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B-cell epitopes (BCEs) are a set of specific sites on the surface of an antigen that binds to
an antibody produced by B-cell. The recognition of BCEs is a major challenge for drug
design and vaccines development. Compared with experimental methods, computational
approaches have strong potential for BCEs prediction at much lower cost. Moreover,
most of the currently methods focus on using local information around target residue
without taking the global information of the whole antigen sequence into consideration.
We propose a novel deep leaning method through combing local features and global
features for BCEs prediction. In our model, two parallel modules are built to extract local
and global features from the antigen separately. For local features, we use Graph
Convolutional Networks (GCNs) to capture information of spatial neighbors of a target
residue. For global features, Attention-Based Bidirectional Long Short-Term Memory (Att-
BLSTM) networks are applied to extract information from the whole antigen sequence.
Then the local and global features are combined to predict BCEs. The experiments show
that the proposed method achieves superior performance over the state-of-the-art BCEs
prediction methods on benchmark datasets. Also, we compare the performance
differences between data with or without global features. The experimental results show
that global features play an important role in BCEs prediction. Our detailed case study on
the BCEs prediction for SARS-Cov-2 receptor binding domain confirms that our method
is effective for predicting and clustering true BCEs.

Keywords: Bi-LSTM, GCN, SARS-CoV-2, structure-based, attention, B-cell epitopes prediction
1 INTRODUCTION

The humoral immune system protects the body from foreign objects like bacteria and viruses by
developing B-cells and producing antibodies (1). Antibodies play a crucial role in immune response
through recognizing and binding the disease-causing agents, called antigen. B-cell epitopes (BCEs)
are a set of certain residueson the antigen surface that are bound by an antibody (2). BCEs of protein
antigens can be roughly classified into two categories, linear and conformational (3). Linear BCEs
consist of residues that are contiguous in the antigen primary sequence, while the conformational
BCEs comprise residues which are not contiguous in sequence but folding together in three-
org July 2022 | Volume 13 | Article 8909431
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dimensional structure space. About 10% of BCEs are linear and
about 90% are conformational (4). In our study, we focus on
conformational BCEs of protein antigens.

The localization and identification of epitopes is of great
importance for the development of vaccines and for the design of
therapeutic antibodies (5, 6). However, traditional experimental
methods to identify BCEs are still expensive and time-consuming
(7). Therefore, great efforts for computational approaches based
on machine learning algorithms have been developed to predict
BCEs. These approaches can be divided in two categories:
sequence-based and structure-based methods. As the name
implies, the sequence-based approaches predict BCEs only
based on the antigen sequence, while the structure-based
approaches also consider its structural features. Currently,
various structure-based predictors have been developed to
predict and analyze BCEs including BeTop (8), Bpredictor (9),
DiscoTope-2.0 (10), CE-KEG (11), CeePre (12), EpiPred (13),
ASE_Pred (14) and PECAN (15).

Some of those methods improve model performance by
introducing novel features such as statistical features in BeTop,
thick surface patch in Bpredictor, new spatial neighborhood
definition and half-sphere exposure in DiscoTope-2.0,
knowledge-based energy and geometrical neighboring residue
contents in CE-KEG, B factor in CeePre and surface patches in
ASE_Pred. Except novel features, antibody structure information
and suitable model also improve the performance of BCEs
prediction. EpiPred utilizes antibody structure information to
annotate the epitope region and improves global docking results.
PECAN represents antigen or antibody structure as a graph and
employ graph convolution operation on them to make
aggregation of spatial neighboring residues. An additional
attention layer is used to encode the context of the partner
antibody in PECAN for predicting the antibody-specific BCEs
rather than antigenic residues. Because antibody structure
information is required, these methods are not applicable to a
novel virus when its antibody is unknown. However, all the
currently structure-based BCEs prediction methods only use
local information around target amino acid residue without
considering the global information of the whole antigen sequence.

Global features have been proved to be effective in some
biology sequence analysis models such as protein-protein
interaction sites prediction model DeepPPISP (16) and protein
phosphorylation sites prediction model DeepPSP (17). However,
which model is used for extracting global features is important.
DeepPPISP utilizes TextCNNs processing the whole protein
sequence for protein-protein interaction sites prediction.
DeepPSP employs SENet blocks and Bi-LSTM blocks to extract
the global features for protein phosphorylation sites. In our
study, we take advantage of the Attention based Bidirectional
Long Short-Term Memory (Att-BLTM) networks. Att-BLTM
networks are first introduced for relation classification in the
field of natural language processing (NLP) (18). Att-BLSTM
networks are also employed for some chemical and biomedical
text processing tasks including chemical named entity
recognition (19) and biomedical event extraction (20). Given
the excellent performance of Att-BLSTM, we combine it with the
Frontiers in Immunology | www.frontiersin.org 2
novel deep learning model Graph Convolution Networks
(GCNs) (21) for BCEs prediction.

In this study, we propose a structure-based BCEs prediction
model utilizing both antigen local features and global features.
The source code of our method is available at https://github.com/
biolushuai/GCNs-and-Att-BLSTM-for-BCEs-prediction. By
combining Att-BLSTM and GCNs, both local and global
features are used in our model to improve its prediction
performance. We implement our model on some public
datasets and the results show that global features can provide
useful information for BCEs prediction.
2 MATERIALS AND METHODS

2.1 Datasets
In order to make fair comparison, we use the same antibody-
antigen complexes as PECAN (15). It should be noted that those
bound conformations are only used to identify epitope residues
and no-epitope residues. Same as previous works (13, 15),
residues are labeled as part of the BCEs if they have any heavy
atom within 4.5Å away from any heavy atom on the antibody. As
our model is partner independent, it only takes antigen structure
as input for predicting BCEs.

Those complexes are from two separate datasets: EpiPred (13)
and Docking Benchmarking Dataset (DBD) v5 (22). The 148
antibody-antigen complexes from EpiPred share no more than
90% pairwise sequence identity. Among them, 118 complexes are
used for training and 30 for testing. For constructing a separate
validation set, PECAN filters the antibody-antigen complexes in
DBD v5 and selects 162 complexes which have no more than
25% pairwise sequence identity to every antigen in the testing set.
Antigens in training set are used for training our model, antigens
in validation set are used to tune the hyperparameters of our
proposed method, and antigens in testing set are uesd for
evaluation our model and making comparison with competing
methods. The size of datasets and number of BCEs are shown
in Table 1.

2.2 Input Features Representation
For global features, we construct the input antigen sequence as a
set of sequential residues:

S = ½r1, r2, r3,⋯, ri,⋯, rl�T , S ∈ R l ∗ dð Þ (1)

where each residue is represented as a vector ri⋲Rd corresponding
to the i-th residue in the antigen sequence, l is the antigen sequence
length, and d is the residue feature dimension.

For local features, each antigen structure is represented as a
graph as related studies (13, 15, 23). The residue is a node in the
protein graph whose features represent its properties. For residue
ri, the local environment Ni consists of k spatial neighboring
residues:

Ni = n1,⋯, nkf g (2)
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And, { rn1,⋯,rnk } are the neighbors of residue ri which define
the operation field of the graph convolution. The distance
between ri and are rnk calculated by averaging the distance
between non-hydrogen atoms in ri and rnk. In this study, node
features and edge features in antigen graph are used for
characterizing the local environment of target residue. The
node features are represented as a 128-dimension vector
encoding important properties as in our earlier work (24). All
those node features can be divided into two classes: sequence-
based and structure-based. Sequence-based features consist of
the one-hot encoding of the amino acid residue type, seven
physicochemical parameters (25) and evolutionary information.
We utilize python script to encode the residue type and
physicochemical parameters of each antigen sequence. The
features that contain evolutionary information such as
position-specific scoring matrix (PSSM) and position-specific
frequency matrix (PSFM) are returned by running PSI-BLAST
(26) against nr database (27) using three iterations and an E-
value threshold of 0.001. The structure-based features are
calculated for each antigen structure isolated from the
antibody-antigen complex by DSSP (28), MSMS (29), PSAIA
(30) and Biopython (31).

The edge features between two residues ri and rj are
representing as eij. eij reflects the spatial relationships including
the distance and angle between residue pair ri and rj and it is
computed by their Ca (23).

2.3 Model Architecture
Our model solves a binary classification problem: judging an
antigen residue binding to antibody or not. As shown in
Figure 1, our model consists of two parallel parts: GCNs and
Att-BLSTM networks. The former captures local features of
target antigen residue from its spatial neighbors by using graph
convolutional layer, and the latter extracts global features from
the whole antigen sequence by using Bi-LSTM layer and
attention layer. The outputs are concatenated and fed to fully
connected layer to predict the binding probability for each
antigen residue.

2.3.1 Graph Convolutional Networks
Figure 2 shows the flow of convolution operation using the
information of nodes and edges. At first, each protein is
represented as a graph, and a residue is a node in the graph.
The local environment of the target residue is a set of residues
which are adjacent in space. And then, node and edge are
represented by a vector as our previous work (24). Actually,
the graph convolution operation on the local environment of
target residue is the aggregation of neighboring residues and its
edges. Every node in the graph is updated through repeated
Frontiers in Immunology | www.frontiersin.org 3
aggregation operation. Based on edges are used or not, we utilize
two graph convolution operators in this study:

zi = s (Wtri +
1
Nij j oj∈Ni

Wnrj + bn) (3)

zi = s (Wtri +
1
Nij j oj∈Ni

Wnrj +
1
Nij j oj∈Ni

Weeij + bne) (4)

Where Ni is the receptive field, i.e. a set of neighbors of target
residue ri, Wt is the weight matrix associated with the target
node, Wn is the weight matrix associated with neighboring
nodes, s is a non-linear activation function, and bn is a bias
vector. Formula 3 groups the node information in receptive filed.
Formula 4 utilizes not only node features but also edge features
between two residues, where We is the weight matrix associated
with edge features, eij represents the edge features between
residue ri and rj, and bne is a vector of biases.

2.3.2 Attention-Based Bidirectional Long Short-Term
Memory Networks
Besides local features, global features are crucial in BCEs
prediction as well. In our work, Attention-based Bidirectional
Long Short-Term Memory (Att-BLSTM) networks are used to
capture global sequence information of input antigen sequence.
Currently, Att-BLSTM has been used for processing chemical
and biomedical text (19, 20). It can capture the most important
semantic information in a sequence. However, its advantage has
not been exploited in biology sequence analysis such as
BCEs prediction.

Figure 3 shows the architecture of Att-BLSTM. At first, the
input antigen matrix S is fed into a Long Short-Term Memory
(LSTM) network which learns long-range dependencies in a
sequence (32, 33). Typically, the structure of an LSTM unit at
each time t is calculated by the following formulas:

it = s Wi ∗ ht−1, rt½ � + bið Þ (5)

ft = s Wf ∗ ht−1, rt½ � + bf
� �

(6)

ot = s Wo ∗ ht−1, rt½ � + boð Þ (7)

ct = ft ∗ ct−1 + it ∗ tanh Wc ∗ ht−1, rt½ � + bcð Þð Þ (8)

ht = ot ∗ tanh ctð Þ (9)

where tanh is the element-wise hyperbolic tangent, s is the
logistic sigmoid function, rt, ht-1 and ct-1 are inputs, and ht and ct
are outputs. There are three gates consisting of one input gate it
with corresponding weightmatrix Wi, and a bias bi; one forget
gate ft with corresponding weight matrix Wf, and a bias bf one
output gate ot with corresponding weight matrix Wo, and a
bias bo.

Bidirectional LSTM (Bi-LSTM) can learn forward and
backward information of input sequence. As shown in
Figure 2, the networks contain two sub-networks for the left
TABLE 1 | Summary of datasets.

Datasets NO. of Complexes NO. of BCEs NO. of non-BCEs

Training Set 103 2708 19567
Validation Set 29 839 5553
Testing Set 30 758 6434
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and right sequence contexts. For the i-th residue in the input
antigen sequence, we combine the forward pass output hi

!
and

backward pass output h i by concatenating them:

h
0
i  = ½ h
!

i ⊕ h
!

i�

The output of Bi-LSTM layer is matrix H which consists of all
output vectors of input antigen residues: H =  ½h01, h

0
2, h

0
3,…, h

0
i
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,…, h
0
l�T ,H ∈ R(l ∗ 2d) ,where l is the input antigen sequence

length, and d is the residue features dimension.
Attention mechanism has been used in a lot of biology tasks

ranging from compound-protein interaction prediction (34),
paratope prediction (15) and protein structure prediction (35).
The attention layer in our model employs a classical additive
model in which a is the attention weight. After attention layer of
Att-BLSTM, the novel representation S′ as well as the output yg of
FIGURE 2 | Model architecture of graph convolutional networks consisting of four parts: input, graph representation, graph convolution and output. In the input, the
target residue is red and the local environment of the target residue is in a red triangle. For graph representation, node vector is blue and edge vector is green. For
graph convolution, if edge vector is used, it corresponds to ^#the formula 4. Otherwise, it corresponds to the formula 3. In the output, we use the Sigmoid activation function.
FIGURE 1 | Model architecture of proposed method in this study.
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the input antigen is formed by a weighted sum of those output
vectors H:

M = tanh Hð Þ (11)

a = softmax WmM
� �

(12)

yg = S0 = HaT (13)

2.3.3 Fully-Connected Networks
As shown in Figure 1, the local features zi extracted by GCNs
and the global features yg derived from Att-BLSTM networks are
concatenated. And then, they are fed to fully-connected layer.
The calculation of probability yi for each input antigen residue
belonging to BCEs is shown as:

yi = f W yg ⊕ zi
� �

+ b
� �

(14)

2.4 Performance Evaluation
In order to make comparison with state-of-the-art structure-
based BCEs predictors, we use three evaluation metrics to
evaluate the performances of the BCEs prediction models:
Precision, Recall and Matthews Correlation Coefficient (MCC)
which are shown as followings:

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)
Frontiers in Immunology | www.frontiersin.org 5
MCC =
TP ∗TN − FP ∗ FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp (17)

where, TP (True Positive) is the number of interacting residues
that are correctly predicted as BCEs, FP (False Positive) is the
number of non-interacting residues that are falsely predicted as
BCEs, TN (True Negative) denotes the number of non-
interacting sites that are identified correctly, and FN (False
Negative) denotes the number of interacting sites that are
identified falsely. Precision and recall reflect the prediction
tendencies of classifiers. Recall indicates the percentage of
correct predictions for positive and negative samples. Precision
shows the percentage of correct positive samples. There is a
trade-off between precision and recall. Recall favors positive-bias
predictions, while precision favors negative predictions.

Because precision, recall and MCC are threshold-dependent,
we also utilize the area under the receiver operating
characteristics curve (AUC ROC) and precision-recall curve
(AUC PR) which gives a threshold-independent evaluation on
the overall performance. Moreover, AUC PR is more sensitive
than AUC ROC on imbalanced data (36). And, the datasets used
for BCEs prediction are roughly 90% negative class. Therefore,
we take AUC PR as the most import metric for model evaluation
and selection.

It should be noted that the precision, recall and MCC shown
in Table 2 are averaged over all antigens in the testing set. And,
the AUC ROC and AUC PR reported in Figures 4, 5 are
calculated among all antigen residues in the testing set.

2.5 Implementation Details
We implement our model using PyTorch. The training details of
these neural networks are as follows: optimization: Momentum
FIGURE 3 | Model architecture of attention-based bidirectional long short-term memory networks which consists of four parts: input, Bi-LSTM layer, Attention layer and output.
July 2022 | Volume 13 | Article 890943
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optimizer with Nesterov accelerated gradients; learning rate: 0.1,
0.01, 0.001 and 0.0001; batch size: 32, 64 and 128; dropout:
0.2,0.5 and 0.7; spatial neighbors in the graph: 20; number of
LSTM layers in Att-BLSTM networks: 1, 2 or 3; number of graph
convolution networks layers: 1, 2 or 3. Training time of each
epoch varies from roughly 1 to 3 minutes depending on network
depth, using a single NVIDIA RTX2080 GPU.

For each combination, networks are trained until the
performance on the validation set stops improving or for a
maximum of 250 epochs. Graph convolution networks have
the following number of filters for 1, 2 and 3 layers, respectively:
(256), (256, 512), (256, 256, 512). All weight matrices are
initialized as (23) and biases are set to zero.
3 RESULTS AND DISCUSSION

3.1 The Effects of Different Network
Combinations
In this section, we focus on which network combinations are most
effective. The AUC ROC and AUC PR are shown in Figure 4.

First, we train our model of 1-layer Att-BLSTM with varying
GCNs depths with or without residue edge features. From
Figures 4, we observe that the 2-layer GCNs with residue edge
features perform best (AUC ROC = 0.804, AUC PR = 0.376).
This draws the same conclusion with our earlier work for
antibody paratope prediction (24). We also find that residue
edge features can always provide better performance as the
GCNs depths vary. The same results are found in protein
interface prediction task using GCNs as well (23).

Second, 2-layer GCNs and Att-BLSTM networks of different
depths are combined in our model. Figures 4 show the
performance evaluated by AUC ROC and AUC PR. It can be
found that the combination of 1-layer Att-BLSTM network and
2-layer GCNs with residue edge features still has the best results.
In general, the deeper the Att-BLSTM networks grow, the results
get worse. As discussed in DeepPPISP (16), global features may
cover the relationships among residues of longer distances.
However, as Att-BLSTM networks become deeper, these
relationships may become weaker.

In summary, our model with 2-layes GCNs and 1-layer Att-
BLSTM network performs best, and it is the proposed model in
this paper and used for comparison with competing methods in
the following sections.

3.2 The Effects of Global Features
The global feature has been shown to improve the performance
of protein-protein interaction sites prediction in DeepPPISP (16)
Frontiers in Immunology | www.frontiersin.org 6
and protein phosphorylation sites prediction in DeepPSP (17). In
order to verify whether global features are effective in BCEs
prediction as well, we remove the Att-BLSTM networks in our
model for comparison. As shown in Figure 4, label G0 means
there is only GCNs in our model, and no global features are used.
Without global features, the AUC ROC is 0.787, which is lower
than the proposed model G1NE2 (also lower thanG2NE2, but
slightly better than G3NE2). Without global features, the AUC
PR is 0.335, which is significantly worse than the proposed model
(but slightly better than G2NE2 and G3NE2). The model without
global features performs worse on both AUC ROC and AUC PR
metrics than our proposed model. Therefore, global features
improve the performance of our model for BCEs prediction.

However, in our experiments, models with global features are
not always superior to models without global features. Similar
observation has been found in DeepPSP, but DeepPPISP reaches
a contrary conclusion. This situation might be caused by
different models processing global features. In DeepPPISP, a
simple fully-connected network is used, and in DeepPSP, SENet
blocks and Bi-LSTM blocks are used.

3.3 The Effects of Different Types of Input
Features
Different types of input features (sequence and structure-based)
play different roles in our model. The input features can be
divided into four types: (a) residue type one-hot encoding at
alphabetical order, (b) evolutionary information of antigen
sequence such as PSSM and PSFM, (c) seven physicochemical
parameters returned by machine leaning model and (d)
structural features consisting of solvent accessibility, secondary
structure, dihedral angle, depth, protrusion and B-value of every
residue calculated by various bioinformatic tools. To discover
what role each feature typeplays in our method, we delete each
input feature type and compare their performances on our
proposed model (G1NE2, i.e., 1-layer Att-BLSTM network and
2-layersGCNs with residue edge features). Figure 5 shows the
experimental results. As Figure 5 shows, the AUC ROC without
features b is 0.754, significantly lower than the best performance
0.804. The AUC PR without features b drops biggest from 0.376
(all features) to 0.289. It indicates that evolutionary information
profile features (feature type b) are most important in our model
for BCEs prediction. The model using all the features still
performs best on both AUC ROC and AUC PR metrics.

3.4 Comparison With Competing Methods
To evaluate the performance of our method for BCEs prediction,
we compare our proposed model with three competing
structure-based BCEs prediction methods: DiscoTope-2.0 (10),
EpiPred (13) and PECAN (15). Note that these methods all used
local features but did not consider global features. The precision,
recall and MCC calculated in this study using a threshold 0.116
at which our method achieves best performance on the testing
set. Table 2 shows the experimental results of our method and
the competing models. The results on three competing models
are taken from (13). Although our model gets lower recall than
PECAN, it is higher than all other competing methods on
precision and MCC.
TABLE 2 | Performances of BCEs prediction methods.

Method Precision Recall MCC

DiscoTope-2.0 0.214 0.110 0.096
EpiPred 0.136 0.436 0.156
PECAN 0.154 0.691 NA
Our Method 0.657 0.671 0.319
Best values are in bold.
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We also compare the results of each antigen in testing set with
DiscoTope-2.0 and EpiPred. The results presented of DiscoTope-
2.0 and EpiPred in Table S1 are taken form (13). The values in
bold indicate the best prediction result. We find that our model
achieves best precision on 26 antigens, best recall on 20 antigens
and best MCC on 20 antigens of all 30 antigens in testing set. We
also observe that our model produces usable prediction even for
the long antigen target as the global features provide information
from long distance effect.
Frontiers in Immunology | www.frontiersin.org 7
3.5 Case Study
We also employ our method for predicting BCEs of SARS-Cov-2
which caused the coronavirus disease 2019 (COVID-19) pandemic.
The entry of SARS-CoV-2 into its target cells depends on binding
between the Receptor Binding Domain (RBD) of the viral Spike (S)
protein and its cellular receptor, angiotensin-converting enzyme 2
(ACE2) (37). A number of neutralizing antibodies (NAbs) are
reported and most bind the RBD of the S protein. According to
the published works and determined complexes, NAbs target
BA

FIGURE 5 | ROC and PR curve of different combinations of input features among all antigen residues in the testing set. (A) ROC curve. (B) PR curve.
B

C D

A

FIGURE 4 | ROC and PR curve of different network combinations among all antigen residues in the testing set. (A, B) ROC and PR curve using different networks
processing local features. (C, D) ROC and PR curve of the using different networks processing gobal features.
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SARS-CoV-2 with various conformations and neutralization
mechanisms. These NAbs can be divided into five types (type 1 to
type 5) based on different epitopes they target (38). Table 3 shows
the five types of antibodies and the neutralization mechanisms of
them. And, we randomly select a representative complex structure
from Protein Data Bank (PDB) (33) of each type for predicting the
corresponding five types of BCEs.

The BCEs prediction results are listed in Table 4. Compared
with the competing predictors, our method achieves the best
performance for every metric when predicts BCEs type 2 and
type 4. For BCEs type 3, the recall and MCC of our method are
highest. Higher recall indicates that more true epitopes are
predicted and higher MCC states the overall performance of
our method is better. For BCEs type 1, Discotope-2.0 performs
best and our method ranks only second to it on recall and MCC.
For BCEs type 5, PECAN achieves best precision and MCC and
the results of our method are not good. It should be noted that
epitopes type 5 are located in the N-terminal domain (NTD) of
S1 protein rather than RBD region. And, it’s different with all
other four BCEs types.

In order to visually show the prediction results for all 5 types
of BCEs, we show in Figure 6 the true and predicted BCEs by our
Frontiers in Immunology | www.frontiersin.org 8
model and other competing methods. For each BCEs type, we
utilize the representative antigen structure as show in Table 3.
4 CONCLUSIONS

Accurate prediction of BCEs is helpful for understanding the
basis of immune interaction and is beneficial to therapeutic
design. In this work, we propose a novel deep learning
framework combining local and global features which are
extracted from antigen sequence and structure to predict BCEs.
GCNs are used for capturing the local features of a target residue.
Att-BLSTM networks are used to extract global features, which
figure the relationship between a target residue and the whole
antigen. We employ our model on a public and popular dataset
and the results show improvement of BCEs prediction.
Moreover, our results declare that the global features are useful
for improving the prediction of BCEs.

For deep case study, we apply our method to the BCEs
prediction for SARS-Cov-2. According to summarized works
and analyzed complex structures, there are many different types
of SARS-Cov-2 BCEs. However, our method doesn’t perform
B C D EA

FIGURE 6 | Prediction results for SARS-Cov-2 of five types of BCEs (type 1 to type 5). (A) The true epitope residues. (B–E) Prediction results by Discotope-2.0,
EpiPred, PECAN and our method, respectively. TP predictions are in yellow, FN predictions are in red, FP predictions are in blue and the background grey
represents TN predictions.
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best for every BCEs type, but it achieves best results for three
types of SARS-Cov-2 BCEs.

Though our method outperforms other competing
computational methods for BCEs prediction, it also has some
disadvantages. The first one is that our predictor needs antigen
structure as it takes structure-based residue features as input. The
second one is that our model⋲it consumes long computer time
because PSI-BLAST (26) needs to be performed at the stage of
extracting residue features. The third one is that although our
method performs better than comparative models for predicting
BCEs of SARS-Cov-2, it can be observed that our method is not
very good at predicting non-overlapping BCEs.

In this study, we show that combing local and global features
can be useful for BCEs prediction. In the future, we would further
improve BCEs prediction by expanding the training set and
utilizing the partner antibody structure of the antigen.
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TABLE 3 | Five types of antibodies neutralizing by SARS-Cov-2.

Type Antibody name PDB ID Neutralizing mechanism References

1 C102 7K8M Block the hACE2-RBD interaction (39)
2 CR3022 6YOR Trap the RBD in the up conformation (40)
3 S2M11 7K43 Lock the RBD in the down conformation (41)
4 P2B-2F6 7BWJ Compete with ACE2 and prevent the RBD from binding (42)
5 FC05 7CWU Target non-RBD regions (43)
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TABLE 4 | Prediction performances on five types of SARS-Cov-2 BCEs and best values are in bold.

Epitopes (PDB ID and chains name) Methods Precision Recal MCC

Type 1 (7K8M_AB_E) Discotope-2.0 0.660 0.649 0.297
Epipred 0.402 0.401 -0.199
PECAN 0.638 0.583 0.143
Our method 0.576 0.631 0.200

Type 2 (6YOR_HL_E) Discotope-2.0 0.432 0.430 -0.140
Epipred 0.431 0.423 -0.153
PECAN 0.494 0.492 -0.016
Our method 0.664 0.658 0.322

Type 3 (7K43_HL_A) Discotope-2.0 0.526 0.554 0.095
Epipred 0.493 0.489 -0.021
PECAN 0.531 0.545 0.086
Our method 0.525 0.773 0.166

Type 4 (7BWJ_HL_E) Discotope-2.0 0.589 0.615 0.226
Epipred 0.494 0.491 -0.017
PECAN 0.555 0.591 0.171
Our method 0.684 0.847 0.506

Type 5 (7CWU_PI_C) Discotope-2.0 0.547 0.641 0.226
Epipred 0.494 0.490 -0.019
PECAN 0.579 0.626 0.240
Our method 0.494 0.500 0.000
rticle 8
The PDB ID and chains name of representative complex structures are shown as PDB ID_Antibody heavy chain and light chain name_ Antigen (SARS-Cov-2) chain name. The results of
Discotope-2.0 and Epipred are obtained from their websites using suggested threshold. For PECAN, we download its source code and run it for making comparison. It should be noted
that Epipred and PECAN take both antigen and its partner antibody structure as input. Discotope-2.0 and our method only utilize isolated antigen structure.
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