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Abstract

Death-associated protein kinase (DAPk) is a calcium/calmodulin-regulated Ser/Thr-protein kinase that functions at an
important point of integration for cell death signaling pathways. DAPk has a structurally unique multi-domain architecture,
including a C-terminally positioned death domain (DD) that is a positive regulator of DAPk activity. In this study,
recombinant DAPk-DD was observed to aggregate readily and could not be prepared in sufficient yield for structural
analysis. However, DAPk-DD could be obtained as a soluble protein in the form of a translational fusion protein with the B1
domain of streptococcal protein G. In contrast to other DDs that adopt the canonical six amphipathic a-helices arranged in a
compact fold, the DAPk-DD was found to possess surprisingly low regular secondary structure content and an absence of a
stable globular fold, as determined by circular dichroism (CD), NMR spectroscopy and a temperature-dependent
fluorescence assay. Furthermore, we measured the in vitro interaction between extracellular-regulated kinase-2 (ERK2) and
various recombinant DAPk-DD constructs. Despite the low level of structural order, the recombinant DAPk-DD retained the
ability to interact with ERK2 in a 1:1 ratio with a Kd in the low micromolar range. Only the full-length DAPk-DD could bind
ERK2, indicating that the apparent ‘D-motif’ located in the putative sixth helix of DAPk-DD is not sufficient for ERK2
recognition. CD analysis revealed that binding of DAPk-DD to ERK2 is not accompanied by a significant change in secondary
structure. Taken together our data argue that the DAPk-DD, when expressed in isolation, does not adopt a classical DD fold,
yet in this state retains the capacity to interact with at least one of its binding partners. The lack of a stable globular
structure for the DAPk-DD may reflect either that its folding would be supported by interactions absent in our experimental
set-up, or a limitation in the structural bioinformatics assignment of the three-dimensional structure.
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Introduction

The expression of the gene encoding death-associated protein

kinase (DAPk; HUGO Gene Nomenclature Committee identifier:

DAPK1) was originally identified as being essential for the

execution of apoptosis induced by IFN2c [1]. Research has

shown that DAPk acts as a positive mediator of cell death induced

by a range of stimuli including tumor necrosis factor-a (TNF-a),
anti-CD95/Fas agonists, transforming growth factor-b (TGF-b),
the dependence receptor UNC5H2 in the absence of netrin-1,

short-chain acyl ceramide derivatives, endoplasmic reticulum-

stress [2], detachment from the extracellular matrix and oncogene-

induced hyperproliferative signals [3,4,5,6,7,8,9,10]. Together

these observations suggest that DAPk functions at an important

point of integration for different cell death signaling pathways.

DAPk is a 160 kDa calcium/calmodulin-regulated Ser/Thr-

protein kinase with unique domain architecture. DAPk consists

of an N-terminal catalytic domain, a calmodulin (CaM)-binding

segment, eight ankyrin repeats, a GTP-binding Ras of complex

proteins (Roc) domain, a C-terminal of Roc (COR) domain, a

death domain (DD), and a serine-rich (SR) C-terminal tail

[1,3,4,11],[12]. A variety of evidence indicates that the DD-region

of DAPk (DAPk-DD) exerts a regulatory role on the apoptotic

function of DAPk. Widespread apoptosis is observed when human

embryonic kidney (HEK) 293 cells are transiently transfected with

a constitutively active DAPk mutant that lacks the calmodulin

regulatory element (DAPk/DCaM) [3,4]. In contrast, apoptosis is

significantly reduced when HEK 293 cells or MCF7 human breast

carcinoma cells are transfected with a DAPk/DCaM mutant

lacking the DD [4]. Additionally, cell death was attenuated in

HEK 293 cells co-transfected with the expression constructs

DAPk/DCaM and DAPk-DD (comprising just the death domain

residues), suggesting that the over-expressed DAPk-DD can act in

a dominant negative fashion perhaps by sequestering factors

required for endogenous DAPk activity [4].

The death fold superfamily of proteins includes the following

four families: death domains (DDs), death effector domains

(DEDs), caspase recruitment domains (CARDs) and PYRIN
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domains (PYDs). Whilst these protein families can be distinguished

on the basis of pairwise sequence similarities, structure determi-

nation of representative members of each family has revealed that

they share a common architecture consisting of six amphipathic a-
helices (H12H6) arranged in a compact, mostly antiparallel

topology in which the N- and C-terminii are close together. Within

each of the death fold families, the buried residues of H2 through

H5 exhibit relatively high sequence similarity, whereas H1 and H6

are more highly divergent. The primary function of the death fold

superfamily of protein modules is to mediate protein-protein

interaction by forming predominantly homotypic associations,

thereby underpinning the formation of multi-subunit signaling

complexes. The extensive amino acid sequence diversity of

surface-exposed residues in the death folds provides a wide range

of physicochemical properties. Nevertheless most if not all contacts

observed in DD complexes appear to fall into one of three

topologically similar arrangements denoted: (i) type I, negatively

charged residues of H2 and H3 of one DD interact with positively

charged residues of H1 and H4 of another DD; (ii) type II, H4 and

the H4–H5 loop of one DD interact with the N-terminal end of

H6 of another DD; and (iii) type III, H3 of one DD interacts with

the H1–H2 and H3–H4 loops of a second DD [13]. Prominent

examples of the interfacial interactions between DDs are provided

by the PIDDosome core complex composed of the DDs of PIDD

and RAIDD [14], the highly related core of the CD95/Fas death-

inducing signaling complex (DISC) comprising CD95-DD and

FADD-DD [15,16,17], and the Myddosome comprising the DDs

of MyD88, IRAK2 and IRAK4 [18].

Secondary structure prediction and sequence analysis for the

DAPk-DD region suggests the presence of the expected six a-
helices. Moreover hydrophobic residues are appropriately placed

to align with key residues whose side chains are known to

constitute the core of multiple examples of DD 3D structures

(Figure 1). Particularly notable is the presence of the two

tryptophan residues (Trp1329 and Trp1367), towards the N-

terminus of H2 and the C-terminus of H4 respectively, that are

strongly conserved amongst other DDs. The DAPk-DD has been

reported to interact with the DD-containing intracellular portion

of the netrin-1 receptor UNC5H2 in vivo [7], the extracellular

signal-regulated kinases-1 and -2 (ERK1/2) in vivo and in vitro [19],

and the MAP/microtubule affinity-regulating kinases-1 and -2

(MARK1/2) [20]. Further, DAPk-DD has been suggested to be

important for the interaction of DAPk with tuberous sclerosis-2

(TSC2) [21] and pyruvate kinase M2 (PKM2) [22].

In order to further elucidate its role in the regulation of the

DAPk function we set out to investigate the three-dimensional

structure of the DAPk-DD. Recombinant DAPk-DD was over-

expressed as a soluble fusion protein in E. coli, purified and

subjected to analytical gel filtration, circular dichroism (CD),

NMR spectroscopy and a temperature-dependent fluorescence

assay. The DAPk-DD was found to be a monomer at low

micromolar concentrations that has surprisingly low regular

secondary structure content, which has not been seen previously

for other members of the DD family. Furthermore, we probed the

interaction between ERK2 and various recombinant DAPk-DD

constructs through in vitro binding and isothermal titration

calorimetry (ITC) experiments. Despite the observed low level of

structural order, the recombinant DAPk-DD retains the ability to

interact with ERK2 in a 1:1 ratio with a Kd in the low micromolar

range. Taken together our data argue that the DAPk-DD, when

expressed in isolation, is not stable as a classical 3D DD fold, yet in

this state retains the capacity to interact with at minimum one of

its reported binding partners.

Materials and Methods

Generation of the Expression Constructs
DAPk-DD expression constructs were prepared from the full-

length human DAPk cDNA inserted into the pcDNA3 vector,

kindly provided by Prof. A. Kimchi (Weizmann Institute, Israel).

The DAPk-DD DNA sequence (residues 129321399) was

amplified using the forward (59-GATGATGAT GGATCCTCA

CAGGCCAGC CTCGG-39) and reverse (59-ATCATCATC

CTCGAGCAC AGAGGATGC CTTCAGC-39) primers, and

inserted between the BamHI and XhoI sites in the plasmid GEV2,

which encodes an N-terminal appendage of the B1 immunoglob-

ulin binding domain of streptococcal protein G (GB1), a well-

known solubilization enhancement tag [23]. The construct also

encodes a thrombin target sequence between the GB1 and DAPk-

DD domains and a C-terminal His6-tag. The corresponding

expressed protein product is denoted GB1-DAPk-DD(S).

A second, longer DAPK-DD expression construct, GB1-DAPk-

DD(L), comprising residues 129321408 was prepared by muta-

genesis of a separately prepared GEV expression vector that

includes the DAPk-DD and the whole Ser-rich tail (residues

129321431) using the 59-primer 59-ATCATCATC

CTCGAGCCG GGATACAAC AGAGC-39. Mutagenesis was

performed using the QuikChange site-directed mutagenesis kit

(Stratagene, La Jolla, CA, USA) with forward (59-GTGTTCAAA

ATCAACCTG GATGGCAAT GGCCTCGAG CACCACCAC

CACCACCAC TGAGATCC-39) and reverse 59-GGATCTCAG

TGGTGGTGGT GGTGGTGCT CGAGGCCAT

TGCCATCCA GGTTGATTT TGAACAC-39) primers. Prepa-

ration of the truncated GB1-DAPk-DD constructs used for ERK-2

binding experiments was carried out in a similar fashion. All of

these constructs also included a C-terminal His6-tag and a

thrombin recognition sequence between the GB1 and DAPk-DD

domains.

The template DNA used for the generation of the FADD-DD

(residues 932192) PCR insert was described previously [24]. Two

rounds of PCR were performed to introduce a tobacco etch virus

(TEV) cleavage site at the N-terminus of FADD-DD: first round

PCR, 59-CCTGTATTT TCAGGGCGG GGAAGAAGA

CCTG-39 (forward) and 59-ATCATCATC GAATTCTCA

ACTCCTGTT CTGGAGG-39 (reverse); second round PCR

forward primer 59-AATGATGAT GGATCCGAA AACCTG-

TAT TTTCAGGGC-39. The final PCR product was ligated

(BamHI and EcoRI) into pET-28GB1-1 (pET28a incorporating the

GB1 coding sequence inserted between NdeI and BamHI sites). The

resulting protein product is His6-(thrombin site)-GB1-(TEV site)-

FADD-DD. The GB1-CD95-DD-His6 protein used in thermal

denaturation experiments was kindly provided by Dr Diego

Esposito (MRC National Institute of Medical Research, London).

The expression vector for full length human ERK2, encoded in

the pGEX-6-P3 vector (GE Healthcare Life Sciences) as an N-

terminal glutathione-S-transferase (GST)-tagged construct with a

PreScission protease site, was a kind gift from Prof. Dario Alessi

(The MRC Protein Phosphorylation Unit, Dundee).

Protein Expression and Purification
All expression vectors were transformed into E. coli BL21 codon

plus cells (Stratagene). GB1-DAPk-DD proteins were expressed in

the soluble phase and purified by Ni-IMAC and size-exclusion

chromatography (Figure S1). 15N-Isotope labeling was accom-

plished using M9 medium containing 15N-ammonium salts

supplemented with trace levels of metal ions and vitamins. The

expression and purification of the truncated GB1-DAPk-DD

constructs were performed using the same protocol.

Death Domain from Death-Associated Protein Kinase
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The expression and purification of the GB1-FADD-DD

construct was performed as described above with minor modifi-

cations. FADD-DD was obtained by treating purified GB1-(TEV

site)-FADD-DD with His6-tagged TEV protease (Invitrogen),

followed by separation of the cleaved GB1 and TEV protease

by passing the mixture through a Ni-NTA column.

Large scale production of recombinant ERK2 was carried out

as previously described [25]. The molecular mass of the protein

samples was verified by electrospray-ionization mass spectrometry.

The concentration of the purified proteins was determined by

measuring the UV absorbance at 280 nm. The theoretical

extinction co-efficient for each protein was calculated using the

ExPASy ProtParam tool [26].

Analytical Size Exclusion Chromatography
Analytical size exclusion chromatography (SEC) experiments

were performed using a pre-packed Superose 12 HR 10/30

column (,24 ml bed volume) connected to an AKTA Purifier

HPLC system (GE Healthcare Life Sciences) pre-equilibrated with

the protein purification buffer. Elution profiles were recorded by

monitoring the absorbance at 280 nm and elution volumes

determined using the Unicorn software. Samples were centrifuged

at 17,900 g for 10 min prior to injection to remove insoluble

material. One-hundred microliter aliquots (0.1 to 20 mg ml21)

were sampled twice for each protein concentration. The flow rate

was 1 ml.min21 and experiments were run at room temperature.

The column was calibrated using gel filtration molecular weight

standards (Bio-Rad Laboratories). The protein standards were

reconstituted in the same buffer used to equilibrate the column,

but without dithiothreitol (DTT) to avoid disruption of disulfide

bonds.

Circular Dichroism Spectropolarimetry
Circular dichroic (CD) spectra were acquired using a stopped-

flow circular dichroism spectropolarimeter model 202SF (Aviv

Instruments Inc.), with a CFT-23 recirculating chiller cooling unit

(Neslab Instruments Inc.). Aviv CD v2.76 software was used to

calculate the molar ellipticity. Spectra were recorded over the

wavelength range of 1902260 nm. The path-length of the quartz

cuvette was 0.1 mm. The bandwidth was 1 nm, settling time

0.3 sec, the averaging time 3 sec, and the wavelength step 0.5 nm.

All samples were dialyzed overnight at 4uC. The protein sample

concentration ranged from 10 to 50 mM and the CD spectra were

normalized to yield mean residue ellipticity. All spectra were

recorded at 25uC, unless otherwise stated. Samples were pre-

equilibrated for 15 min prior to running the experiments. For each

measurement three scans were averaged and subtracted from a

‘blank’ obtained for the buffer alone. The error bars plotted in the

CD profiles represent an estimate of the uncertainty of the

measurements derived from the three scans.

Thermal denaturation CD profiles were acquired by monitoring

the ellipticity at 222 nm as a function of temperature employing a

constant scan rate of 1 deg.min21 over the range 5–95uC. The
reversibility of the thermal unfolding process was evaluated by

recording the far UV spectrum upon cooling the protein to 5uC.
The dynode voltage was monitored continuously to determine the

useful isothermal wavelength range for spectral measurements and

to evaluate the integrity of the protein samples during thermal

Figure 1. Sequence alignment DAPk-DD against death domains with known 3D structures. Residues assigned in helical secondary
structures H1 through H6 (dark red labels) are shown in red, and those with buried side chains are shown in bold and underlined. Residues present in
the native protein but not included or visible in the corresponding structure are shown in grey. The alignment has been manually curated on the
basis of a multiple superposition of the 3D coordinates. The sequences are displayed in rank order of sequence identity to DAPk-DD: (top) MyD88
(PDB code 3MOP); NF-kB p105 subunit (2DBF); NF-kB p100 subunit (2D96); Unc5b (3G5B); FADD (30Q9); IRAK4 (3MOP); IRAK2 (3MOP); RAIDD (2OF5);
PIDD (2OF5); ankyrin1 (2YQF); CD95/Fas (1DDF); TNF receptor-1 (1ICH). The DAPk-DD region is shown at the bottom; the result of sequence-based
secondary structure prediction (JPRED) is indicated as bold green letters for a-helix and bold blue letters for b-strand; yellow backgrounding
highlights unambiguous conservation of hydrophobic buried residues compared to the other DD sequences. Note the difficulty to assign such
conservation for the putative H6 of DAPk-DD, as well as a uniquely long H3-H4 loop.
doi:10.1371/journal.pone.0070095.g001
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denaturation. Where cooperative thermal unfolding was observed

as a two-state process, the respective melting temperature (Tm) and

free energy change (DGURF) were derived by van’t Hoff analysis of

the denaturation profiles.

NMR Spectroscopy
NMR experiments were recorded on Varian Inova spectrom-

eters (Agilent Technologies) operating at 600 and 800 MHz

proton frequencies. The spectrometer was equipped with either a

5-mm z-gradient 1H/15N/13C standard room temperature probe

(600 MHz), or a HCN cold probe (800 MHz). Spectra were

recorded at 25uC. Protein samples were prepared in 20 mM NaPi,

50 mM NaCl, 1 mM DTT, 1 mM EDTA, 7% D2O, pH 6.5. The

protein concentration was 46 mM.

Two-dimensional (2D) 1H215N heteronuclear single quantum

coherence (HSQC) spectra were recorded using a pulse-field

gradient sensitivity-enhanced pulse scheme with the incorporation

of water flip-back pulses. The data matrix consisted of 128*6384*

data points (were n* refers to complex points) with acquisition

times of 61 ms (tN) and 96 ms (tHN). A total of 322128 scans per

complex tN increment was collected. The recycle delay was 1.2 s.

The total measuring time was between 1.1 and 4.5 h.

All raw NMR data were processed using nmrPipe [27] and

visualized in nmrDraw. Peak picking and data analysis were

performed using the Analysis software program within the CCPN

suite [28].

Thermal Denaturation Monitored by Fluorescence
Thermal denaturation experiments were recorded on an iQ5

Real-Time PCR Detection System controlled by the iQ5 optical

system software version 1.0 (Bio-Rad Laboratories). Twenty-five

microliters of a Sypro Orange 56stock solution (Molecular Probes)

were mixed with 25 ml of each protein sample to a final protein

concentration of 50 mM. The fluorophore-mixed protein samples

were loaded into an iQ5 96-well plate. The plate was heated from

25 to 85uC in increments of 0.5uC with a dwell time of 10 sec.

Three samples for each different protein concentration were

simultaneously assessed. The buffer conditions for GB1-DAPk-

DD(L) were: 10 mM NaPi (pH 7.4), 150 mM NaCl, 0.5 mM

DTT and 0.5 mM EDTA. The final buffer conditions for GB1-

CD95-DD were: 5 mM Tris (pH 7.0), 25 mM NaCl, 0.5 mM

EDTA and 1 mM b- mercaptoethanol.

GST Pull-down Assay
Fifty microliters (settled volume) of the GST beads (Novagen)

were aliquoted into separate microcentrifuge tubes, centrifuged

at 1,960 g for 6 min and equilibrated with 1 ml of the assay

buffer. The assay buffer used was 50 mM HEPES (pH 7.5),

50 mM NaCl, 1% IGEPAL CA630, 20% glycerol, 10 mM

EDTA and 1 mM DTT. Proteins used in the in vitro pull-down

assays were derived from 5 ml LB cultures (37uC, 250 rpm).

Cell cultures were centrifuged and the cell pellets resuspended

in 1 ml of the assay buffer. The cells were lysed by sonication

and the lysates centrifuged at 17,900 g for 10 min. The cell

supernatants were applied to the GST beads and incubated at

4uC for 2 h. Following centrifugation, cell lysates were decanted

and the beads were washed seven times with 1 ml of the assay

buffer. Fifty microliters of the elution buffer (50 mM Tris

pH 8.0, 10 mM reduced glutathione) were incubated with the

beads for 10 min, centrifuged and the supernatant stored

separately. The elution step was repeated twice and the three

eluates were pooled.

Western Blotting
The His-tag monoclonal antibody (Novagen) and the accom-

panying colorimetric detection protocol were used for the Western

blots. Incubation with the His-tag antibody was for 1 h and the

blocking solution contained 5% milk. Seeblue2 protein markers

(Invitrogen) were used for SDS-PAGE separation.

Isothermal Titration Calorimetry
For isothermal titration calorimetry (ITC) measurements the

protein samples were extensively dialyzed against 50 mM HEPES

(pH 7.5), 50 mM NaCl, 1 mM TCEP and 1 mM EDTA, and

concentrated to the required level. Experiments were performed

with a VP-ITC calorimeter (MicroCal): 19 aliquots of 15 ml of
159 mM GB1-DAPk-DD(L), or 250 mM of GB1-DAPk-DD(S), or

100 mM GB1 were injected into 1.45 ml of 8.85218.6 mM ERK2

(different concentrations of ERK2 were employed for each

titration) at 25uC. Experiments were repeated twice. Following

subtraction of the corresponding heats of dilution, the binding

isotherms were fitted using nonlinear least-squares optimization to

obtain three parameters: binding stoichiometry (n), enthalpy of

interaction (DH), and the equilibrium dissociation constant (Kd).

Data processing was performed with the Origin ITC analysis

software package supplied by MicroCal.

Bioinformatic Analysis
Structure-based sequence alignments were performed with the

online program DALI Lite [29] using p75ICD-DD and the

FADD-DD as templates. Collation of sequence alignments was

performed with BioEdit. The DAPk-DD sequence was aligned to

that of p75ICD-DD using the program ClustalW [30].

Results

Design and Expression of the DAPk-DD Construct
A limited screening of the DD boundaries was performed.

Boundaries tested were based on bioinformatics analysis of DD

sequences and available structural data of DDs. The boundaries of

the constructs prepared were derived based on Pfam, SMART

and simple sequence alignments with other death domains. Pfam,

in particular, predicted that the DAPk-DD to span residues

131221397 (E-value = 2.7610220), whereas SMART estimated

the DAPk-DD to be longer at the amino terminus beginning at

position 1300 and ending at position 1397 (E-val-

ue = 5.90610225). In addition, a structure-based sequence align-

ment was performed and found to be in agreement with the

sequence alignment. In this report, two DAPk-DD constructs are

presented: DAPk-DD(S) (residues 129321399) and DAPk-DD(L)

(129321408). Both constructs cover the putative DD boundaries

defined by the bioinformatics analysis, therefore ensuring the

inclusion of the complete core. Multiple strategies to express

DAPk-DD as an isolated domain using overexpression in an E. coli

system produced insoluble protein products. Attempts to refold the

inclusion body material yielded negligible quantities of soluble

product. To enhance the solubility we expressed DAPk-DD as a

translational fusion protein at the C-terminus of the bacterial

protein GB1, a well-characterized ‘solubility-enhancing tag’ that

has been demonstrated to assist the recovery of soluble protein for

a range of different proteins in E. coli [31], including the wild-type

DD of CD95/Fas and the PYD of NALP1 [23,32]. Two different

fusion constructs were generated, GB1-DAPk-DD(S) and GB1-

DAPk-DD(L). The designations (S) and (L) refer to short and long

variants of the DAPk-DD sequence respectively (Figures 1, see

Methods). GB1-DAPk-DD(S) includes all the residues predicted to

form a-helical structure, whereas GB1-DAPk-DD(L) has a nine-

Death Domain from Death-Associated Protein Kinase
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residue C-terminal extension derived from the Ser-rich tail. The

inclusion of the complete Ser-rich region led to vanishingly small

quantities of expressed protein. All of the experiments presented

here were conducted with intact GB1-DAPk-DD fusion con-

structs; proteolytic removal of GB1 using thrombin resulted in the

precipitation of the DAPk-DD portion. The GB1-DAPk-DD

constructs were purified away from the cellular milieu by Ni-

IMAC and size-exclusion chromatography (SEC). Figure S1 shows

the results of a size-exclusion chromatogram and the collected

fractions run on an SDS-PAGE. The results show that the GB1-

DAPk-DD protein can be purified to near homogeneity using this

protocol. The pooled fractions were further analyzed by analytical

SEC at 1 mg/ml and found to elute at a similar elution volume to

GB1-FADD-DD (Figure S1C), which is known to not self-associate

(see below).

DAPk-DD Reversibly Oligomerizes in vitro
The in vitro oligomerization state of the expressed GB1-DAPk-

DD proteins was examined by analytical SEC. The elution profiles

of the two GB1-DAPk-DD constructs as well as two control

proteins, a homologous GB1-FADD-DD construct and ovalbu-

min, were measured as a function of protein concentration

(Figure 2A, Figure S2). The elution volume of the two GB1-DAPk-

DD constructs decreased as the protein concentration increased,

contrasting with the results for ovalbumin and GB1-FADD-DD

that showed essentially invariant elution volumes over the

concentration range examined. For the DAPk-DD proteins a

minimum elution volume was not reached suggesting that these

proteins possess the potential for high order self-association. The

tailing of the elution peak profile to earlier elution volumes for the

DAPk-DD constructs (Figure S2) is indicative of the presence of a

mixture of oligomerization states; the population of the higher

order species appears to increase as the protein concentration

increases. Conversion of the elution volumes into apparent

molecular weights (Figure 2B) shows that the GB1-DAPk-DD(S)

protein varies between effective masses of ,21 and ,47 kDa

(predicted monomer molecular mass 19.6 kDa), and the GB1-

DAPk-DD(L) varies between ,27 and 61 kDa (predicted mono-

mer molecular mass 20.6 kDa). These results suggests that at low

concentrations the two GB1-DAPk-DD constructs adopt hydro-

dynamic dimensions resembling those of a monomer similar to the

homologous GB1-FADD-DD (molecular mass estimated from

SEC is 21.3 kDa; calculated monomer mass 20.9 kDa), whereas at

higher concentrations they approach (and even exceed) the

hydrodynamic behavior of ovalbumin (molecular mass estimated

from SEC is 46.5 kDa; calculated molecular mass 44 kDa).

Since the protein samples were initially concentrated to 20 mg

ml21 and subsequently diluted for the SEC measurements, the

apparent oligomerization of GB1-DAPk-DD proteins must be

reversible. Consequently, GB1-DAPk-DD appears to be able to

form oligomers that depend on the sample concentration and

therefore in a dynamic equilibrium between monomeric and

higher order species. The GB1 domain itself is well known to be

stably monomeric and the elution volume of the GB1-FADD-DD

control construct shows minor variation with concentration. A

general search in the literature and query of the on-line

Biomolecular Interaction Network Database (BIND) [33], which

archives all known biomolecular interactions and complexes that

arise from published experimental research, did not return any

reported interactions between GB1 and other proteins. Moreover

characterization of the NMR spectrum of the GB1-DAPk-DD

proteins (see below) shows that the GB1 component is unperturbed

relative to the isolated GB1 domain. GB1 self-association cannot

be responsible for the observed aggregation of GB1-DAPK-DD at

higher concentrations, Hence, self-association of the GB1-DAPk-

DD proteins is not due the GB1 domain itself, or between the GB1

domain and the appended DAPk-DD polypeptide either in cis or

in trans, and therefore must be a property of the DAPk-DD

sequence itself. This finding is broadly consistent with the

observation that DAPk-DD polypeptides, when expressed in

isolation, spontaneously aggregate in inclusion bodies. Further-

more we can safely attribute the properties of the GB1-DAPk-DD

fusion proteins in further biophysical analyses as arising from the

sum of the (GB1 and DAPk-DD) parts.

DAPk-DD Adopts an Intrinsically Disordered State with
Partial Helical Structure
The CD spectrum of GB1-DAPk-DD(L) was recorded and

corrected for the contribution from the GB1 domain (Figure 3A).

The overall characteristic of this spectrum is typical of a protein

with a significant contribution of a-helical secondary structure,

with a (negative) peak at ,208 nm and a shoulder at 222 nm. We

separately recorded the 2D 15N-1H HSQC NMR spectrum of

isotope-labeled GB1-DAPk-DD(L) (Figure 4A,B). The spectrum

contains a subset of well-dispersed cross peaks supplanted by a

larger number of essentially unresolved resonances at 1H chemical

shift of,8.0–8.4 ppm (Figure 4A,B). Analysis of this spectrum and

comparison with the spectrum of the isolated GB1 domain

(Figure 4A,C) and other well-characterized GB1-fusion proteins

(not shown) indicates that the resolved cross peaks primarily

correspond to the GB1 portion of the fusion protein. The poorly

resolved subset of resonances that derive from the DAPk-DD

portion of the polypeptide indicate a lack of ordered globular

structure. For comparison we recorded the GB1-corrected CD

spectrum of GB1-FADD-DD (Figure 3A); the spectrum has a

similar profile of that for GB1-DAPk-DD(L), but possesses a

significantly greater (negative) amplitude: at 222 nm, the GB1-

corrected FADD-DD spectrum has a mean residue ellipticity

(MRE) of 224,700 deg.cm2.dmol21; (MRE=219,200 -

deg.cm2.dmol21 for a FADD-DD-only construct, data not pre-

sented), whereas the corresponding value for DAPk-DD(L) is

210,250 deg.cm2.dmol21. CD spectroscopy measurements have

been previously reported for both FADD-DD and CD95-DD [34],

with MRE values at 222 nm of ,218,000 deg.cm2.dmol21

respectively, in reasonable agreement to the values obtained here

for FADD-DD. Similarly, the death domain of the Drosophila

protein Pelle was reported to possess a CD spectrum showing

double minima at 209 and 223 nm, with a MRE (223 nm) of

,218,000 deg cm2 dmol21 [35]. The observation that the

absolute ellipticity for the DAPk-DD(L) is more than 50% lower

than observed for the FADD-DD indicates that the DAPk-DD

does not exhibit the same level of a-helical secondary structure.

Similar results were obtained for the shorter GB1-DAPk-DD(S)

construct (data not shown). The CDSSTR program [36,37,38,39]

was used to estimate the helical content of the proteins by

deconvolution of the CD spectra. CDSSTR predicted 72% a-
helical content for FADD-DD, a value that closely matches the

helical content observed for the 3D solution structure of the

FADD-DD [24]. In contrast, CDSSTR predicts only 39% a-
helical content for the DAPk-DD(L) protein.

To further assess the conformational status of the DAPk-DD we

obtained the fluorimetric thermal denaturation profiles using the

‘Thermofluor’ method [40,41]. Control experiments using GB1-

CD95-DD exhibited a characteristic sigmoid transition corre-

sponding to thermal denaturation of the CD95-DD, which adopts

a canonical 3D DD structure, with a midpoint of ,332 K

(Figure 3B). In contrast, the data for GB1-DAPk-DD(L) indicated

that the fluorescence signal was high even at the starting (low)
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temperature, and failed to yield an observable unfolding transition

as the sample temperature was raised. The profile is typical of a

protein that is poorly ordered and lacks a stable tertiary fold; the

fluorophore readily binds the disordered protein even at a low

temperature (Figure 3B). We similarly measured the thermal

denaturation profiles of GB1-DAPk-DD(L) and GB1-FADD-DD

by CD spectroscopy (Figure 3C). Full CD spectra of GB1-DAPk-

DD(L) were also recorded at 5, 25 and 95uC to check that the CD

profile did not show any major change due to a shift in secondary

structure type (Figure S4). The spectral profiles do not change

noticeably over this temperature range, except for the reduction in

CD ellipticity values due to a loss of secondary structure caused by

thermal denaturation. At each measurement point the data were

corrected for the contribution from the isolated GB1 domain (for

which the data were recorded separately). As expected, the profile

obtained for FADD-DD displays a sigmoidal transition consistent

with loss of helical structure and highly cooperative unfolding of

the death domain (Figure 3C). The thermal mid-point Tm and

DGURF terms for the FADD-DD derived from a van’t Hoff

analysis of the data are 335 K and 219.82 kJ mol21respectively.

The thermal denaturation profile of the GB1-corrected DAPk-DD

profile features a very broad transition that is indicative of non-

cooperative disruption of the a-helical structure and therefore not

amenable to van’t Hoff analysis.

The conformational heterogeneity and apparent dynamic

fluctuations of the DAPk-DD give rise to poor dispersion of the

resonances in the NMR spectrum (Figure 4A) that preclude direct

determination of its structure. CD analysis showed that the DAPk-

DD secondary structure remained largely unaffected at different

pH values in the presence of 150 mM salt (Figure S5A). However,

in the absence of salt and at pH 2 there was a significant loss of

DAPk-DD(L) secondary structure manifested by the reduction in

ellipticity at 222 nm and the shift of the 207 nm minimum

towards 200 nm, indicative of a random coil structure (Figure

S5B). Such behavior is consistent with acid denaturation. Varying

the ionic strength or adding the detergent SDS had minimal effect

on the secondary structure content (Figure S5C).

The addition of 2,2,2-trifluoroethanol (TFE) as a cosolvent has

been shown to shift the conformational equilibrium of unfolded or

molten globule-like proteins toward a stably-folded conformation

suitable for NMR structural analysis [42,43,44]. The CD spectrum

of both GB1-DAPk-DD(S) and (L) constructs responded to the

addition of TFE in a similar manner (Figure 3A), whereas the

GB1-FADD-DD construct showed noticeably smaller changes.

Changes in the spectra were observed up to a TFE concentration

of 40% v/v. The amplitude of the CD signal for the DAPk-DD at

40% v/v TFE was 57% higher (more negative) at 222 nm

(215,951 deg.cm2.dmol21) than in the absence of TFE, but lower

when compared with the signal for the FADD-DD (,225,000

deg cm2 dmol21). The addition of 40% v/v TFE to the GB1-

FADD-DD construct gave rise to a modest signal increase of 19%

at 222 nm, suggesting that the helical content of this protein is

closer to the maximum ‘capacity’ of the polypeptide sequence than

for the DAPk-DD. The 2D 1H-15N HSQC spectrum of GB1-

DAPk-DD(L) did not show any major change in signal dispersion

in the presence of 40% v/v TFE (Figure 4B). There was a slight

decrease in resonance line widths and a minor increase in signal

dispersion, but without significant perturbation of the distribution

of resonances between the ‘dispersed’ and ‘non-dispersed’ subsets.

Taken together these observations suggest that TFE has little

Figure 2. The DAPk-DD shows concentration dependent oligomerization. (A) Control proteins GB1-FADD-DD (open diamonds) and
ovalbumin (open triangles) along with GB1-DAPk-DD(S) (filled circles) and GB1-DAPk-DD(L) (filled squares) constructs were run at seven different
concentrations through a Superpose-12 analytical gel filtration column and the elution volumes were plotted. (B) The elution volumes shown in (A)
were converted into apparent MWs using the calibration curve (Figure S3). Two sets of data were collected for each sample and the average value
shown. Elution volume differences between sets were #0.04 ml.
doi:10.1371/journal.pone.0070095.g002
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influence on the overall stability and ‘foldedness’ of the GB1

domain (from which the ‘dispersed’ cross peak subset derives), and

likely only stabilizes nascent helical regions of DAPk-DD without

the inducement of a stable globular structure.

Full length-DAPk-DD Interacts with ERK2, without
Change in DAPk-DD Secondary Structure
It has been reported that the putative DAPk-DD interacts with

the extracellular signal-regulated kinases-1 and -2 (ERK 1/2)

leading to modulation of the apoptotic activity of DAPk [19]. GST

pull-down analysis has shown that a GST-fused DAPk-DD can

directly interact with ERK2 via the ‘‘DEJL motif’’

(RRDAADLLL) located within a region corresponding to H6 of

the putative DAPk-DD fold [19]. Mutation of the DEJL motif

hampers the DAPk-DD/ERK2 interaction in vitro [19]. To further

characterize this protein-protein interaction, we prepared a

number of N- and C-terminally truncated GB1-DAPk-DD

constructs (Figure 5A) in an effort to identify the minimal

ERK2-binding epitope of DAPk-DD. We selected ERK2 over

ERK1 because structural and biochemical aspects of this molecule

have been analyzed in detail, including its association with the

DED-containing phosphoprotein enriched in astrocytes-15 kDa

(PEA-15) [45,46]. The results of the GST pull-down assays showed

that, in our hands, only the full-length GB1-DAPk-DD(S) and (L)

constructs demonstrated binding to ERK2 in this format

(Figure 5B, lanes 1 and 2). Notably neither the GB1-fusion that

contains just the DAPk-DD helix-6 (GB1-DAPk-H6) nor the

fusion protein containing the C-terminal ‘half’ of DAPk-DD (the

H42H6 construct), both of which include the DEJL motif, were

pulled down by GST-ERK2 (Figure 5B, lanes 4 and 5).

Consequently, residue(s) within the N-terminal half of the DAPk-

DD must also be required to support binding to ERK2. However

any such additional ERK2-interacting region(s) within the first

three putative helices of the DAPk-DD are not capable of

sustaining an interaction with ERK2 on their own, since GST-

ERK2 does not pull down GB1-DAPk(H12H3) (Figure 5B, lane

3). Taken together these results suggest that regions of DAPk-DD

outside of the DEJL motif and possibly spread throughout the DD

sequence are required for a productive interaction with ERK2.

Unfortunately, the effect of the SR tail of DAPk towards ERK2

binding could not be fully investigated, because the constructs

containing the SR tail (Figure 5A) were expressed mainly in the

insoluble fraction (data not shown). Nonetheless, crude lysates of

these SR tail-containing constructs with appreciably lower

amounts of soluble protein compared with the GB1-DAPk-DD

variants lacking the SR tail were incubated with GST-ERK2-

bound glutathione beads to determine if they would be pulled

down with GST-ERK2. The SDS-PAGE analysis (Figure 5B) as

well as Western blotting (data not shown) did not reveal any band

corresponding to the size of the SR-containing constructs. We

conclude that the SR tail is not required for the interaction of the

C-terminal region of DAPk with ERK2.

Figure 3. The DAPk-DD has intrinsically disorder protein
properties. (A) Far-UV CD data of the GB1-corrected native DAPk-
DD(L) (blue circles) and in the presence of 40% v/v TFE (green filled
circles). The addition of 40% v/v TFE increased the DAPk-DD helicity by
,56% based on the 222 nm reading. The spectra for the GB1-
subtracted FADD-DD in the absence (red circles) and presence of TFE
(black filled circles), and an increase of ,18% in helicity was observed.
Data collection in the presence of TFE were terminated at 204 nm
because of the high tension voltage (dynode) registered at lower
wavelengths. The high tension voltage arose from the buffer
components, i.e., 20 mM sodium phosphate buffer, 150 mM NaCl,
and 1 mM DTT, pH 7.4. Error bars are estimates of uncertainties derived
from the three scans recorded per sample. (B) The fluorimetric thermal
denaturation profile of the GB1-DAPk-DD(L) protein (solid circles)
resembles a protein that is loosely structured with the fluorophore able

to readily interact with hydrophobic residues. As a control of a DD with
the canonical six-helix bundle fold, the fluorimetric thermal denatur-
ation profile of the GB1-CD95-DD protein is shown (open circles). (C)
Far-UV CD thermal denaturation of GB1-DAPk-DD(L) (filled circles) and
GB1-FADD-DD (open circles). The thermal denaturation profile of the
GB1-corrected DAPk-DD features a long transition indicating that the
protein unfolds in a noncooperative manner, whereas the GB1-
corrected FADD-DD shows a denaturation profile indicative of
cooperative unfolding. The line represents a fit of the FADD-DD data
by a van’t Hoff analysis, with derived Tm, DH and DS values of 6260.3uC,
2182.766.5 kJ mol21 and 0.5560.02 kJ K21 mol21, respectively.
doi:10.1371/journal.pone.0070095.g003
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ITC experiments were performed to further characterize the

interaction between the DAPk-DD and ERK2 (Figure 5C).

Titration of the GB1-DAPk-DD(L) and (S) constructs into

ERK2 yielded equilibrium dissociation constants of Kd = 0.92 mM
and 1.77 mM, respectively. In each case the observed stoichiom-

etry (n) of the interaction is approximately 1:1 (n=1.0360.01 (L)

and 0.9760.01 (S)). The corresponding DH, TDS and DG values

were 238.4 and 253.1 kJ mol21, 24.0 and 220.3 kJ mol21, and

234.4 and 232.8 kJ mol21, for (L) and (S) constructs respectively.

The isolated GB1 domain does not interact with ERK2 (data not

shown). These results are consistent with the in vitro pull-down

experiments showing that GB1-DAPk-DD(S) binds to ERK2 with

an apparently lower affinity compared with the GB1-DAPk-DD(L)

construct (Figure 5B).

It is conceivable that the interaction could promote ordering of

the DAPk-DD polypeptide to a stable a-helix fold. CD spectro-

scopic analysis was performed to determine whether the interac-

tion of GB1-DAPk-DD with ERK2 induces conformational

change. The spectra shown in Figure 5D (and with errors in

Figure S6) indicate that the interaction of GB1-DAPk-DD(L) with

ERK2 does not lead to any detectable change in the CD response

attributable to the GB1-DAPk-DD(L) protein. The ITC and CD

results indicate that DAPk-DD is able to bind ERK2 without the

induction of a significant degree of additional structural order.

Discussion

The death domain-region of DAPk is purported to possess an

important functional role in the regulation of DAPk catalytic

activity [3,4,7,21,22]. However, no structural characterization of

this domain has been reported. In this study, we attempted to

examine the structure and oligomeric state of the DAPk-DD. The

results of the analysis indicate that, when expressed as a separate

protein, this DD does not adopt the stable tertiary structure that

has been observed for several other DDs. Rather we found that the

protein was poorly behaved and that it was a requirement to

append the DAPk-DD with a solubility enhancement tag (here the

bacterial protein G B1 domain) in order to recover protein

sufficiently tractable for biophysical analysis. Although the GB1-

DAPk-DD fusion proteins were soluble, size exclusion chroma-

tography analysis showed that the DAPk-DD fusion constructs

exhibited a tendency to reversible self-association, and that this

was attributable to the DAPk-DD component. The GB1 domain is

known to be highly stable and, as evidenced by the various

spectroscopic data obtained for the GB1-DAPk-DD fusion

protein, does not interfere with the properties of the appended

polypeptide. For example, the dispersed resonances in the 2D
1H-15N HSQC spectrum of GB1-DAPk-DD correspond precisely

with those of the isolated GB1 domain (Figure 4A). Moreover we

found no evidence for the thermal ‘melting’ of the GB1 domain in

temperature-dependent CD and fluorescence measurements, or

any major influence of added TFE co-solvent on the GB1 domain.

The thermal mid-point of isolated GB1 had been reported

elsewhere to be in the region of ,360 K [25], well outside the

region of interest with respect to the DD component of the fusion

proteins (e.g., the FADD-DD component of GB1-FADD-DD

unfolds at ,335 K). The GB1-subtracted CD data indicated that

the DAPk-DD component of the GB1-DAPk-DD fusion proteins

possess much lower a-helical content than expected for a typical

folded DD protein (e.g., 39% for DAPk-DD(L) vs. 72% for FADD-

DD). The 2D 1H-15N HSQC spectrum shows very limited

chemical shift dispersion for the great majority of resonances not

attributable to the GB1 domain, suggesting an absence of globular

structure for the DAPk-DD. Consistent with this observation we

Figure 4. Overlay of the 2D 1H-15N HSQC spectra of 15N-labeled
GB1-DAPk-DD and 15N-labeled GB1 in the presence and
absence of TFE. (A) Overlay of 15N-labeled GB1-DAPk-DD (black)
and 15N-labeled GB1 (cyan) spectra shows that the chemical shifts of
the resonances arising from the GB1 residues in both constructs have
near identical chemical shifts, therefore indicating that there are
negligible contacts between GB1 and the DAPk-DD in the GB1-DAPk-
DD construct. (B) Overlay of HSQC spectra of 15N-labeled GB1-DAPk-DD
in the absence (black) and presence (red) of 40% (v/v) TFE. The majority
of the dispersed, intense signals arise from GB1. The unresolved
resonances in the center of the spectrum arise from the DD and
indicate that the domain lacks a tertiary fold. The addition of TFE leads
to a general decrease in resonance line widths and a minor increase in
resonance dispersion, suggesting that TFE aids the formation of
secondary structure elements of the DD, but the domain lacks a
compact DD fold. (C) Overlay of HSQC spectra of 15N-labeled GB1 in the
absence (black) and presence (red) of 40% TFE (v/v).
doi:10.1371/journal.pone.0070095.g004
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failed to detect a cooperative unfolding transition, similar to that

observed for other GB1-proteins including the GB1-FADD-DD,

during temperature-dependent thermal melting experiments

monitored by fluorescence. Moreover the high level of Sypro

Orange fluorescence observed in this experiment at the starting

(low) temperature is consistent with the DAPk-DD protein

component lacking ordered structure under ambient conditions.

Therefore despite the essentially unambiguous bioinformatic

assignment of a death domain fold for the DAPk-DD amino acid

sequence, which appears both by visual inspection and quantita-

tive measures of sequence similarity to sit well with other

structurally-validated folded death domain proteins (e.g.,

Figure 1) our data clearly indicate that adoption of a stable

globular DD-fold may require one or more factors not present in

the polypeptide sequence of this portion of DAPk alone. It is

conceivable that, within the holo-DAPk protein, the DAPk-DD is

Figure 5. The DAPk-DD interacts with ERK2 and the interaction does not lead to any significant change in the secondary structure
of the DAPk-DD. (A) Schematic illustrating the various DAPk-DD peptides used for the ERK2 binding study. (B) LDS-PAGE analysis of the GST pull-
down assay showing eluates of GST-ERK2 bound glutathione beads after being incubated with the various GB1-DAPk-DD constructs shown in (A).
Lane M, molecular weight size markers (kDa); Lane 1, GB1-DAPk-DD(S); Lane 2, GB1-DAPk-DD(L); Lane 3, GB1-DAPk(H1-3); Lane 4, GB1-DAPk(H4-6);
Lane 5, GB1-DAPk(H6); Lane 6, GB1-DAPk(H4-6+SR); Lane 7, GB1-DAPk-DD+SR. Anti-His6 Western blot of the eluates shown in the LDS-PAGE for the
short and long GB1-DAPk-DD constructs are shown below the LDS-PAGE. (C) ITC data of GB1-DAPK-DD(L) injected into a solution of ERK2. The upper
box shows heat liberated following 19 equal volume injections of GB1-DAPk-DD(L) into 15 mM of ERK2 at 25uC. The integrated heats (lower box) are
shown as examples of data quality. The continuous lines represent an optimal fit. For these data, the optimal fit for the DD gives an observed Kd of
0.92 mM with an observed DH of 238.43 kJ/mol. The blue symbols represent the heat of dilution of the control experiment. (D) CD analysis of the
ERK-2-DAPk-DD complex. Far-UV CD spectra of ERK2 (blue circles) and GB1-corrected DAPk-DD(L) (green circles) are presented. The signal for the
equimolar complex of GB1-DAPk-DD(L) and ERK2 was recorded (black circles), from which the ellipticity of GB1 was subtracted to give the native
DAPk-DD-ERK2 CD signal. By combining the individual ERK2 and DAPK-DD CD data (red circles) a very similar CD profile was obtained to that
observed for the complex, indicating minor changes in secondary structure to either protein upon formation of a complex. In particular, the signature
a-helix wavelength, 222 nm, showed negligible differences. The y-axis represents mean reside ellipticity values and data collection were terminated
at 195 nm because of the high tension voltage (dynode) registered at lower wavelengths. The inset represents the data over the wavelength range of
2002230 nm.
doi:10.1371/journal.pone.0070095.g005
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stabilized by interactions with either another part of the (intact)

protein chain, an obligate post-translational modification of DAPk,

or a constitutive binding partner of DAPk. If this is the case then it

would represent a novel instance of a DD that, for stable folding,

requires contacts with more or less remote parts of its parent

protein and/or an associated polypeptide.

The oligomerization that we observed for the bacterially

expressed GB1-DAPk-DD proteins is reminiscent of the reported

behavior of a 3*FLAG/myc-tagged DAPk-DD construct expressed

in HCT116wt cells, or expressed as a His-tagged miniprotein,

described by Stevens et al. [47]. These authors demonstrated that

in the former case the wild-type death domain protein could be

chemically cross-linked using ethylene glycol bis(succinimidylsuc-

cinate) (EGS). In the latter case the purified protein eluted by gel

filtration in a concentration-dependent manner mostly at

,600 kDa (assessed by the Bradford assay). A variant form of

the DAPk-DD that includes the substitution Asn1347Ser and

corresponds to a form of DAPk that lacks the ability to bind

ERK2, failed to demonstrate EGS-dependent cross-linking in cells,

and as a bacterially expressed protein elutes mostly as a,150 kDa

species. That the His-tagged protein appears to be tractable as a

soluble protein, whereas we found that solubility required the

attachment of the GB1 domain, must be attributable to the

characteristics of the additional native and non-native vector

(pDEST17)-derived N- and C-terminal appendage(s). Unfortu-

nately, from the perspective of this work these authors did not

provide any further spectroscopic or structural data for the

expressed proteins.

Despite the apparent lack of stable folding, we could demon-

strate that the GB1-DAPk-DD(S) and (L) constructs are able to

bind ERK2, consistent with reports that have also shown evidence

for ERK2/DAPk-DD interactions both in vivo and in vitro [19,47].

Our results suggest that additional parts of the DAPk-DD

sequence, outside of the DEJL motif, are required for productive

interaction. This observation is consistent with the report by

Stevens et al. that the Asn1347Ser mutation, corresponding to a

site at the C-terminal end of the consensus death domain helix-3,

ablates ERK2 binding [47]. We characterized the equilibrium

dissociation constants for the complex formed between GST-

ERK2 and GB1-DAPk-DD(S) and (L) using microcalorimetry.

The low single-digit micromolar Kd values fall within the range of

previously reported protein-ERK interactions. For example the Kd
between PEA-15 and ERK1/2 was found to be 0.2–0.4 mM as

assessed by fluorescence anisotropy measurements [48]. For both

the GB1-DAPk-DD(S) and (L) constructs, the ITC results indicate

a considerable favorable enthalpic contribution (DH) towards

ERK2-binding, suggesting an energy gain from the formation of

intra- and/or intermolecular van der Waals contacts. This is

accompanied by a significantly unfavorable entropic contribution

(TDS is negative) that, in combination with the relatively high

exothermic DH values, is consistent with either the loss of a degree

of flexibility or, more generally, a change in the conformation of

one or both of the components in the DAPk-DD/ERK2

interaction.

It is tempting to imagine that ERK2-binding might induce

ordering of the DAPk-DD polypeptide, perhaps so far as to induce

the formation of a canonical six-helix DD fold. We sought

evidence for such an induced folding transition by recording CD

spectra of the GST-ERK2/GB1-DAPk-DD(L) complex. Howev-

er, to a good approximation the spectrum of the complex is

essentially identical to the sum of the CD spectra of the individual

components (Figure 5D), suggesting at most a rather minor

conformational change accompanies binding and that the DAPk-

DD can bind ERK2 in its apparently non-globular state.

The interaction of ERK1/2 with peptide ligands has been

investigated in some detail [49,50,51,52]. ERK1/2 share with

other MAP kinases a region referred to as the D-recruitment site

(DRS) that interacts with peptide epitopes that contain the

canonical sequence (R/K)2-3-X2-6-WA-X-WB, where WA and WB

are hydrophobic residues (typically Leu) [49,50,51,52]. Peptides

exhibiting these properties are denoted as ‘D-sites’ or ‘D-motifs’;

the ‘D’ refers to an earlier description of the motif as ‘DEJL’ or

docking site for ERK, JNK and LXL. Crystal structures of MAP

kinases bound to D-motif peptides show that the WA-X-WB portion

of the ligand occupies a hydrophobic groove and the positively

charged Arg/Lys residues interact with a negatively charged patch

called the CD site [53,54,55,56]. However ERK2-directed NMR

studies have suggested that ‘non-canonical’ WA-X-WB ligands can

bind without engagement of these charged residues [57]. Recently,

a structural study has suggested that while these docking nodules of

the D-motifs serve to anchor the peptide to MAP kinases, it is the

length and amino acid composition of the intervening region

between anchor points that are primarily responsible for specificity

[54]. ERK1/2 are also reported to possess a second peptide

binding site denoted the F-recruitment site (FRS), that is occupied

by ‘F-site’ or ‘F-motif’ peptides, first identified as containing the

sequence Phe-X-Phe-Pro (FXFP) [58], but now accepted as any

similar sequence where the Phe residues are substituted by Tyr or

Trp [59]. To date there is no 3D structural data for this latter type

of interaction, though the FRS has been mapped to a site distinct

from the DRS on the C-terminal lobe of the kinase domain [58].

ERK2 binding to the DED-containing protein PEA-15 has

been investigated in some detail [45,48,60]. By consensus the

PEA-15 binding site mainly includes the ‘RxDLw-motif’ residues

on helix H6, the loops connecting helices H1 and H2 and helices

H5 and H6, and residues in the flexible C-terminal tail [45,61].

Curiously the C-terminal tail of PEA-15 contains the sequence

I121-K-L-A-P-P-P-K-K129 which reads like a consensus D-motif

peptide ligand except in reverse order. Indeed a variety of

measurements suggests that this region of PEA-15 does bind to the

ERK2 DRS [61], and that the globular DED part of the protein

interacts with a subsidiary site on the kinase domain [45].

Intriguingly recently published heteronuclear NMR relaxation

data purporting to describe the ERK2-bound form of PEA-15

have been interpreted in terms of a picture in which the dynamics

of the DED domain are strongly perturbed in a non-uniform

manner, leading the authors to ascribe an induced-fit mechanism

and suggesting a degree of plasticity in the PEA-15 DED domain

[62]. The picture that emerges is one in which the ERK1/2 kinase

domain interacts with regulatory ligands that lack a high degree of

structural order.

How does this picture of ERK-ligand interactions apply to our

observations with DAPk-DD? Our data clearly suggest that DAPk-

DD does not function as a canonical death domain fold in order to

bind to ERK2. This might suggest that the DAPk-DD could bind

ERK2 via either the DRS or FRS, or both. Inspection of the

amino acid sequence of the DAPk-DD constructs that we

employed shows that: the R1311-R-K-L-S-R-L-L-D1319 sequence

near the N-terminus comes close to matching the D-motif

consensus but lacks a hydrophobe at the WB residue (WB=Asp);

the R1312-K-L-S-R-L-L-D-P1320 sequence is a close but non-exact

match (WB =Pro) to the D-site consensus; separately, WA-X-WB D-

‘subsite’ motifs occur at L1297-G-M1299, F1354-L-P1356, L1392-L-

L1394 and I1402-N-L1404; and the sequence does not contain any

amino acid stretch that is a close match to the F-site consensus.

Thus the observed binding of DAPk-DD to ERK2 is likely

attributable, at least in part, to an occupation of the DRS by one of

the (non-exact) D-motifs that would be available within a
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disordered form of the DAPk-DD polypeptide. In fact, in the

absence of an induced-fit mechanism, a globular DD-fold would,

by homology, sequester the critical WA-X-WB hydrophobic residues

in the core of the domain. However, neither the N- or C-terminal

truncation mutants of DAPk-DD are competent to bind ERK2,

therefore suggesting that binding must involve additional contacts

outside of the putative DRS/D-motif interaction. This is

reminiscent of the conclusions drawn for PEA-15 which is

suggested to bind ERK2 in a ‘bidentate’ fashion [48,61].

In summary we have provided evidence that the death domain

of DAPk is not stably folded in a classical, globular a-helical form,

at least when expressed by itself out of the context of its ‘host’ holo-

polypeptide. However, even in its partially helical, but mostly

disordered, state the DAPk-DD is able to bind ERK2 with low

micromolar affinity. Even though the binding does not involve

induced folding of the DAPk-DD, it appears to require elements of

the both the N- and C-terminal stretches of the protein.

Collectively, these observations provide a platform for further

investigation of the regulation of ERK1/2 and DAPk kinase

activity in cell survival and death pathways at the molecular,

cellular and biochemical level. Moreover emerging progress into

the structural characterization of ERK2 by frontier methods in

NMR spectroscopy [57,63] promise an opportunity to explore the

structural basis for its interaction with DAPk at the atomic scale.

Moreover it will be intriguing to explore whether under the

conditions within the cell, that include the consequences of

molecular crowding on protein stability, the folding behavior of

DAPk-DD is altered, and in addition the folding status of the

DAPk-DD polypeptide in interactions either in vitro or in vivo with

other purported binding partners such as the netrin-1 receptor

UNC5H2.

Supporting Information

Figure S1 Protein purification by size-exclusion chro-
matography and analysis of the collected fractions by
SDS-PAGE. (A) GB1-FADD-DD, GB1-DAPk-DD(S) and GB1-

DAPk-DD(L) were purified by SEC on a Superdex 75 column (GE

Healthcare) under similar conditions. The overlaid chromato-

grams clearly show a difference in profiles between GB1-FADD-

DD and the two GB1-DAPk-DD constructs, as well as a difference

in the elution volumes. The elution volume of the first peak is

similar to the void volume and represents aggregated DAPk-DD

species .70 kDa that do not dissociate under non-denaturing

conditions. The second major peak represents oligomeric GB1-

DAPk-DD species, which readily undergo reversible dissociation

upon dilution to lower concentrations (see the Results section for

further details and (C)). As a control, GB1-FADD-DD was

purified using the same method and elutes at a later elution

volume when compared with the elution volumes of the peaks

arising from the GB1-DAPk-DD constructs. (B) SDS-PAGE

analysis of GB1-DAPk-DD(S) fractions collected in (A). M: marker

(MWs in kDa), A0: Ni/NTA eluate loaded onto the column,

A62A10: SEC fractions taken from (A). The gel bands were

stained with Coomassie blue dye. (C) Affinity and SEC purified

GB1-FADD-DD in 20 mM NaPi, 150 mM NaCl, 3 mM DTT,

pH 6.2 and GB1-DAPk-DD(S) in 20 mM NaPi, 150 mM NaCl,

3 mM DTT, pH 7.4 were applied on a pre-packed Superose-12

analytical size-exclusion column (Amersham Biosciences) at the

same concentration, i.e., 1 mg/ml. Coloured as in A. At a lower

concentration, the purified GB1-DAPk-DD(S) protein elutes at an

elution volume near identical to the GB1-FADD-DD protein,

which does not form oligomers. This result shows that at the

loading concentration of 1 mg/ml, the GB1-DAPk-DD(S) con-

struct behaves as a monomer.

(DOCX)

Figure S2 Elution profiles of proteins studied by
analytical size exclusion chromatography. Overlay of the

different concentration runs on a Superose-12 column of

ovalbumin (A), GB1-FADD-DD (C), GB1-DAPk-DD(S) (E) and

GB1-DAPk-DD(L) (G) and zoomed in regions are presented in B,

D, F and H, respectively. AU refers to the instrument absorbance

units at 280 nm. Different concentrations in mg/ml from the

highest to the lowest are as follow: blue (20), pink (10), red (5), cyan

(1), purple (0.5), brown (0.25), green (0.1) and orange (0.05).

(DOCX)

Figure S3 Analytical gel filtration calibration curve. (A)
Protein markers (Biorad) consisting of thyroglobulin (670 kDa),

bovine gamma-globulin (158 kDa), chicken ovalbumin (44 kDa),

equine myoglobin (17 kDa) and vitamin B12 (1.35 kDa) were run

through the Superose-12 column. The order of the markers

description follows the order of elution from left to right. The

elution volumes of the protein markers, shown in ml next to the

corresponding peaks, were calculated with the Unicorn 3.0

software package (Amersham Biosciences). Absorbance measured

at 280 nm. Elution volumes related to the MWs (logarithmic scale)

of the markers and the formula that correlates them are shown in

(B). Diamond-shaped points in (B) represent the elution volumes

derived in (A).
(DOCX)

Figure S4 CD spectra of DAPk-DD at 5, 25 and 95uC. CD
spectra of GB1-corrected DAPk-DD(L) at 5uC (blue), 25uC (green)

and 95uC (red). The CD spectra show no significant profile

differences or signs of protein aggregation. A noticeable reduction

in MRE values at the highest temperature is caused by the thermal

denaturation of the secondary structure of the DAPk-DD. Error

bars are estimates of uncertainties derived from the three scans

recorded per sample.

(DOCX)

Figure S5 GB1-DAPk-DD shows little secondary struc-
ture change under different buffer conditions. Far-UV

CD data of the GB1-subtracted native DAPk-DD(L) in different

buffers. The effect of extreme pH (red symbols = pH 2; green

symbols = pH 7.4; blue symbols = pH 12) on the secondary

structure of the DAPk-DD(L) is shown either in the presence of

150 mM NaCl (A) or in the absence of NaCl (B). Only at pH 2 in

the absence of salt (B, red symbols) did the DD show substantial

changes in structure. (C) At pH 7.4, the influence of the detergent

SDS was examined. Only minor differences were seen in the CD

spectra recorded on GB1-DAPk-DD(L) samples measured in the

absence of SDS (green), 2 mM (red; below CMC) and 50 mM

(blue; above CMC) SDS. The result indicates that SDS induced

only slight secondary structure changes to the DD both below and

above the CMC.

(DOCX)

Figure S6 The interaction of the DAPk-DD with ERK2
does not lead to any significant change in the secondary
structure of the DAPk-DD or ERK2 proteins. CD analysis

of the ERK-2-DAPk-DD complex. Far-UV CD spectra of ERK2

(blue circles) and GB1-corrected DAPk-DD(L) (green circles) are

presented. The signal for the equimolar complex of GB1-DAPk-

DD(L) and ERK2 was recorded (black circles), from which the

ellipticity of GB1 was subtracted to give the native DAPk-DD-

ERK2 CD signal. By combining the individual ERK2 and DAPK-

DD CD data (red circles) a near identical CD profile was obtained
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to that observed for the complex, indicating negligible changes in

secondary structure to either protein upon formation of a complex.

The error bars are estimates of uncertainties derived from the

three scans recorded per sample. The inset represents the data

over the wavelength range of 2002230 nm.

(DOCX)
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