physical Property Blood/Base Fluid MOS2 SiO2

φ f (nm) 0.0 0.05 0.25
ρ
(
Kg\m3) 1060 5060 2200

k(W/(m.K)) 0.429 34.5 1.2
cp(J/(kg.K)) 3770 397.746 703

σ/(Ω/m) 4.3× 10−5 2.6× 106 10−27

3. Numerical Procedure

The different numerical schemes can be applied for the solution of Equations (8)–(12).
However, FEM is powerful and provides the most accurate numerical solutions. The main
steps are mentioned below.

Step 1: Residuals are multiplied by weight functions and are integrated over the
typical element.

Linear weight and shape functions are given by

Sj = (−1)j−1

(
ξ j+1 − ξ

ξ j+1 − ξ j

)
, i = 1, 2 (15)

The dependent unknowns are approximated over the element [ηe, ηe+1] by the finite
element approximations

f =
2

∑
j=1

Sj f j, θ =
2

∑
j=1

Sjθj, φ =
2

∑
j=1

Sjφj, h =
2

∑
j=1

Sjhj,

where f j, hj, θj and φj are to be computed. Sj is the shape function.
Step 2: The weighted integrals are evaluated only for second-order linear terms to

obtain weak forms of residuals.∫ ηe+1
ηe

wi( f ′ − h)dη = 0, (16)

∫ ηe+1

ηe
wi


υhn f
ν f

(
1 + 1

β

(
µ f

µhn f

))
h′′ − [(h)2 − f h′] + (Gr)Tθ(η)

+(Gr)Cφ(η)−M
(

ρ f
ρhn f

)( (Cp) f
(Cp)hn f

)
h− µhn f

µ f
Kh

dη = 0

 (17)
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∫ ηe+1

ηe
wi



( khn f
k f

)(
ρ f

ρhn f

)( (Cp) f
(Cp)hn f

)
θ′′ +

(
ρ f

ρhn f

)( (Cp) f
(Cp)hn f

)
Prβ∗θ − γPr f 2θ′′

−γPr f hθ′ −
(

ρ f
ρhn f

)( (Cp) f
(Cp)hn f

)
γPrβ∗θ′ + Pr f θ′

+
(

υhn f
ν f

)( (Cp) f
(Cp)hn f

)(
1 + 1

β

(
µ f

µhn f

))
PrEc(h′)2

+
(

σhn f
σf

)( (Cp) f
(Cp)hn f

)(
ρ f

ρhn f

)
MPrEc(h)2

−2
(

υhn f
ν f

)( (Cp) f
(Cp)hn f

)(
1 + 1

β

(
µ f

µhn f

))
γPrEc f h′h′′

−2
(

υhn f
ν f

)( (Cp) f
(Cp)hn f

)
γMEcPr

{
f hh′ − (h)3

}
+2
(

υhn f
ν f

)( (Cp) f
(Cp)hn f

)(
1 + 1

β

(
µ f

µhn f

))
γPrEch(h′)2



dη = 0} (18)

∫ ηe+1

ηe
wi

(
Dhn f

D f
φ′′ + Sc f φ′ − γ1Sc f 2φ′′ − γ1Sc f hφ′

)
dη = 0 (19)

Step 3: The weak forms are approximated via Galerkin approximations.

K11
ij =

∫ ηe+1

ηe
SiS′jdη, K12

ij =
∫ ηe+1

ηe
−SiSjdη,

K22
ij =

∫ ηe+1

ηe

 −( υhn f
υ f

)(
1 + 1

β

(
µ f

µhn f

))
S′iS
′
j − hSiSj + f

(
h
)′

SiS′j
−M

(
σhn f
σf

)(
ρ f

ρhn f

)
SiSj −

µhn f
µ f

KSiSj

dη,

K23
ij =

∫ ηe+1

ηe
(Gr)tSiSjdη, K24

ij =
∫ ηe+1

ηe
(Gr)cSiSjdη,

K32
ij =

∫ ηe+1

ηe



(
υhn f
ν f

)( (Cp) f
(Cp)hn f

)(
1 + 1

β

(
µ f

µhn f

))
PrEc

(
h
)′

SiS′j + MEc
(

σhn f
σf

)( (Cp) f
(Cp)hn f

)
+
(

ρ f
ρhn f

)
PrSiSj − 2

(
υhn f
ν f

)( (Cp) f
(Cp)hn f

)(
1 + 1

β

(
µ f

µhn f

))
γPrEc

(
h
)′

S′iS
′
j

+2
(

υhn f
ν f

)( (Cp) f
(Cp)hn f

)(
1 + 1

β

(
µ f

µhn f

))
γPrEch

(
h
)′

SiS′j

−2
(

υhn f
ν f

)( (Cp) f
(Cp)hn f

)
γMEcPr f hSiS′j

+2
(

υhn f
ν f

)( (Cp) f
(Cp)hn f

)
γMEcPr

(
h
)2

SiSj


dη,}

K33
ij =

∫ ηe+1

ηe

 −
(Khn f

K f

)(
ρ f

ρhn f

)( (Cp) f
(Cp)hn f

)
S′iS
′
j + Pr f SiS′j +

(
ρ f

ρhn f

)( (Cp) f
(Cp)hn f

)
Prβ∗SiSj

+γPr
(

f
)2

S′iS
′
j − γPr f hSiS′j −

(
ρ f

ρhn f

)( (Cp) f
(Cp)hn f

)
γPrβ∗SiS′j

dη,}

K44
ij =

∫ ηe+1

ηe

(
−

Dhn f

D f
S′iS
′
j + Sc f SiS′j − γ1Sc

(
f
)2

S′iS
′
j − γ1Sc f hSiS′j

)
dη,

where f and h are nodal values that are computed.
Step 4: Stiffness elements are derived, and the stiffness matrix is constructed under

the assembly procedure.
[K{π}]{π} = {F} (20)

Step 5: The nonlinear system is linearized.
The nonlinear system is linearized by Picard linearization proposed as[

K{π}r−1
]
{π}r = {F} (21)
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where {π}r−1 is the nodal value at (r− 1)th the iteration and {π}r is the nodal value at
the rth iteration.

Step 6: A grid-independent study is performed.
The numerical solutions are also checked to be grid independent. This mesh-free

analysis is recorded in Table 2. The recorded values in Table 2 show that the numerical
results become grid independent when the computational domain [0, 12] is broken into
two elemental line segments.

Table 2. Local skin friction coefficient, Nusselt number and Sherwood number for hybrid nanofluid
(MOS2 − SiO2 ) and nanofluid (SiO2 ) when M = 0.9, Pr = 0.9, Sc = 0.8, (Gr)c = 0.1, (Gr)t = 0.2,
K = 0.1, α = 0.3, β∗ = 0.1, γ = 0.1, γ1 = 0.1.

e Re
1
2 Cf Re−

1
2 Nu Re−

1
2 Sh

10 2.6528312 0.3647946 0.3346214
50 2.9699726 0.3553285 0.3265893

100 2.9864624 0.3547900 0.3261574
150 2.9897546 0.3546829 0.3260747
200 2.9909392 0.3546445 0.3260456
250 2.9914955 0.3546265 0.3260320
300 2.9918005 0.3546166 0.3260247
350 2.9919856 0.3546106 0.3260202
400 2.9921062 0.3546067 0.3260173
450 2.9921892 0.3546040 0.3260153
500 2.9922388 0.3546021 0.3260139
550 2.9922630 0.3546007 0.3260129
600 2.9922866 0.3545001 0.3260121

Step-7: Results are validated
The present modeled problems can be reduced to the case of already published work

by Aninasaun et al. [32] when ϕ1 = ϕ2 = 0, (Gr)c = (Gr)t = K = γ = γ1 = 0. The results
are computed for this special case and are compared by the results obtained by Aninasaun
et al. [32]. The comparative analysis is provided in Table 3.

Table 3. Comparison of temperature with Aninasaun et al. [32] for different values of Prandtl number
when ϕ1 = ϕ2 = 0, (Gr)c = (Gr)t = K = γ = γ1 = 0.

Pr Aninasaun et al. [35] Present Work

1 0.67650698 0.6751263
2 1.07352135 1.0755124
3 1.38075427 1.3808321

4. Results and Discussion

The yield stress rheological model, non-Fourier law of heat conduction, and general-
ized Fick’s law are simultaneously used in the formulation of problems dealing with the
simultaneous transfer of heat energy and mass in Casson fluid with hybrid nanoparticles
over a vertical surface. The buoyancy forces due to the density differences under Boussi-
nesq approximations are considered of a significant order of magnitude, and Lorentz force
is measured from Ohm’s law when the magnetic Reynolds number is small. The numerical
experiments with three samples of parametric values are performed. The simulations are
visualized, and the outcomes are displayed in the form of graphs and numerical data. The
mesh-free analysis is performed, and the results are validated. A detailed discussion about
visualized outcomes is provided below.

Fluid particles motion and magnetic field: The Lorentz force is incorporated in the
momentum equation through Ohm’s law and the term involved Hartmann number in
the dimensionless equation (Equation (8)). This dimensionless number (M) is capable of
determining the impact of the change of intensity of magnetic field on the motion of fluid
particles. Since the Lorentz force is negative (in this case), an increase in M through values
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1, 2, 3, 4 depicts the retardation to the motion of fluid particles. Moreover, the impact
of change of magnetic intensity on the motion of particles of both fluids (MoS2 − SiO2 −
Cassonand SiO2 − Casson f luid) is examined, and the related outcomes are provided by
Figure 2. The continuous curves are velocity curves associated with the motion of MoS2 −
SiO2−Casson f luid, whereas the dotted curves are related to the velocity curves of SiO2−
Casson f luid. For both types of fluids, the fluids particles are observed to experience
retardation. However, the retardation experienced by MoS2− SiO2− Casson f luid (hybrid
nanofluid) is greater than that experienced by SiO2 − Casson f luid (nanofluid). Hence, it
can be concluded that the viscous region that MoS2 − SiO2 − Casson f luid has is wider
than the viscous region associated with the flow of SiO2 − Casson f luid (see Figure 2).

Nanomaterials 2021, 11, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 2. Influence of 𝑀  on velocity when 𝑃𝑟 = 0.9, 𝐸𝑐 = 0.2, 𝑆𝑐 = 0.8, 𝐾 = 0.1, 𝐵𝑖 =0.05, 𝛽∗ = 0.1, 𝛾 = 0.1, 𝛾 = 0.1. 

Fluid particles motion and resistance by the porous medium: The parameter K is 
called the porous medium parameter, and its variation through increasing values (𝐾 =0.05, 0.1, 0.15, 0.2) depicts the decrease in voids between the particles of the porous me-
dium. Therefore, the fluid particles of 𝑀𝑜𝑆 − 𝑆𝑖𝑂 −  Casson fluid  and 𝑆𝑖𝑂 −Casson fluid face more a resistive force by the medium, and as a consequence, the motion 
of the particles of the fluid slows down. This fact is also visualized in numerical simula-
tions (see Figure 3). It is also observed that 𝑀𝑜𝑆 − 𝑆𝑖𝑂 −  Casson fluid experiences more 
resistive force than 𝑆𝑖𝑂 − Casson fluid. Numerical experiments have also predicted that 
the presence of a porous medium in the fluid regime may play a vital role in controlling 
the boundary layer thickness. 

 
Figure 3. Influence of 𝐾 on velocity when 𝑀 = 0.9, 𝑃𝑟 = 0.9, 𝐸𝑐 = 0.2, 𝑆𝑐 = 0.8, 𝐵𝑖 =0.05, 𝛽∗ = 0.1, 𝛾 = 0.1, 𝛾 = 0.1. 

Fluid particle motion and buoyancy force: The parameters (𝐺𝑟)  and (𝐺𝑟)  are 
the coefficients of terms associated with buoyancy forces that arise due to the density dif-
ferences caused by the compositional and temperature differences under Boussinesq ap-
proximation. For (𝐺𝑟)  > 0 and (𝐺𝑟)  > 0, the buoyancy force is posture and assists the 
flow (see Figures 4 and 5), whereas when (𝐺𝑟)  < 0  and (𝐺𝑟)  < 0, the Buoyancy force 
is negative and opposes the flow. This opposing behavior can be noticed during numerical 

Figure 2. Influence of M on velocity when Pr = 0.9, Ec = 0.2, Sc = 0.8, K = 0.1, Bi = 0.05, β∗ = 0.1,
γ = 0.1, γ1 = 0.1.

Fluid particles motion and resistance by the porous medium: The parameter K is
called the porous medium parameter, and its variation through increasing values ( K = 0.05,
0.1, 0.15, 0.2) depicts the decrease in voids between the particles of the porous medium.
Therefore, the fluid particles of MoS2 − SiO2 − Casson f luid and SiO2 − Casson f luid face
more a resistive force by the medium, and as a consequence, the motion of the particles of
the fluid slows down. This fact is also visualized in numerical simulations (see Figure 3). It
is also observed that MoS2 − SiO2 − Casson f luid experiences more resistive force than
SiO2 − Casson f luid. Numerical experiments have also predicted that the presence of
a porous medium in the fluid regime may play a vital role in controlling the boundary
layer thickness.

Fluid particle motion and buoyancy force: The parameters (Gr)c and (Gr)t are the
coefficients of terms associated with buoyancy forces that arise due to the density dif-
ferences caused by the compositional and temperature differences under Boussinesq ap-
proximation. For (Gr)c > 0 and (Gr)t > 0, the buoyancy force is posture and assists the
flow (see Figures 4 and 5), whereas when (Gr)c < 0 and (Gr)t < 0, the Buoyancy force is
negative and opposes the flow. This opposing behavior can be noticed during numerical ex-
periments. However, the observations are not included here (due to the restrictions on the
length of the article). It is also found that the buoyancy force in MoS2− SiO2−Casson f luid
is stronger than the buoyancy forces in SiO2 − Casson f luid.
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Temperature of fluid particles and intensity of magnetic field: The MoS2 − SiO2 −
Casson and SiO2 − Casson fluids are electrically conducting fluids. When electric current
passes through MoS2 − SiO2 − Casson and SiO2 − Casson fluids, some of the electrical
energy converts into heat, and this phenomenon is called Ohmic dissipation. This phe-
nomenon is also considered here in this study. The term in dimensionless energy equation
involving M is due to Joule heating (Ohmic heating) and determines the impact of Ohmic
dissipation on the temperature of the fluid. This dissipated heat raises the kinetic energy of
the fluid particles, and therefore, their temperature increases. This effect can be noticed
in Figure 6. This figure also demonstrates that the Ohmic dissipation phenomenon in
MoS2 − SiO2 − Casson f luid is stronger than that in SiO2 − Casson. Therefore, the rise in
temperature of fluid particles of MoS2 − SiO2 −Casson is greater than the rise of tempera-
ture of fluid particles of SiO2−Casson f luid. Therefore, the influence of Ohmic dissipation
on boundary layer thickness associated with the flow of MoS2 − SiO2 − Casson f luid is
greater than the influence of Ohmic dissipation on boundary layer thickness associated
with the flow of SiO2 − Casson f luid.
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Temperature of fluid particles and viscous dissipation: The friction among the par-
ticles of fluid causes the dissipation of heat which is equal to the rate at which the work is
performed by friction force. This effect is called viscous dissipation. It is noticed during
simulations that the inclusion of hybrid nanostructures (MoS2 and SiO2) increases the
friction among the particles of the fluid. It can also be observed that the rise in friction
among the fluid particles due to the inclusion of hybrid nanoparticles (MoS2 − SiO2) is
greater than the rise in friction among the particles of fluid due to the inclusion of SiO2 in
fluid (see Figure 7).

Temperature of fluid particles and Biot number: The Biot number Bi appears in the
dimensionless form of convective boundary conditions. The role of Bi on the temperature
of fluid particles of MoS2 − SiO2 − Casson f luid is examined. The comparative analysis
between the role of Bi on temperatures of SiO2 − Casson f luid given by Figure 8. In both
types of fluids (mono-nanofluid and hybrid nanofluid), temperature fluid particles have an
increasing behavior for Biot number Bi.

Temperature of fluid particles and Prandtl number: The Pr is the dimensionless pa-
rameter, and an increase in the Pr relates to a decrease in thermal conductivity correspond-
ing to the lower ability of fluid to conduct heat. Consequently, the temperature decreases.
This decrease in temperature of MoS2 − SiO2 − Casson f luid and SiO2 − Casson f luid
can be noticed (see Figure 9). The decreasing impact of Pr on the temperature of SiO2 −
Casson f luid is greater than the impact on the temperature of MoS2 − SiO2 − Casson f luid.



Nanomaterials 2021, 11, 2675 12 of 18

Nanomaterials 2021, 11, x FOR PEER REVIEW 12 of 20 
 

 

Casson fluid is greater than the influence of Ohmic dissipation on boundary layer thick-
ness associated with the flow of 𝑆𝑖𝑂 − Casson fluid. 

 
Figure 6. Influence of 𝑀 on temperature when 𝑃𝑟 = 0.9, 𝐸𝑐 = 0.2, 𝑆𝑐 = 0.8, 𝐾 = 0.1, 𝐸𝑖 =0.1, 𝐵𝑖 = 0.05, 𝛽∗ = 0.1, 𝛾 = 0.1, 𝛾 = 0.1. 

Temperature of fluid particles and viscous dissipation: The friction among the par-
ticles of fluid causes the dissipation of heat which is equal to the rate at which the work is 
performed by friction force. This effect is called viscous dissipation. It is noticed during 
simulations that the inclusion of hybrid nanostructures (𝑀𝑜𝑆  and 𝑆𝑖𝑂 ) increases the fric-
tion among the particles of the fluid. It can also be observed that the rise in friction among 
the fluid particles due to the inclusion of hybrid nanoparticles (𝑀𝑜𝑆 − 𝑆𝑖𝑂 ) is greater 
than the rise in friction among the particles of fluid due to the inclusion of 𝑆𝑖𝑂  in fluid 
(see Figure 7). 

 
Figure 7. Influence of 𝐸𝑐 on temperature when 𝑀 = 0.9, 𝑃𝑟 = 0.9, 𝑆𝑐 = 0.8, 𝐾 = 0.1, 𝐸𝑖 =0.1, 𝐵𝑖 = 0.05, 𝛽∗ = 0.1, 𝛾 = 0.1, 𝛾 = 0.1. 

Temperature of fluid particles and Biot number: The Biot number 𝐵  appears in the 
dimensionless form of convective boundary conditions. The role of 𝐵  on the temperature 
of fluid particles of 𝑀𝑜𝑆 − 𝑆𝑖𝑂 − 𝐶𝑎𝑠𝑠𝑜𝑛 𝑓𝑙𝑢𝑖𝑑 is examined. The comparative analysis 
between the role of 𝐵  on temperatures of 𝑆𝑖𝑂 − 𝐶𝑎𝑠𝑠𝑜𝑛 𝑓𝑙𝑢𝑖𝑑 given by Figure 8. In both 
types of fluids (mono-nanofluid and hybrid nanofluid), temperature fluid particles have 
an increasing behavior for Biot number 𝐵 . 

Figure 7. Influence of Ec on temperature when M = 0.9, Pr = 0.9, Sc = 0.8, K = 0.1, Ei = 0.1, Bi = 0.05,
β∗ = 0.1, γ = 0.1, γ1 = 0.1.

Nanomaterials 2021, 11, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 8. Influence of 𝐵𝑖 on temperature when 𝑀 = 0.9, 𝑃𝑟 = 0.9, 𝐸𝑐 = 0.2, 𝑆𝑐 = 0.8, 𝐸𝑖 =0.1, 𝐾 = 0.1, 𝛽∗ = 0.1, 𝛾 = 0.1, 𝛾 = 0.1. 

Temperature of fluid particles and Prandtl number: The 𝑃𝑟 is the dimensionless 
parameter, and an increase in the Pr relates to a decrease in thermal conductivity corre-
sponding to the lower ability of fluid to conduct heat. Consequently, the temperature de-
creases. This decrease in temperature of 𝑀𝑜𝑆 − 𝑆𝑖𝑂 − 𝐶𝑎𝑠𝑠𝑜𝑛 𝑓𝑙𝑢𝑖𝑑  and 𝑆𝑖𝑂 −𝐶𝑎𝑠𝑠𝑜𝑛 𝑓𝑙𝑢𝑖𝑑 can be noticed (see Figure 9). The decreasing impact of 𝑃𝑟 on the tempera-
ture of 𝑆𝑖𝑂 − 𝐶𝑎𝑠𝑠𝑜𝑛 𝑓𝑙𝑢𝑖𝑑  is greater than the impact on the temperature of 𝑀𝑜𝑆 −𝑆𝑖𝑂 − 𝐶𝑎𝑠𝑠𝑜𝑛 𝑓𝑙𝑢𝑖𝑑. 

 
Figure 9. Influence of 𝑃𝑟 on temperature when 𝑀 = 0.9, 𝐸𝑐 = 0.2, 𝑆𝑐 = 0.8, 𝐾 = 0.1, 𝐸𝑖 =0.1, 𝐵𝑖 = 0.05, 𝛽∗ = 0.1, 𝛾 = 0.1, 𝛾 = 0.1. 

Temperature of fluid particles and thermal memory effects: The parameter 𝛾 is 
called the thermal relaxation parameter and has an analogy with the Deborah number 
proposed for viscoelastic fluid. This parameter determines the restoring characteristics of 
thermal equilibrium. It is important to mention here for 𝛾 = 0, the non-Fourier’s law re-
duces to the classical Fourier’s law, and an increase of 𝛾 replicates the increase in ability 
of fluid to restore thermal equilibrium. Therefore, the temperature of fluid decreases (see 
Figure 10). 

Figure 8. Influence of Bi on temperature when M = 0.9, Pr = 0.9, Ec = 0.2, Sc = 0.8, Ei = 0.1, K = 0.1,
β∗ = 0.1, γ = 0.1, γ1 = 0.1.

Nanomaterials 2021, 11, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 8. Influence of 𝐵𝑖 on temperature when 𝑀 = 0.9, 𝑃𝑟 = 0.9, 𝐸𝑐 = 0.2, 𝑆𝑐 = 0.8, 𝐸𝑖 =0.1, 𝐾 = 0.1, 𝛽∗ = 0.1, 𝛾 = 0.1, 𝛾 = 0.1. 

Temperature of fluid particles and Prandtl number: The 𝑃𝑟 is the dimensionless 
parameter, and an increase in the Pr relates to a decrease in thermal conductivity corre-
sponding to the lower ability of fluid to conduct heat. Consequently, the temperature de-
creases. This decrease in temperature of 𝑀𝑜𝑆 − 𝑆𝑖𝑂 − 𝐶𝑎𝑠𝑠𝑜𝑛 𝑓𝑙𝑢𝑖𝑑  and 𝑆𝑖𝑂 −𝐶𝑎𝑠𝑠𝑜𝑛 𝑓𝑙𝑢𝑖𝑑 can be noticed (see Figure 9). The decreasing impact of 𝑃𝑟 on the tempera-
ture of 𝑆𝑖𝑂 − 𝐶𝑎𝑠𝑠𝑜𝑛 𝑓𝑙𝑢𝑖𝑑  is greater than the impact on the temperature of 𝑀𝑜𝑆 −𝑆𝑖𝑂 − 𝐶𝑎𝑠𝑠𝑜𝑛 𝑓𝑙𝑢𝑖𝑑. 

 
Figure 9. Influence of 𝑃𝑟 on temperature when 𝑀 = 0.9, 𝐸𝑐 = 0.2, 𝑆𝑐 = 0.8, 𝐾 = 0.1, 𝐸𝑖 =0.1, 𝐵𝑖 = 0.05, 𝛽∗ = 0.1, 𝛾 = 0.1, 𝛾 = 0.1. 

Temperature of fluid particles and thermal memory effects: The parameter 𝛾 is 
called the thermal relaxation parameter and has an analogy with the Deborah number 
proposed for viscoelastic fluid. This parameter determines the restoring characteristics of 
thermal equilibrium. It is important to mention here for 𝛾 = 0, the non-Fourier’s law re-
duces to the classical Fourier’s law, and an increase of 𝛾 replicates the increase in ability 
of fluid to restore thermal equilibrium. Therefore, the temperature of fluid decreases (see 
Figure 10). 

Figure 9. Influence of Pr on temperature when M = 0.9, Ec = 0.2, Sc = 0.8, K = 0.1, Ei = 0.1, Bi = 0.05,
β∗ = 0.1, γ = 0.1, γ1 = 0.1.



Nanomaterials 2021, 11, 2675 13 of 18

Temperature of fluid particles and thermal memory effects: The parameter γ is called
the thermal relaxation parameter and has an analogy with the Deborah number proposed
for viscoelastic fluid. This parameter determines the restoring characteristics of thermal
equilibrium. It is important to mention here for γ = 0, the non-Fourier’s law reduces to the
classical Fourier’s law, and an increase of γ replicates the increase in ability of fluid to restore
thermal equilibrium. Therefore, the temperature of fluid decreases (see Figure 10).

Concentration of fluid particles and Schmid number (Sc): The Sc is the number that
determines the impact of diffusion coeffect on the diffusion solute in the fluids. Here, in
this work, the behavior of Sc on the diffusion of solute in MoS2 − SiO2 − Casson f luid and
SiO2 − Casson f luid is examined, and the outcomes are presented by Figure 11.

Concentration of fluid particles and solutal relaxation time: The effects of thermal
relaxation time on the temperature of fluid particles are similar to the impact of solutal
relaxation time on the concentration field (compare Figures 10 and 12).

Behaviors of wall shear rate of heat transfer and mass flux against selected param-
eters: The behaviors of selected parameters Bi, Pr, (Gr)t, γ and γ1 on wall shear rate,
heat-transfer rate and mass-transfer rate are examined. The results so obtained are recorded
in the tabular numerical data (see Table 4) for both SiO2 − Casson f luid (nanofluid) and
MoS2 − SiO2 − Casson f luid. This table clearly depicts that heat transfer is enhanced due
to simultaneous dissipation of nanostructures MoS2 and SiO2. Biot number Bi compels
the wall shear stress to decrease in both types of fluids (nano and hybrid nanofluids). It is
noticed that wall shear stress for the case of hybrid nanofluid (MoS2− SiO2−Casson f luid)
is greater than that for the case of nanofluid (SiO2 − Casson f luid). An increasing rate of
Bi on wall heat-transfer rate is observed. However, it has a decreasing trend for the case
of mass transfer rate for both SiO2 − Casson and MoS2 − SiO2 − Casson f luids. Pr has
shown an increasing behavior on wall shear stress and wall heat-transfer rate. However, the
opposite trend is noticed for mass flux. For positive values of Grashof number (Gr)t, the
wall shear stress decreases; however, opposite trend is noticed for (Gr)t < 0. It is also found
that for the assisting flow ((Gr)t > 0), the rate of heat transfer and rate of mass transfer
increase. The reverse behavior is noted for (Gr)t < 0. The trend of shear stress, mass flux
and the rate of heat transfer for various values of γ and γ1 can be observed in Table 4.
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Table 4. Local skin friction coefficient, Nusselt number, and Sherwood number for hybrid nanofluid
(MOS2 − SiO2 ) and nanofluid (SiO2 ) when M = 0.9, Sc = 0.8, (Gr)c = 0.1, K = 0.1, α = 0.3,
Ei = 0.1, β∗ = 0.1.

Hybrid Nanofluid (MOS2−SiO2) Nanofluid (SiO2)

Re
1
2 Cf Re−

1
2 Nu Re−

1
2 Sh Re

1
2 Cf Re−

1
2 Nu Re−

1
2 Sh

0.3 2.983196 0.332254 0.327839 1.550508 0.331809 0.274995
Bi 0.4 2.975124 0.346307 0.327080 1.547106 0.343833 0.273122

0.6 2.966398 0.361610 0.326245 1.543475 0.356726 0.271111
0.9 2.960175 0.372594 0.325640 1.540915 0.365853 0.269686
0.9 2.969972 0.355328 0.326589 1.544956 0.351459 0.271933

Pr 1.2 2.982838 0.407449 0.318419 1.556270 0.426194 0.254630
1.5 2.995592 0.462848 0.310154 1.565150 0.492608 0.239609
1.8 3.007677 0.518502 0.302151 1.572221 0.551755 0.226381
0.2 2.931015 0.008746 0.371463 1.532676 0.171288 0.313080

(Gr)t 0.4 2.659066 0.058366 0.376682 1.409872 0.199231 0.315051
0.6 2.401254 0.094303 0.381388 1.292906 0.220905 0.317027
0.8 2.152702 0.121027 0.385802 1.180107 0.238387 0.318995
0.8 3.091709 0.228875 0.401115 1.597960 0.235893 0.352285

γ 0.7 3.082004 0.215412 0.404166 1.594813 0.226250 0.355104
0.6 3.071976 0.201547 0.407300 1.591568 0.216313 0.357992
0.5 3.061600 0.187249 0.410520 1.588223 0.206071 0.360951
3.0 2.994940 0.086758 0.511548 1.568195 0.132043 0.467676

γ1 2.5 2.992579 0.088335 0.486832 1.566804 0.134235 0.442385
2.0 2.990092 0.089963 0.461265 1.565340 0.136479 0.416249
1.5 2.987473 0.091642 0.434826 1.563799 0.138768 0.389274
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5. Conclusions

The formulated models are solved numerically with the implementation of FEM. The
Cattaneo–Christov generalized laws for heat and mass diffusion are helpful for analyzing
thermal and solutal relaxation phenomena. The numerical samples were obtained for
various values of related parameters to visualize the dynamics of flow quantities, including
the rate of heat and mass transport flux. The main observations related to this study are

1. FEM provides convergent solutions.
2. The relaxation time phenomenon is responsible for the restoration of thermal and solutal

changes, due to which, the thermal and solutal equilibrium states can be restored.
3. The phenomenon of yield stress is responsible for controlling momentum boundary

layer thickness.
4. Porous medium exerts retarding force on the flow, and therefore, the deceleration

inflow is observed.
5. The thermal efficiency of MoS2 − SiO2− Casson fluid is greater than the thermal

efficiency of SiO2− Casson fluid.
6. The change in magnetic flux by the motion of the fluid particles results in a Lorentz

force that opposes the flow, and the boundary layer thickness becomes shorter. It can
be noticed also noticed that the Lorentz force associated with the motion of SiO2—
nanofluid has a smaller magnitude relative to the Lorentz force induced by the motion
of hybrid nanofluid (MoS2 – SiO2—nanofluid). Thus, the viscous region for momen-
tum boundary layer flow nanofluid is wider than that for the flow of hybrid nanofluid.

7. The vortex viscosity is responsible for decreasing the macromotion of fluid particles.
Thus, velocity of Newtonian fluid is greater than the velocity of micropolar fluid.
Further, the impact of vortex motion of solid structures in the fluid on velocity of
nanofluid is negligible in comparison with the case of hybrid nanofluid.

8. Joule heating associated with hybrid nanofluid flow has greater value in comparison
with Joule heating in nanofluid. Thus, the temperature of hybrid nanofluid increases
more rapidly than the temperature of nanofluid. Moreover, the Ohmic heating process
in hybrid nanofluid is stronger than that in nanofluid.

9. Viscous dissipation results an increase in temperature of the fluids (both mono- and
hybrid nanofluids).

10. The thermal relaxation time is responsible for decreasing the temperature of fluid.
This is because of the ability of the fluid to restore thermal changes in order to attain
thermal equilibrium.

Future aspects: In this study, MoS2 and SiO2 are used to enhance the thermal con-
ductivity of the Casson fluid, and the optimized heat transfer is noticed. Based on the
simulation, it is claimed that thermal performance is significantly increased. This obser-
vation is related to Casson fluid with the nanoparticles. However, it is very important to
mention that this analysis should be performed for other non-Newtonian fluids. A similar
analysis is also required for other nanoparticles. The comprehensive comparison between
present study and the studies for other nanoparticles in other non-Newtonian fluids will
give a comprehensive picture. Authors have the intension to do so in the future.
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Nomenclature

Symbols Abbreviation
a The stretching rate of sheet

Cauchy stress tensor
P Pressure

Identity tensor
β Casson fluid
µ Dynamic viscosity
A1 First Rivlin–Eriksen tensor
u, v Velocity component
T Temperature
C Concentration
g Gravitational acceleration
ρ Density
cp Specific heat
k Thermal conductivity
hn f Hybrid nanofluid
D Mass diffusion coefficient
τo Thermal relaxation time
τ1 Concentration relaxation time
σ Electrical conductivity
T∞ Temperature at ambient position
C∞ Concentration at ambient position
M Magnetic parameter
(Gr)t Grashof number for temperature
(Gr)c Grashof number for concentration
β∗ Heat generation parameter
K Porous medium parameter
Pr Prandtl number
Sc Schmidt number
Ec Eckert number
γ Dimensionless thermal relaxation time parameter
γ1 Dimensionless concentration relaxation time parameter
βi and Ei Biot number for heat and mass, respectively
C f Skin friction
Nu Nusselt number
Sh Sherwood number
Re Local Reynolds number
wi Weight function
ϕ Volume fraction
FEM Finite element method
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