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Abstract

Injury to nerve axons induces diverse responses in neuronal cell bodies, some of which are influenced by the distance from
the site of injury. This suggests that neurons have the capacity to estimate the distance of the injury site from their cell
body. Recent work has shown that the molecular motor dynein transports importin-mediated retrograde signaling
complexes from axonal lesion sites to cell bodies, raising the question whether dynein-based mechanisms enable axonal
distance estimations in injured neurons? We used computer simulations to examine mechanisms that may provide nerve
cells with dynein-dependent distance assessment capabilities. A multiple-signals model was postulated based on the time
delay between the arrival of two or more signals produced at the site of injury–a rapid signal carried by action potentials or
similar mechanisms and slower signals carried by dynein. The time delay between the arrivals of these two types of signals
should reflect the distance traversed, and simulations of this model show that it can indeed provide a basis for distance
measurements in the context of nerve injuries. The analyses indicate that the suggested mechanism can allow nerve cells to
discriminate between distances differing by 10% or more of their total axon length, and suggest that dynein-based
retrograde signaling in neurons can be utilized for this purpose over different scales of nerves and organisms. Moreover,
such a mechanism might also function in synapse to nucleus signaling in uninjured neurons. This could potentially allow a
neuron to dynamically sense the relative lengths of its processes on an ongoing basis, enabling appropriate metabolic
output from cell body to processes.
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Introduction

Neurons extend extremely long axonal processes that can

exceed the diameter of the cell body by 4–5 orders of magnitude.

This poses a unique challenge for intra-cellular signaling, since

nerve cells require efficient transport mechanisms to move

macromolecules and metabolites from the cell body to neurite

terminals and back over distance. This communication problem

becomes especially acute in the context of nerve injury, when the

axon needs to provide the cell body with accurate and timely

information regarding the site and extent of axonal damage [1].

Cell body responses to axonal injury are diverse, ranging from

functional repair to cell death, and depend on both the intrinsic

regeneration capacity of the neuron and responses to the local

environment [2–4].

The distance of the lesion site from the cell body is one of the

factors determining neuronal responses to injury. For some

populations of neurons, a more proximal axotomy leads to greater

regenerative response by the cell body ([5–7] and references cited

therein). Lesion distance was also shown to influence specific

molecular responses to injury, including activation of cell body

kinases [8] and up-regulation of growth-associated genes [5,9–12].

Interestingly, the precise effect of lesion distance on neuronal

response may differ in diverse neuronal populations. For example,

an optic nerve lesion study reported that the number of

regenerating retinal ganglion cells is inversely correlated with

distance of the lesion from the optic disc [13]. In long neurons

from two species of fish, lesions close to the cell body induce death,

while beyond a certain lesion distance neurons regenerate [14,15].

Moreover, the lag time for initiation of regeneration in these

neurons is tightly correlated with lesion distance [14,15]. Taken

together, these findings demonstrate that neurons from different

functional classes and species have the capacity to differentiate

between lesion sites at different locations in their axons.

Early workers in the field proposed a number of hypotheses to

explain disparate cell body responses to differently located axonal

lesions [16,17]. Diffusion mediated signaling is not likely to

function efficiently over the requisite distances [18], and other

mechanisms like signaling waves [19] or spatial gradients of

protein abundance [20] have not been demonstrated to occur over

axonal distances. On the other hand, two long distance signaling

mechanisms have been characterized in nerve injury paradigms- a

rapid electrophysiological signal of short duration [21] and a

second slower wave of signals transported on molecular motors

[1,22]. Motor-driven signaling has emerged as a versatile

mechanism for long distance communication along nerve axons

[23,24], and in this study we have used computer simulations to

examine the possibility that it can provide lesion distance

information in injured neurons. The analyses support feasibility

of a multiple signals model, wherein distance information is
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inferred from the time delay between the arrival of an

electrophysiological fast signal and slow signals carried by the

molecular motor dynein. The simulations indicate that this

mechanism can enable nerve cells to distinguish between distances

of 10% or more of their total axon length.

Results

Translating signal arrival to distance measurement
Inferring the distance traveled by a given signal can rely on two

types of mechanisms, either quantifying chemical gradients over

distance, or measuring the time delay between initiation of the

signal and its arrival in the detection region. Although chemical

gradients play central roles in biological systems, diffusion-based

gradients cannot be established over axonal distances within a

biologically relevant time frame after injury [25]. Thus, we

examined mainly the second possibility, namely that a time delay

between the initiation of a chemical signal in an injured axon and

its arrival at the cell body can be interpreted by the cell as

representing the distance traveled by the signal. In order for such a

mechanism to work, it requires two reference points: an early time

point representing the initiation of the signal, and a later time

point representing the arrival of the signal. The latter requires a

detection system that responds to the arrival of an amount of signal

defined by a specified threshold, while for the former requirement,

we hereby suggest two models that can in principle define signal

initiation:

1) A multiple signals model, wherein the system measures the

time delay between the arrival of a fast signal and the arrival

of at least one additional slow signal (Figure 1A). The fast

signal indicates occurrence of an injury, and thus initiates the

time-delay measurement. Electrophysiological mechanisms

are good candidates for rapid retrograde signals functioning

on millisecond-second time scales after nerve injury [2,26].

Any chemical signal will be orders of magnitude slower than

an electrical signal, and thus for modeling purposes the fast

signal can be regarded as noise-free (in model simulation, the

entire fast signal arrives within a single time-step of the slow

signal).

2) A multiple detectors model, wherein the system measures the

time delay between the activation of at least two distinct

detectors, which respond to the same slow signal (Figure 1B).

According to this model, a sensitive detector responds to a

small portion of the slow chemical signal, while a less sensitive

detector will need to register the accumulation of a larger

portion of the signal. The range of velocities and noise

inherent in motor-driven signals [27] induce spreading of the

signal over longer distances. This allows the system to derive

distance information by using the initial fraction of arriving

signal registered by the sensitive detector to provide a

reference point for signal initiation, and the time of

accumulation of most of the signal registered at the less

sensitive detectors for estimating distance.

Model parameters: sensitivity
Both models are based on measuring the arrival of a sufficient

amount of the slow signal, defined as a fraction of 500 in silico

particles moving in a Matlab-defined simulation environment (see

methods). Since we do not have any data regarding the signal

concentration required for initiating a response, our models

explore a series of thresholds, defined as fractions of arriving signal

from the total signal generated at the injury site. These sensitivity

thresholds range between 1% and 90% of the injury signal (i.e., a

1% detector will respond to 1% of the originally generated signal,

whereas accumulation of 90% of the signal is required for response

of a 90% detector).

Model parameters: dynein velocities
Retrograde transport along the microtubule cytoskeleton in

nerve axons is almost entirely dynein-based, thus the basic

assumption in our models is that the slower signals are carried

retrogradely as part of a dynein based complex. Dynein velocities

have been measured in diverse systems from isolated molecules in

vitro to in intact cells, and by different methods including direct

imaging or end-point accumulation, leading to reports of a range

of velocities from ,0.5 mm/sec to ,5 mm/sec [23,27]. Our

models require inputs of velocity distributions (rather than average

velocities), and we therefore extracted velocity distributions from

two experimental data-sets, one based on in vitro analyses of

movement of individual dynein–dynactin–GFP complexes [28],

and another that utilized cellular imaging of the retrograde

transport of a GFP-labeled endosome marker in embryonic motor

neurons [29]. For both data sets, a curve fit procedure was applied

(see methods) resulting in a distribution function. Based on these

distribution functions, random velocity values were assigned to

migrating particles simulating dynein-trafficked retrograde signals.

Figure 2 depicts the experimental data and the fitted distribution

functions for both data sets. Unless otherwise specified, all

simulations utilized the distribution function derived from the

data of Ref. [28].

Model construction
As depicted in Figure 3A, our initial model system performs a

comparative measurement. Two injuries are performed in two

distinct cells in-silico. In one cell the injury is introduced in a

proximal location, and in the other cell a distal injury is

performed. In response to each of the two injuries, a slow signal

emanates from the injury sites, propagating retrogradely towards

the cell body. The system then measures the time delay between

the fast and slow signals from the proximal location (Dt1) and the

Author Summary

Neurons have extremely long axonal processes that can
reach lengths of up to 1 meter in human peripheral
nerves. The neuronal cell body response to nerve injury is
dependent on signals carried by molecular motors from
the lesion site in the axon. The distance between the injury
site and the cell body influences the type of response,
suggesting that neurons must be able to estimate the
distance of an axonal injury site, although how they do this
is unknown. We have used a computational approach to
model intracellular distance measurement after nerve
injury. The models show the feasibility of a mechanism
based on a rapid, near instantaneous, signal carried by
action potentials in the nerve, followed by multiple slower
signals carried on molecular motors. Such a mechanism
can enable a neuron to discriminate between distances as
close as 10% of total axon length. The model provides
insights on retrograde injury signaling in neurons,
including the biological relevance of the mechanism over
different scales of nerves and organisms. Moreover, if
similar mechanisms function in synapse to nucleus
signaling in uninjured neurons, this could enable estima-
tion of relative process lengths, thus guiding metabolic
output from cell bodies to axons.

Distance Measurement in Injured Neurons
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Figure 1. Possible mechanisms for assessing distance in injured neurons. (A) A two-signals model for distance assessment. This model
assumes that an injury initiates two signals, fast and slow, which travel retrogradely from the site of injury. The time delay measured between the
arrival of the fast signal and the arrival of a significant portion of the slow signal reflects the total distance traveled by the signals. Note that the slow
signal is noisy, and therefore spreads over distance, hence does not arrive all at once. (B) A two-detectors model for assessing distances. This model
assumes that a single slow signal is used to detect the distance from site of injury. The system utilizes two kinds of detectors: a sensitive detector
responds to a small portion of the slow signal, and a less-sensitive detector requires a larger amount of the signal to arrive in order to initiate a
response. The time delay between activation of the two detectors reflects the total distance traveled by the signal.
doi:10.1371/journal.pcbi.1000477.g001

Distance Measurement in Injured Neurons
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time delay between the fast and slow signals from the distal

location (Dt2). The difference between Dt2 and Dt1 reflects the

system’s ability to distinguish between the two locations: the larger

this difference, the better the system in terms of distance

measurement.

The simulations explore the influence of two parameters on

system performance: the distance between the two injuries

(hereafter referred to as injury displacement), and the total

distance between the distal injury and the detector (L, or total

distance). Figure 3B depicts a schematic representation of two

cases, one in which the displacement is small and the total distance

is relatively large, and one in which the displacement is relatively

large compared to the total distance. The intuitive prediction is

that a biological system will find it more difficult to distinguish

between the two injury sites in the former case rather than in the

latter.

Model performance: consistency
In order to assess consistency of model performance, we

repeated each such in-silico experiment 100 times. In each such

repetition, the same detector sensitivity, same total distance from

cell body, and same injury-displacement distance were used.

Figure 2. Distribution of dynein velocities. Experimental data (blue bars) were extracted from Ross et al. (A) and Deinhardt et al. (B). A curve fit
procedure was applied to produce velocity distributions that were used in computer simulations (red lines).
doi:10.1371/journal.pcbi.1000477.g002

Distance Measurement in Injured Neurons
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Figure 3. Modeling Approach. (A) Comparing distance measurements for distal and proximal injuries. Green and red dots represent the slow
signal initiated by the distal and proximal injuries, respectively. These two sets of signal dots represent two distinct experiments (as shown on the
left), and are shown together on the simulation screen due to technical considerations. (B) Model parameters for each simulation included total
distance between the distal injury and cell body (L), and injury displacement – the distance between the proximal and distal injuries (Disp). Sites of
injuries are indicated by vertical black bars. A case in which the displacement is small relative to the total distance (left) is assumed to be more
susceptible to noise than a case in which the displacement is rather large in respect to the total distance (right). (C) Testing system sensitivity and
reliability by simulation repetition. We repeated the simulations 100 times for each distinct set of conditions. Results are shown for the examples
depicted in Panel (B).
doi:10.1371/journal.pcbi.1000477.g003

Distance Measurement in Injured Neurons
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Differences between repetitions emerge solely from random

assignment of dynein velocities to the slow signal particles.

Figure 3C depicts two sets of such 100 repeats for the two-signals

model (the same procedure was applied to the two-detectors

model, data not shown). In the first case (Figure 3C, left panel), the

parameters that were chosen were: L (total distance) = 60 cm, Disp

(injury displacement) = 0.5 cm, and the detector-sensitivity thresh-

old was set to 30%. Each vertical bar (dark blue) represents a single

repetition of the simulation. The value obtained for each repetition

represents the time difference Dt22Dt1 in minutes. The negative

bars observed for approximately one tenth of the repeats indicate

that for these specific simulations the system infers mistakenly that

the distal injury site is closer to the cell body than the proximal

injury site. In another ,10% of the repeats, the measured

Dt22Dt1 time difference in signal arrival is less than an hour.

Since the different molecular events involved in both generating

the retrograde injury signals at the site of injury and interpreting

them at the cell body may take about an hour [30–32], such a time

difference in signal arrival might be below the resolving power of

an injured neuron (i.e., even though the signal from the proximal

injury site traveled up to an hour less than the signal from the

distal site, the accompanying events of signal production and/or

processing may exceed this time difference, thus making it

biologically irrelevant). Moreover, despite the fact that these are

100 repeats of the same injury and displacement distances,

reproducibility of the measurement is clearly very poor. Thus, at

least for this 0.5 cm displacement distance that is two orders of

magnitude smaller than the 60 cm total injury distance, the initial

model cannot discriminate between locations of the two injury

sites. In the second case (Figure 3C, right panel), we set L to 5 cm

and Disp to 3.5 cm, using the same sensitivity threshold of 30%. In

this case, the system provided a consistent set of measurements, all

ranging around 16–18 hours.

Systematic analysis of distance-displacement
combinations

Figure 3C depicts two extreme examples of model performance

for two distinct combinations of total distance/injury displacement.

In order to conduct a systematic exploration of model performance,

we extended this analysis to cover a wide range of distance-

displacement combinations. For each distance-displacement com-

bination, we performed 100 simulation repeats as described above.

From each such set of 100 simulations we discarded the worst 5%,

and then chose the minimal Dt22Dt1 time-difference value out of

the remaining 95% of the repetitions (Figure S1, red circle). Note

that in the examples of Figure 3C this minimum is a negative value

for the left panel, while in the case of the right panel the minimum

value is approximately 1000 minutes.

We then used the collection of minima points to plot a 3D graph

in which the X and Y axes represent injury displacement and total

distance, respectively, and the Z axis represents the minimal

Dt22Dt1 time difference value for each X–Y combination (Figure

S1, lower panel). Such graphs can be used to answer two basic

questions regarding the models- first, can a given model

distinguish between two distinct injury locations. This is

determined by setting a cutoff for system failure due to either

mistaken identification of the distal injury site as being closer than

the proximal (resulting in a negative Z axis value), or a time delay

that is too small to enable a differential biological response. Since

differential biological responses to injury typically require

transcription and translation, for purposes of the modeling the

system cutoff was defined as a time delay of at least 60 minutes.

The second issue addressed by the 3D plots is whether a given

model is consistent, i.e. will it provide a similar assessment for the

same injury displacement, regardless of its distance from the cell

body? This is reflected in the smoothness of the graph. In an ideal

system, the time difference in the arrival of a signal that travels a

distance x and a signal that travels a distance x+Dx should remain

constant, regardless of the value of x. Thus for an ‘ideal’ 3D graph

(Figure S2), straight lines along the X axis indicate consistency (i.e.,

for a given value of injury displacement, the time difference (Z)

should remain the same at all total distance values). In order to

assess the smoothness of a 3D graph plotted from the simulations,

we use a root mean square deviation (RMSD) measurement.

Given two sets of n points v and w, the RMSD is defined as follows:

RMSD(v,w)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i~1

(vix{wix )2z (viy{wiy )2z(viz{wiz )
2

s

When calculating the RMSD for a model-generated graph

compared to an ideally smooth graph, the lower the obtained

RMSD value, the closer the graph to the ideal, hence the effects of

changing parameters and models can be inferred from their

comparative RMSD values.

Initial models: two signals versus two detectors
Systematic exploration of the two-signals model showed that

although it can function over part of the total distance/injury

displacement combinations, the system failed over a significant

portion of the distances range tested (Figure 4A, Figure S3).

Furthermore, for a given injury displacement, the time-delay

measurements did not show consistency over increasing total-

distance values. For example, the ability of the system to detect an

injury displacement of 8 cm decays with distance along the axon,

and is essentially lost at total distances of 70–80 cm and above.

RMSD values for a wide range of detector sensitivity thresholds

indicate that the system performed better at sensitivity settings of

up to 30%, and worsened significantly in the range from 40% to

80% (Figure S3).

Performance of the two-detectors model was much poorer, and

in the best case the system detected injury location differences for

only approximately one third of total distance/injury displacement

values (Figure 4B, Figure S4). Unfortunately, the RMSD

measurement seems to be uninformative for comparing different

permutations of the two-detectors model. Rather than reflecting

model performance, RMSD values reflect the ‘gap’ between the

sensitive detector and the insensitive detector. The larger the

difference between the thresholds of the two detectors, the larger

the time difference between the distal and proximal locations.

Thus, two 3D graphs that are similar in terms of smoothness, but

differ in their Z values (time differences) will yield different RMSD

values (Figure S4).

Model improvement: integrating multiple slow signals
Since model performance in two signals or two detectors mode

was not satisfactory, we modified the two-signals model to include

several slow signals rather than a single slow signal, and assume

that an effective response is triggered when a subset of these signals

arrives at the cell body (Figure 5). From a biological point of view,

this may reflect a situation in which there are several dynein-

carried signals. We further assume that as far as detector-sensitivity

is concerned, there is no significant difference between the signals

(i.e., in terms of our model they utilize similar detection systems).

The rationale behind this modification is that in a noisy system,

multiple measurements are expected to be more accurate than a

single measurement. In its original configuration, in order for a

distal injury to be identified by the system as a proximal one, it was

Distance Measurement in Injured Neurons
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Figure 4. Best performance of the two signals versus two detectors models. (A) Best performance of a two-signals model (detector sensitivity set
at 10%) The horizontal plane represents a 60 minute cutoff, below which the time difference measured by the system is not likely to enable a differential
biological response. (B) Best performance of a two-detectors model, obtained for a system configuration of two detectors with 5% sensitivity threshold and
80% sensitivity threshold. Performance graphs for additional sensitivity permutations of these two models are shown in Figures S3 and S4, respectively.
doi:10.1371/journal.pcbi.1000477.g004
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sufficient that a small fraction of the slow signal particles

emanating from the distal site would randomly acquire higher

velocities than the signal particles originating from the proximal

point. In order for a similar phenomenon to occur in the multiple

signals system, the distal point needs to randomly ‘‘win’’ not only

once, but in several slow-signal velocity acquisitions. Figure 6

compares the performance of a system with six slow signals, of

which any three will initiate a response, versus performance of the

previously described system with a single slow signal. A significant

improvement is observed in consistency (graph smoothness),

together with a marked increase in the total distance and injury

displacement ranges for which the system attains a successful

outcome (Figure 6A and Figure S5). RMSD values are also

significantly improved (Figure S5).

We considered examining a similar extension of the two-

detectors model to multiple detectors. However, whereas extend-

ing the two-signals model to multiple signals did not require any

new (and unjustified) assumptions regarding system parameters, a

similar extension of the two-detectors model requires overly

speculative assumptions. Consider, for example, a system with

three kinds of detectors with sensitivity thresholds s1, s2, and s3,

where s1,s2,s3 (i.e., s1 is the most sensitive detector). The

limiting determinant of system performance will have to be the

time delay between activation of s1 and s3 – having s2 as an

intermediate detector will not influence the result, unless one

assumes preferential effects of such intermediate detectors. In the

absence of any data, such speculative configurations may be

completely detached from biological reality. Nonetheless, we did

try to modify some quantitative features of the slow signal, in order

to check whether the poor performance of the two-detectors model

results from the specific biological datasets that were used in this

work. We applied the following modifications to the model: (i)

using a uniform distribution of velocities instead of the data-based

Gaussian distributions, (ii) using velocities 1–3 orders of magnitude

faster than the data-based velocities, and (iii) using wider and

narrower velocity distributions (obtained by modifying the

parameters of the curve-fit functions described in the Methods

section below). None of these modifications yielded any significant

improvement in model performance (data not shown). It therefore

seems that the the two (or multiple) signals model is qualitatively

superior to the two-detectors model, and the difference in model

performances cannot be attributed to a quirk of specific model

configuration.

The effects of changing data-sets on model performance
As noted above, we used two sets of dynein velocity

measurements for our modeling work: a data-set from Ross et

al. [28], representing velocities of isolated dynein-dynactin

complexes in vitro, and a data set from Deinhardt et al. [29],

based on tracking of GFP-labeled tetanus toxin in live motor

neurons. The average dynein velocity measured by Deinhardt et

al. was higher than the average dynein velocity measured by Ross

et al. – 1.3 mm/sec and 0.45 mm/sec, respectively, and the velocity

distributions of Deinhardt et al. spanned a broader range

Figure 5. A multiple slow-signals model. This model assumes that several slow signals travel retrogradely from the site of injury towards the cell
body. In order to initiate a response, a significant portion from a subset of these signals needs to arrive at the detection area. The figure depicts two
examples of a situation in which a significant portion of two out of four signals has already arrived: (A) S1 and S4, and (B) S2 and S3.
doi:10.1371/journal.pcbi.1000477.g005

Distance Measurement in Injured Neurons
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(Figure 2). As a consequence, time delays between the arrival of

signals from distal and proximal locations in simulations based on

the Deinhardt et al. data were smaller than in simulations based on

the Ross et al. data, and simulations based on the Deinhardt et al.

data were more susceptible to noise (Figure 7). Thus, in a system

configuration integrating five out of ten signals (a model

configuration based on multiple slow signals – see also Figure 5

and accompanying text above), simulations based on the Ross et

al. data yield satisfactory results over a broader combination of

distances and injury displacements than simulations based on

Deinhardt et al. ’s data (Figure 7). Nonetheless, increasing the

number of signals and detector sensitivities for the Deinhardt et al.

Figure 6. Improved performance of a multiple slow signals model. Integrating three out of six slow signals (A), resulted in a smoother graph
than in a single slow-signal simulation (B), with RMSD values of 1220 versus 356, respectively. Moreover, the number of successful measurements was
also higher, as reflected by the fraction of the graph above the horizontal 60 minutes cut-off plane. Both graphs correspond to a 10% detector
sensitivity threshold. Performance graphs for additional sensitivity permutations of the multiple slow signals model are shown in Figure S5.
doi:10.1371/journal.pcbi.1000477.g006

Distance Measurement in Injured Neurons
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data show the same trends for improvement as demonstrated for

simulations based on Ross et al. (data not shown). Thus, it is

reasonable to assume that optimal results can be obtained also

from relatively noisy motor behavior given a sufficient number of

signals and appropriate detector sensitivity.

Discussion

The distance between the site of injury and the cell body seems to

have a significant effect on a neuron’s ability to recover from

mechanical injury [14–17,33,34]. Furthermore, there are both

qualitative and quantitative aspects to this distance effect. In specific

neuron types, once distance between cell body and site of injury

drops below a certain lower threshold, no regeneration occurs,

whereas above this threshold the probability of regeneration

increases continuously with the increase in distance between the

cell body and site of injury [14,15]. In other neuronal populations, a

more proximal axotomy leads to greater regenerative response by

the cell body [5–7]. Despite the clear biological significance of injury

distance in neural tissues, the mechanism by which distance from

Figure 7. Comparing two dynein velocity data sets. The figure depicts the results of executing a model with a 10% sensitivity threshold
detector, based on the Schiavo lab dataset (A) and the Holzbaur lab dataset (B). Executions were performed for a model configuration that integrates
5 out of 10 slow signals.
doi:10.1371/journal.pcbi.1000477.g007

Distance Measurement in Injured Neurons

PLoS Computational Biology | www.ploscompbiol.org 10 August 2009 | Volume 5 | Issue 8 | e1000477



the site of injury is measured is unknown, and the degree of

precision required from such a measurement is not clear.

In this work, we aimed at providing a theoretical framework for

examining how intracellular distance measurement might be

accomplished at the cellular level within a neuron. Computer

simulations based on existing biological data were used to examine

these concepts, and to assess their plausibility. Nonetheless, we are

fully aware that the results and conclusions presented in this paper

were derived from models that are abstractions of the real biological

system, although we tried to keep speculations regarding the the

mechanisms driving the behavior of these models to the bare

minimum. We should also note some of the limitations of our

approach, thus for example dynein velocity might be influenced by

the type of cargo [35]. Although this was not factored into our

models, the analyses show that the differences between the two

velocity distributions used for model simulations do not affect key

qualitative behaviors of the system (Fig. 7). Another issue not

explicitly modeled is processivity of the dynein motor, namely the

propensity of the motor to stall, or to move over limited distances in

the opposite direction [28,36]. In the above described simulations,

signaling molecules were assigned a given velocity, and they

continued moving retrogradely with that velocity throughout the

entire simulation. We carried out initial tests of the effects of motor

pausing behaviors by running simulations at which in each time step

30% of the particles were randomly selected to remain in the same

position until the next time step (Figure S6). This modification did

not seem to have any significant effect on model performance. We

further examined the effect of switching velocities in the model by

re-assigning velocities to 10% of the molecules once per 100 time

steps (a typical simulation is of the order of 104 time steps). As can be

seen in Figure S7, this modification improved the performance of

the system in terms of failure percentage. This can easily be

understood by considering that if a given signaling molecule

undergoes velocity switches for sufficient time, eventually the

velocity of each molecule will converge to the average velocity of the

entire population, decreasing noise in the system. Thus, our main

findings without considering the possibility of velocity switching may

actually reflect a worst-case scenario.

Despite the above caveats, the modeling shows that in principle

a set of dynein-mediated signals can provide intracellular distance

information in an injured neuron. Furthermore, we did not have

to add any ‘‘external players’’ to or impose speculative

mechanisms on the model. Both the fast electrical signal and the

slow chemical signal have been characterized in the context of

nerve cell injury [21]. Moreover, such a mechanism might also

function in synapse to nucleus signaling in uninjured neurons if a

neurotransmitter or other synaptic stimulation elicits electrical

(fast) signals concomitantly with dynein-based (slow) signals. Such

a scenario has actually been reported for the neurotrophin BDNF,

which elicits both rapid electrophysiological signals [37] and

dynein-transported signaling endosomes [38]. NMDA receptor

signaling provides another example, transmitting both acute

electrophysiological signals [39] and activating macromolecule

transport by importins and dynein [40,41]. If such signaling

systems are indeed used to sense synapse to nucleus distance, this

would allow autonomic length measurements of neuronal

processes on an ongoing basis, which in turn could guide

metabolic output from neuronal cell bodies to processes.

The existence of cellular mechanisms that detect time delays

between signaling events has been shown to exist in diverse

biological systems (e.g. [42,43]). Even the expansion of the model

to multiple slow signals reflects the existence of multiple signaling

complexes which are retrogradely transported by dynein

[1,22,24]. The proposed model can fit a large range of nerve

lengths, covering a diversity of organism sizes. Finally, the models

allow two firm conclusions that might be testable experimentally in

the future; first, that use of multiple and partly redundant signaling

entities provides a more robust distance assessment mechanism

measurement than a single signal, and second that distance

detection resolution is proportional to neurite length (Figure 8). It

will be intriguing to follow experimental testing of these ideas in

the future.

Methods

Data fit
In order to produce a velocity distribution function, a data fit

procedure was applied to the two experimental datasets used in

this work. Both datasets were obtained from analyses of the

movement of individual molecular complexes – either in vitro [28]

or in live neurons [29]. In both cases, the authors reported their

results as the relative occurrence of given ranges of velocities (e.g.,

5% of the observations were at velocity ranges of 0–0.2 microns/

sec) over a non-exhaustive number of molecular complexes (148

discrete complexes in Reference [28], 126 in Reference [29]).

Thus, the reported velocity sets are not an ideal representation of

velocity distribution, but rather an experimentally limited

sampling. The curve fit procedure allowed us to compute a

continuous function which could then be used to randomly assign

velocities to the signaling molecules in each simulation round. For

this purpose, we used a built-in Matlab script (fminsearch) based on

the Nelder-Mead method [44,45]. Since our model does not

acount for zero velocities, we introduced a slight modification to

the Gaussian function, thus requiring the velocity distribution

function to intersect with (0,0). The curve fit function that was used

was of the form:

Fit~a1X � e
{

x{a2
a3

� �2

Thus, for the velocity X = 0, the function yields zero occurrences.

Goodness-of-fit was assessed by calculating the root mean

square deviation (RMSD) between the observed data points and

the values predicted by the calculated function:

RMSD~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i~1

FitValuei{ObservedValueið Þ2
s

where the values are given in terms of percentage-of-occurrence of

given dynein velocities (see Fig. 2). This measurement provides an

estimate for the average distance between a given data point and

the calculated curve.

Fit results
For the Ross et al. data set, the following results were obtained:

Fit~56:4651X � e{ x{0:2738
0:3363ð Þ2

RMSD = 3.1%

For the Deinhardt et al. data the following results were

obtained:

Fit~0:2940X � e{ xz0:6657
1:7231ð Þ2

RMSD = 0.61%
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Figure 8. Minimal displacement detection as a function of total distance. In order to assess the best resolution at which distances can be
detected for various axon lengths, we refer to the biological cutoff measurement described above. For each axon length, the corresponding minimal
displacement value for which the time difference was above the cutoff was calculated. Results are presented in terms of the percentage of a given
axon length that can be detected (rather than absolute distance values). Starting from an axonal length of ,4 cm, the system can detect
displacements which are 5–10% of the total axon length. Results are shown for measurements based both on the Ross et al. data (blue) and on the
Deinhardt lab data (red).
doi:10.1371/journal.pcbi.1000477.g008
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Model construction
Molecular transport complexes are represented as moving

particles. Each such particle has a location in space, and it can

move according to its velocity. This approach also allows extension

of the model in the future to include additional molecular

properties and experimental data. In our model, a signal is

composed of 500 moving particles. In order for a signal to achieve

its effect, a minimal fraction of the signal should arrive at the

detector, this is presented as detector sensitivity in % in the results

section. The influence of various sensitivity thresholds was

examined during simulations.

Simulation runs
All simulation scripts were written in MATLAB, and simulation

executions were performed on the Wiccopt cluster (hosted by The

Weizmann Institute’s computing center) to allow parallel executions

of simulations which varied in initial parameter settings. The Cluster’s

nodes consist of machines with: 2 quadcore xeon CPU’s, 1 quadcore

xeon CPU, 2 dualcore AMD opteron, and 1 dualcore AMD opteron.

Supporting Information

Figure S1 Systematic analysis of total distance and injury

displacement combinations. The X axis represents total distance

from cell body (mm), the Y axis represents injury displacement (mm),

and the Z axis represents the minimal (i.e. worst case) Dt22Dt1 time-

difference value (in minutes) out of 100 simulation repeats obtained

for each X–Y combination. The figure shows results for a 20%

sensitivity threshold in a multiple-signal based model.

Found at: doi:10.1371/journal.pcbi.1000477.s001 (0.34 MB PDF)

Figure S2 An ‘‘ideal’’ graph. Each data point represents the mean

Dt22Dt1 time-difference value (in minutes) of 100 simulation

repeats obtained for each X–Y combination. The figure shows data

for a 20% sensitivity threshold in a multiple-signal based model.

Found at: doi:10.1371/journal.pcbi.1000477.s002 (0.15 MB PDF)

Figure S3 The influence of detector sensitivity threshold on a

two-signals model performance. Simulations were run for a wide

range of detector sensitivity thresholds, revealing an optimal

performance at the range of 10%–20%. RMSD values are

depicted for each model configuration.

Found at: doi:10.1371/journal.pcbi.1000477.s003 (1.27 MB PDF)

Figure S4 The influence of detector sensitivity threshold on a two-

detectors model performance. A wide range of detector sensitivity

combinations was examined, but failed to exceed a success rate of 35%

in distinguishing between proximal and distal injuries. (A) Depicted

examples include the following detector sensitivity threshold combina-

tions: 5% and 60%, 5% and 80%, 10% and 70%, and 10% and 60%.

(B) Failure percentage in various combinations of two detectors. The X

axis (left) represents the sensitivity threshold of the more sensitive

detector (Detector 1), whereas the Y axis represents the sensitivity

threshold of the less sensitive detector (Detector 2). The lowest failure

percentage was received for the 5%-and-80% configuration. Config-

urations in which the two detectors had relatively similar sensitivity

threshold (back diagonal) gave the poorest performance.

Found at: doi:10.1371/journal.pcbi.1000477.s004 (1.51 MB PDF)

Figure S5 Influence of detector sensitivity on performance of the

multiple signals model. Simulations were run for a wide range of

detector sensitivity thresholds, revealing an optimal performance

in the range of 10%–40%. RMSD values are depicted for each

model configuration. Note that not only did model extension

improve the performance of a given detector sensitivity threshold,

but moreover the worst performing configuration of the multiple

signals system was still better than the best performance of the

single slow signal system. In addition, the range of ‘‘optimal

detectors’’ in a multiple-signals system is wider - 10–40%

compared to 10–20% for the original system (see Fig. S3).

Found at: doi:10.1371/journal.pcbi.1000477.s005 (1.44 MB PDF)

Figure S6 Evaluation of the effect of dynein pauses in the two-

signals model. The velocity distributions depicted in most of our

analyses refer only to positive dynein velocities, although it has

been shown that dynein movement may also include pauses

(velocity = 0), as well as limited movements in the opposite

direction (i.e., negative velocity). We therefore ran a set of

simulations in which 30% of the particles were randomly assigned

to pause at any given time step. Paused particles resumed

movement at their originally assigned velocity at the subsequent

time step. Panels A and B depict the results of simulations for a

model configuration with one slow signal and a detector sensitivity

of 20%, without pauses (A) and with pauses (B). The time delays

measured between proximal and distal injury sites were higher in

simulations incorporating dyenin pauses, although the failure

percentage of the system revealed no significant differences

between these two model configurations (C). Three repetitions

were performed for each model configuration.

Found at: doi:10.1371/journal.pcbi.1000477.s006 (0.41 MB PDF)

Figure S7 Evaluating the effects of switching dynein velocities.

In previous simulations, velocities are assigned at the beginning of

each run, and a given molecule will travel with its initially assigned

velocity throughout the entire simulation (A). Allowing 10% of the

molecules to switch velocities once per 100 time steps during the

simulations improved model performance (B). The effect of

velocity switching, depicted in terms of failure percentage, is

statistically significant for all tested sensitivity thresholds (C).

Comparison of failure percentages between fixed and switching

velocities is provided for two model configurations: a single slow

signal configuration, and a multiple slow signals configuration

(integrating 3 out of 6 slow signals). Panels (A) and (B) depict an

analysis of total-distance/injury-displacement combinations for

detector sensitivity threshold of 20% under fixed velocities

simulations and switching velocities simulations, respectively.

Found at: doi:10.1371/journal.pcbi.1000477.s007 (0.40 MB PDF)

Author Contributions

Conceived and designed the experiments: NK YP MF. Performed the

experiments: NK. Analyzed the data: NK. Wrote the paper: NK YP MF.

References

1. Hanz S, Fainzilber M (2006) Retrograde signaling in injured nerve - the axon

reaction revisited. J Neurochem 99: 13–19.

2. Rossi F, Gianola S, Corvetti L (2007) Regulation of intrinsic neuronal properties
for axon growth and regeneration. Prog Neurobiol 81: 1–28.

3. Lu P, Tuszynski MH (2008) Growth factors and combinatorial therapies for
CNS regeneration. Exp Neurol 209: 313–320.

4. Benowitz L, Yin Y (2008) Rewiring the injured CNS: lessons from the optic

nerve. Exp Neurol 209: 389–398.

5. Mason MR, Lieberman AR, Anderson PN (2003) Corticospinal neurons up-

regulate a range of growth-associated genes following intracortical, but not

spinal, axotomy. Eur J Neurosci 18: 789–802.

6. Zagrebelsky M, Buffo A, Skerra A, Schwab ME, Strata P, et al. (1998) Retrograde

regulation of growth-associated gene expression in adult rat Purkinje cells by

myelin-associated neurite growth inhibitory proteins. J Neurosci 18: 7912–7929.

7. Buffo A, Carulli D, Rossi F, Strata P (2003) Extrinsic regulation of injury/growth-related

gene expression in the inferior olive of the adult rat. Eur J Neurosci 18: 2146–2158.

Distance Measurement in Injured Neurons

PLoS Computational Biology | www.ploscompbiol.org 13 August 2009 | Volume 5 | Issue 8 | e1000477



8. Kenney AM, Kocsis JD (1998) Peripheral axotomy induces long-term c-Jun

amino-terminal kinase-1 activation and activator protein-1 binding activity by c-
Jun and junD in adult rat dorsal root ganglia In vivo. J Neurosci 18: 1318–1328.

9. Kenney AM, Kocsis JD (1997) Timing of c-jun protein induction in lumbar

dorsal root ganglia after sciatic nerve transection varies with lesion distance.
Brain Res 751: 90–95.

10. Fernandes KJ, Fan DP, Tsui BJ, Cassar SL, Tetzlaff W (1999) Influence of the
axotomy to cell body distance in rat rubrospinal and spinal motoneurons:

differential regulation of GAP-43, tubulins, and neurofilament-M. J Comp

Neurol 414: 495–510.
11. Tsujino H, Kondo E, Fukuoka T, Dai Y, Tokunaga A, et al. (2000) Activating

transcription factor 3 (ATF3) induction by axotomy in sensory and motoneu-
rons: A novel neuronal marker of nerve injury. Mol Cell Neurosci 15: 170–182.

12. Doster SK, Lozano AM, Aguayo AJ, Willard MB (1991) Expression of the
growth-associated protein GAP-43 in adult rat retinal ganglion cells following

axon injury. Neuron 6: 635–647.

13. You S-W, So K-F, Yip HK (2000) Axonal Regeneration of Retinal Ganglion
Cells Depending on the Distance of Axotomy in Adult Hamsters. Invest

Ophthalmol Vis Sci 41: 3165–3170.
14. Zottoli SJ, Hangen DH, Faber DS (1984) The axon reaction of the goldfish

mauthner cell and factors that influence its morphological variability. J Comp

Neurol 230: 497–516.
15. Cancalon PF (1987) Survival and subsequent regeneration of olfactory neurons

after a distal axonal lesion. J Neurocytol 16: 829–841.
16. Cragg BG (1970) What is the signal for chromatolysis? Brain Res 23: 1–21.

17. Lieberman AR (1971) The axon reaction: a review of the principal features of
perikaryal responses to axon injury. Int Rev Neurobiol 14: 49–124.

18. Kholodenko BN (2003) Four-dimensional organization of protein kinase

signaling cascades: the roles of diffusion, endocytosis and molecular motors.
J Exp Biol 206: 2073–2082.

19. Markevich NI, Tsyganov MA, Hoek JB, Kholodenko BN (2006) Long-range
signaling by phosphoprotein waves arising from bistability in protein kinase

cascades. Mol Syst Biol 2: 61.

20. Stelling J, Kholodenko BN (2009) Signaling cascades as cellular devices for
spatial computations. J Math Biol 58: 35–55.

21. Perlson E, Hanz S, Medzihradszky KF, Burlingame AL, Fainzilber M (2004)
From snails to sciatic nerve: Retrograde injury signaling from axon to soma in

lesioned neurons. J Neurobiol 58: 287–294.
22. Abe N, Cavalli V (2008) Nerve injury signaling. Curr Opin Neurobiol 18:

276–283.

23. Howe CL, Mobley WC (2004) Signaling endosome hypothesis: A cellular
mechanism for long distance communication. J Neurobiol 58: 207–216.

24. Ibanez CF (2007) Message in a bottle: long-range retrograde signaling in the
nervous system. Trends Cell Biol 17: 519–528.

25. Howe CL (2005) Modeling the signaling endosome hypothesis: why a drive to

the nucleus is better than a (random) walk. Theor Biol Med Model 2: 43.
26. Mandolesi G, Madeddu F, Bozzi Y, Maffei L, Ratto GM (2004) Acute

physiological response of mammalian central neurons to axotomy: ionic
regulation and electrical activity. Faseb J 18: 1934–1936.

27. Mitchell CS, Lee RH (2009) A quantitative examination of the role of cargo-

exerted forces in axonal transport. J Theor Biol 257: 430–437.

28. Ross JL, Wallace K, Shuman H, Goldman YE, Holzbaur EL (2006) Processive

bidirectional motion of dynein-dynactin complexes in vitro. Nat Cell Biol 8:

562–570.

29. Deinhardt K, Salinas S, Verastegui C, Watson R, Worth D, et al. (2006) Rab5

and Rab7 control endocytic sorting along the axonal retrograde transport

pathway. Neuron 52: 293–305.

30. Hanz S, Perlson E, Willis D, Zheng JQ, Massarwa R, et al. (2003) Axoplasmic

importins enable retrograde injury signaling in lesioned nerve. Neuron 40:

1095–1104.

31. Perlson E, Hanz S, Ben-Yaakov K, Segal-Ruder Y, Seger R, et al. (2005)

Vimentin-dependent spatial translocation of an activated MAP kinase in injured

nerve. Neuron 45: 715–726.

32. Yudin D, Hanz S, Yoo S, Iavnilovitch E, Willis D, et al. (2008) Localized

regulation of axonal RanGTPase controls retrograde injury signaling in

peripheral nerve. Neuron 59: 241–252.

33. Loewy AD, Schader RE (1977) A quantitative study of retrograde neuronal

changes in Clarke’s column. J Comp Neurol 171: 65–81.

34. Watson WE (1968) Observations on the nucleolar and total cell body nucleic

acid of injured nerve cells. J Physiol 196: 655–676.

35. Mallik R, Carter BC, Lex SA, King SJ, Gross SP (2004) Cytoplasmic dynein

functions as a gear in response to load. Nature 427: 649–652.

36. Gross SP, Welte MA, Block SM, Wieschaus EF (2000) Dynein-mediated cargo
transport in vivo. A switch controls travel distance. J Cell Biol 148: 945–956.

37. Rose CR, Blum R, Kafitz KW, Kovalchuk Y, Konnerth A (2004) From

modulator to mediator: rapid effects of BDNF on ion channels. Bioessays 26:

1185–1194.

38. Ha J, Lo KW, Myers KR, Carr TM, Humsi MK, et al. (2008) A neuron-specific

cytoplasmic dynein isoform preferentially transports TrkB signaling endosomes.
J Cell Biol 181: 1027–1039.

39. Saha RN, Dudek SM (2008) Action potentials: to the nucleus and beyond. Exp

Biol Med (Maywood) 233: 385–393.

40. Thompson KR, Otis KO, Chen DY, Zhao Y, O’Dell TJ, et al. (2004) Synapse to

nucleus signaling during long-term synaptic plasticity; a role for the classical

active nuclear import pathway. Neuron 44: 997–1009.

41. Dieterich DC, Karpova A, Mikhaylova M, Zdobnova I, Konig I, et al. (2008)

Caldendrin-Jacob: a protein liaison that couples NMDA receptor signalling to

the nucleus. PLoS Biol 6: e34.

42. Ambros V (1999) Cell cycle-dependent sequencing of cell fate decisions in

Caenorhabditis elegans vulva precursor cells. Development 126: 1947–1956.

43. Lenschow DJ, Walunas TL, Bluestone JA (1996) CD28/B7 system of T cell

costimulation. Annu Rev Immunol 14: 233–258.

44. Nelder JA, Mead R (1965) A Simplex Method for Function Minimization. The

Computer Journal 7: 308–313.

45. Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence Properties

of the Nelder-Mead Simplex Method in Low Dimensions. SIAM Journal of

Optimization 9: 112–147.

Distance Measurement in Injured Neurons

PLoS Computational Biology | www.ploscompbiol.org 14 August 2009 | Volume 5 | Issue 8 | e1000477


