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Abstract The Wilson-Patterson conservatism scale was

psychometrically evaluated using homogeneity analysis

and item response theory models. Results showed that this

scale actually measures two different aspects in people: on

the one hand people vary in their agreement with either

conservative or liberal catch-phrases and on the other hand

people vary in their use of the ‘‘?’’ response category of the

scale. A 9-item subscale was constructed, consisting of

items that seemed to measure liberalism, and this subscale

was subsequently used in a biometric analysis including

genotype–environment interaction, correcting for non-ho-

mogeneous measurement error. Biometric results showed

significant genetic and shared environmental influences,

and significant genotype–environment interaction effects,

suggesting that individuals with a genetic predisposition

for conservatism show more non-shared variance but less

shared variance than individuals with a genetic predispo-

sition for liberalism.

Keywords Conservatism � Liberalism � Genotype–

environment interaction � Measurement error �
Psychometrics � IRT

Introduction

The term conservatism is used in many ways (Pedhazur

and Schmelkin 1991), but most often refers to politic-

economic conservatism. More generally, conservatism can

be seen as a generalized resistance to change and ambiguity

which is expressed as a preference for safe, traditional and

conventional forms of institutions and behaviour. Wilson

and Patterson (1968) developed a conservatism scale to

measure social attitudes related to the conservative per-

sonality. They regarded the then existing scales to be of

poor psychometric quality because of susceptibility to

agreement-response bias and complex, double-barrelled

and/or confusing questions. Instead, their conservatism

scale consists of very short catch-phrases. Examples of

catch-phrases include ‘‘Liberals’’ and ‘‘Living together’’.

The test taker is then asked ‘‘Please indicate whether or not

you agree with each topic by circling ‘‘Yes’’ or ‘‘No’’ as

appropriate. If uncertain please circle ‘‘?’’. These catch-

phrases were expected to activate the respondent’s affec-

tive system, the system Wilson and Patterson (1968)

hypothesised to be the most influential component for

conservative attitudes and behaviours. The affective system

seems indeed to be important, since conservatives tend to

have stronger disgust reactions than liberals (Inbar et al.

2009) and brain data suggest that conservatives and liberals

process risk and fear differently (Schreiber et al. 2013).

Furthermore, Hibbing et al. (2014) found that conserva-

tives tend to have stronger physiological responses to

features of the environment that are negative and also

devote more psychological resources to these stimuli.

The development of the scale was based on seven

characteristics that Wilson and Patterson (1968) expected

to be present in highly conservative individuals: (1) reli-

gious fundamentalism, (2) right-wing political orientation,
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(3) insistence on strict rules and punishments, (4) intoler-

ance of minority groups, (5) preference for conventional

art, clothing and institutions, (6) anti-hedonistic outlook,

and (7) superstition and resistance to science. A large pool

of more than 130 catch-phrases were created that Wilson

and Patterson (1968) regarded to be effective discrimina-

tors for these seven characteristics. Based on three suc-

cessive item analyses (Wilson and Patterson1968), 50

items were selected from this pool. To control for response

bias, half of the items were phrased in the affirmative

direction of conservatism and half of the items were lib-

erally phrased. Although initially conceived of as a unidi-

mensional scale (Wilson 1973), subsequent research on the

structure of the scale showed that four factors were

required to explain most of the observed variance. These

factors were named (1) militarism-punitiveness (12 items),

(2) anti-hedonism (12 items), (3) ethnocentrism and out-

group hostility (12 items) and (4) religion-puritanism (12

items; Wilson 1973). Eaves et al. (1999) devised a short-

ened and somewhat altered conservatism scale consisting

of 28 items. Most of the items were taken from the original

conservatism scale, with a few items added that were

regarded relevant at the time of data collection. The

eigenvalues of the inter-item correlations for the 28 items

suggested, according to Eaves et al. (1999), that a general

‘‘conservative - liberalism’’ factor was substantial but not

exhaustive to explain the observed variance. An explora-

tory factor analysis with oblique rotation suggested that

five factors explained most of the observed variance in 24

of the 28 items. These factors were named: (1) sexual

permissiveness (8 items), (2) economic liberalism (5

items), (3) militarism (5 items), (4) political preference for

democrats or republicans (2 items) and (5) religious fun-

damentalism (5 items). Note that in all these psychometric

analyses, linear relationships were assumed between the

items, treating the ‘‘?’’ response as exactly midway

between a ‘‘yes’’ and ‘‘no’’ answer.

Prior genetic research

Using various versions of the Wilson and Patterson con-

servatism scale, research has shown that both, genetic and

cultural, influences are responsible for the observed vari-

ance in conservatism. Based on a conservatism measure

derived from the original scale (Wilson and Patterson

1968), Martin et al. (1986) reported monozygotic (MZ)

twin correlations of 0.60 for males and 0.64 for females,

assessed in a large sample from the Australian Twin

Registry. Eaves et al. (1997) reported on MZ and dizygotic

(DZ) twin correlations across age (9.5-75 years). They

found that prior to age 20 all variance due to individual

differences is age-related, implicating environmental

influences. However, after age 20, age effects vanished and

there were significant differences between MZ and DZ

twin correlations, suggesting genetic influences. In a later

study, Eaves et al. 1999 reported heritability estimates of

0.65 for males and 0.45 for females based on the Virginia

30,000 study of twins and their relatives. Bouchard et al.

(2003) assessed the 28-item conservatism scale in the

Minnesota Study of Twins Reared Apart (MISTRA) and

reported a heritability of 0.56. Hatemi et al. (2014) pub-

lished results of a genome-wide association study (GWAS)

meta-analysis, where several cohorts and, among other

measures, various versions of the Wilson-Patterson con-

servatism scale were used. They also reported on variance

components. They found a combined weighted mean of

relative influences across measures and cohorts of 0.40 for

genetic influences, 0.18 for common-environmental influ-

ences and 0.42 for unique-environmental influences. The

GWAS meta-analysis showed no genome-wide significant

hits, which may be partly related to the heterogeneity of the

measures used across cohorts, but could also be due to

multidimensionality of the conservatism measure (van der

Sluis et al. 2010).

Need for psychometric evaluation

Establishing a measure with good psychometric properties

is important for finding genomic signals for personality

traits such as conservatism (van der Sluis et al. 2010; van

den Berg and Service 2012). Prior research on the psy-

chometric dimensionality of the conservatism scale was

based on linear factor analysis with ‘‘yes’’, ‘‘?’’ and ‘‘no’’

coded as 3, 2 and 1 respectively, thus assuming that a ‘‘?’’

response is exactly midway between a ‘‘yes’’ and ‘‘no’’

response. This assumption, however, is not necessarily

true—a ‘‘?’’ response might mean something else than

being psychologically (exactly) between a ‘‘yes’’ and ‘‘no’’

answer. Reactions like ‘‘I don’t know what I think’’ or ‘‘I

don’t know what is meant by busing’’, are psychologically

different from for example an ‘‘I don’t care’’ reaction, or a

reluctance to convey the true affective response. Converse

(1964) and other political scientists (e.g. Campbell et al.

1960) have demonstrated that the general American public

is largely uninformed about current political affairs and has

gaps in knowledge of political systems. Arguably, it is

likely that respondents do not understand or care about

(some of) the catch-phrases of the Wilson-Patterson scale.

In addition, it is important to know to what extent scores

on this scale reflect true trait variability and to what extent

they reflect measurement error. Measured as split-half

internal consistency, the conservatism scale has been

reported to have a high reliability of 0.94 (Wilson and

Patterson 1968). This finding is supported by several

studies. For example, Henningham (1996) reports alpha

reliability of 0.81 on a 27-item version based on the
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original scale and an alpha reliability of 0.74 on a simpli-

fied and modernized 12-item version. In this paper, the

psychometric properties of the conservatism scale were

assessed more rigorously by using homogeneity analysis

(de Leeuw and Mair 2009) and item response theory (IRT),

thereby greatly relaxing the assumption of prior research of

linear relationships among items. With the establishment of

a good scale, a biometric analysis including genotype–en-

vironment interaction was done.

Genotype–environment interaction

Genotype–environment interaction refers to the situation

that some genotypes are more sensitive to changes in the

environment than other or, conversely, that genotypes

respond differently to the same environment (see e.g.

Cameron 1993; Martin 2000; Sorensen 2010). Although

various studies suggest that genotype–environment inter-

action is an important phenomenon in complex behavioural

traits (e.g., anti-social behaviour, Caspi et al. 2002; cog-

nitive ability, Turkheimer et al. 2003 or depression, Hicks

et al. 2009), research on genotype–environment interaction

has not been a focus of genetic studies on conservatism.

Present study was concerned with an omnibus test to assess

whether there is any statistically significant genotype-en-

vironment interaction. Therefore, the method that we use

here to model genotype-environment interaction is para-

metrized such that both, genetic as well as environmental,

influences are modelled as latent (i.e., unmeasured) vari-

ables. If indeed, genotype-environment interaction is

found, future research on the etiology of conservatism can

focus on the exact nature of this effect by collecting

specific, environmental measures at the family or individ-

ual level, depending on the results of this research.

Schwabe and van den Berg (2014; see also Molenaar

and Dolan 2014) recently developed a method that models

genotype–environment interaction in such a way that sta-

tistical findings are independent of scale properties. This

means that as long as a set of items measures a particular

trait, such as conservatism, biometric results (i.e., conclu-

sions regarding heritability and genotype–environment

interactions) are the same regardless what particular

(sub)set of items is used. This is important since it is

generally recognized that statistical findings regarding non-

linear effects such as genotype–environment interaction are

dependent on the scale at which the analysis takes place; a

simple transformation such as taking the logarithm or

computing the root of a particular measure (e.g., a sum

score) either obscures or reveals interaction effects (see e.g.

Eaves et al. 1977; Martin 2000; van der Sluis et al. 2006;

Eaves 2006; Molenaar et al. 2012; Schwabe and van den

Berg 2014; Molenaar and Dolan 2014). Schwabe and van

den Berg (2014; see also Molenaar and Dolan 2014)

showed that the skewness in the phenotype distribution in

large part determines finding a genotype–environment

effect, even when that skewness in sum scores is only due

to response frequencies in the items’ response categories.

For instance, a relatively large proportion of ‘‘yes’’

responses on dichotomous yes–no questions leads to a

skewed distribution of the number of ‘‘yes’’ answers (total

test score). Slightly rephrasing the questions might cause

no real change in item content (e.g., changing ‘‘Do you like

peanut butter?’’ into ‘‘Do you like peanut butter very

much?’’), but can cause a change in proportion of yes-

answers and thus change the skewness of the test score.

Therefore, a rewording can lead to obscuring or revealing

genotype–environment interaction effects even when the

measured construct is the same. By applying the method by

Schwabe and van den Berg 2014, that involves item-re-

sponse theory (IRT) modelling while modelling genotype–

environment interaction at the level of the latent construct,

our results regarding genotype–environment are free of any

statistical artefacts due to response category frequencies.

Still, the scale at which we model the interaction effect is

arbitrary, but at least it is identified by using an IRT model.

This makes our results comparable to other studies with

perhaps slightly different items or a subset of the items, but

where the scale was identified in the same way (i.e. the

same IRT model).

This research

The first part of this study consists of a psychometric

evaluation of the 28-item conservatism scale as used in

Eaves et al. (1997, 1999), Bouchard et al. (2003) and the

adult cohort in Hatemi et al. (2009). Item response models

were used that take into account the categorical nature of

the responses by modelling non-linear relationships

between item responses and the trait being measured. In an

exploratory analysis, multidimensional homogeneity mod-

els (Gifi 1990) that assume nominal response categories

were fitted in order to re-evaluate the psychometric

dimensionality of the Wilson-Patterson scale. The Gifi

method relaxes the assumption that an ‘‘?’’ answer falls

exactly halfway between a ‘‘yes’’ and a ‘‘no’’ answer.

Based on the results, a new scale was devised. IRT models

were then used to confirm the results of the homogeneity

analysis and to evaluate the psychometric quality of the

new scale. In the second part of this study, the new scale

was used to investigate genotype–environment interaction.

For the genotype–environment analysis, a Bayesian

approach was used in which the biometric model and an

IRT model were fitted simultaneously.
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Method

Data

The data come from the Health and Life-Style Survey for

Twins assessed in the Virginia 30K sample (Eaves et al.

1999; Hatemi et al. 2009), selecting data on twins and their

parents. Part of this survey was the 28-item scale described

above. Zygosity status was based on self-reported resem-

blance with a reported percentage correct of 95 % (Eaves

et al. 1999). Total sample size was 14454. Mean age was

52.13 (SD ¼ 17:8, range 16–94). For the psychometric

analyses in the first part of this study, we used all available

data from twins and their parents that had complete data for

the 28 items (N ¼ 12315, of which 10405 were twins). For

the biometric modelling in the second part of this research

we only used twin data (2795 MZ twin pairs, 3280 DZ twin

pairs) and item data that was missing was assumed missing

at random.

Part I: psychometric analyses

For the psychometric analyses, only data from twins and

their parents were used with complete data on all 28 items

with ‘‘no’’ coded as 1, ‘‘?’’ coded as 2 and ‘‘yes’’ coded as

3. Items associated with conservatism [as reported by

Eaves et al. (1999), i.e. items 1 (Death penalty), 9 (Military

Drill, 10 (Draft), 16 (Capitalism), 17 (Segregation), 18

(Moral Majority), 20 (Censorship), 21 (Nuclear Power), 23

(Republicans), 25 (School Prayer) and 28 (Busing)] were

reverse coded, so that a high sum score is associated with

low conservatism (high liberalism). The analyses were

done using SPSS (IBM 2013) and R (development core

team 2007). R is an open source language and environment

for statistical computing, which is freely available at http://

cran.r-project.org

First, using SPSS (IBM 2013), a classical assessment of

psychometric quality was performed on the scale as pro-

posed by Eaves et al. (1999): computing item-total corre-

lations and estimating reliability. Next, the responses were

assumed nominal and a homogeneity analysis was done.

Homogeneity analysis can be seen as a principal compo-

nents analysis for nominal data. The analysis positions both

individuals and item answer categories into one geometric

space. It uses alternating least squares to minimize the

distances between the position of an item’s particular

answer category (‘‘no’’, ‘‘?’’,‘‘yes’’) and individuals that

chose that particular category (see e.g., Heiser and Meul-

man 1994; van der Kloot 1997). Using SPSS (IBM 2013),

the dimensionality of the geometric space was determined.

A two-dimensional homogeneity model was then further

analysed with the R package homals (de Leeuw and Mair

2009). Based on the homogeneity analysis results, a uni-

dimensional conservatism scale was constructed.

The reliability of the new scale was calculated in SPSS

and IRT models were used to confirm the results of the

homogeneity analysis and further evaluate the new scale.

For the IRT modelling, the R package mirt (Chalmers

2012) was used. The IRT analysis was done using a gen-

eralized partial credit IRT model (GPCM) (Muraki 1992),

which is an IRT model that is suitable for polytomous,

ordinal data. The GPCM model has parameters both for

difficulty (i.e., thresholds) as well as discrimination

parameters that are the IRT analog of factor loadings. For

our current data with three ordered response categories

(‘‘no’’, ‘‘?’’, ‘‘yes’’) the GPCM specifies two threshold

parameters for each item, one for the location on the scale

where the probability of a ‘‘?’’ equals the probability of a

negative response, and one parameter for the location on

the scale where the probability of a positive response

equals the probability of a ‘‘?’’ response. Also a Partial

Credit Model (PCM) was applied, which is a restricted

version of the GPCM where the discrimination parameters

(factor loadings) are all assumed equal to 1. For model

comparison purposes, the AIC and the BIC were computed.

At item level, goodness of fit was evaluated using chi-

square statistics, comparing observed and expected

response frequencies for different bins of test scores.

Part II: biometric analysis

In the second part of this study, the newly constructed scale

was used in a biometric analysis including genotype–en-

vironment interaction. Here we follow the new method that

integrates an IRT model into biometric modelling of

genotype–environment interaction at the latent construct

(see Schwabe and van den Berg 2014; Molenaar and Dolan

2014). As biometric model, the so-called ACE model was

used which decomposes total phenotypic variance, r2
P, into

variance due to additive genetic influences (r2
A), variance

explained by common-environmental influences (r2
C) and

variance due to unique-environmental influences (r2
E).

Whereas common-environmental influences were para-

metrized to be perfectly correlated in a twin pair, we

parametrized unique-environmental influences to be

uncorrelated in one family.

Bayesian approach

van den Berg et al. (2007) showed that, in order to take

full advantage of the IRT approach, both the IRT mea-

surement model and the biometric model have to be esti-

mated simultaneously, using a so called one-step approach.

However, as this procedure is computationally burden-

some, widespread methods of estimating variance compo-

nents through structural equation modelling (SEM) reach
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their computational limit. van den Berg et al. (2007)

showed that Bayesian statistical modelling can be an

alternative to enable the simultaneous modelling of an IRT

measurement and variance decomposition model. In the

Bayesian approach, statistical inference is based on the

posterior density of the model parameters which is pro-

portional to the product of a prior probability and the

likelihood function of the data (for further reading see e.g.

Box and Tiao 1992). Here we use Gibbs sampling (Geman

and Geman 1984; Gelfand and Smith 1990; Gelman et al.

2004), a Markov chain Monte Carlo (MCMC) algorithm, to

study the posterior densities of model parameters. This

method was applied using the freely obtainable MCMC

software package JAGS (Plummer 2003). The JAGS script

can be found in the online supplementary material. As

similar syntax is used, the script can be used also in the free

software package WinBUGS Lunn et al. (2000) with minor

adaptations. As an interface from R to JAGS, the R

package rjags was used (Plummer 2013).

As in Eaves and Erkanli (2003) and van den Berg et al.

(2006, 2007), a Bayesian version of the ACE model was

used that only specifies univariate distributions. This model

is an extension of the Schwabe and van den Berg (2014)

model to a (Generalized) Partial Credit model ((G)PCM,

Muraki 1992) version at the measurement level. Further-

more, the model was extended to include, besides an

interaction with unique-environmental influences, also an

interaction with common-environmental influences, fol-

lowing Molenaar and Dolan (2014).

Biometric and IRT model

In the following, the full model, consisting of both

variance decomposition (ACE model) and measurement

model (IRT model), will be described for MZ and DZ

twins.

We assumed that the additive genetic effect A and the

common-environmental effect C are both normally dis-

tributed. Thus, we have for individual twin j from MZ twin

pair i:

Ai �Nð0; r2
AÞ ð1Þ

Ci �Nð0; r2
CiÞ ð2Þ

hij �NðAi þ Ci; r
2
EiÞ ð3Þ

where hij is a person-specific latent variable that can be

interpreted as the conservatism trait that is being assessed

by the k items (i.e., the phenotype). To model genotype–

environment interaction, we let the amount of variance due

to environmental variance vary systematically with geno-

type A. Using this parametrization, we can distinguish

between two different types of interaction effects. There

can be an interaction with unique-environmental influences

(henceforth referred to as A 9 E), but there can also be an

interaction with common-environmental influences

(henceforth referred to as A 9 C). To introduce A 9 C

and A 9 E, r2
E and r2

C are portioned into an intercept and a

slope parameter. This results in an estimate of r2
E and r2

C

that is different for each twin pair i:

r2
Ei ¼ expðb0 þ b1AiÞ ð4Þ

r2
Ci ¼ expðc0 þ c1AiÞ ð5Þ

where b0 and c0 denote the intercepts (i.e., unique-environ-

mental variance when A ¼ 0 and common-environmental

variance whenC ¼ 0) and b1 and c1 denote linear interaction

effects (measuring A 9 E and A 9 C respectively), allow-

ing that the environmental variance components are larger at

either higher or lower levels of the genotype. The direction of

both interaction effects depends on the sign of the interaction

parameters, b1 and c1:The exponential function was used to

avoid negative variances (c.f. SanChristobal-Gaudy et al.

1998; Bauer and Hussong 2009; Hessen and Dolan 2009; van

der Sluis et al. 2006; Molenaar et al. 2012).

To take into account properties of the measurement

scale, simultaneously with the variance decomposition, the

latent phenotype hij appeared in the GPCM (for three

response categories) for observed item data on item k of

twin j from family i, Yijk. This was based on the results of

the first part of the study, which suggested that this model

was the best fitting IRT model for our data. Let pijkl be the

conditional probabilities of a particular response l 2
‘‘no’’; ‘‘?’’; ‘‘yes’’f g to an item k by twin member j from

twin pair i, given the latent variables hij and item

parameters:

pðyijk ¼ ‘‘no’’jhij; ak; bklÞ ¼ 1 þ eakðhij�bk1Þeakðhij�bk2Þ
h i�1

ð6Þ

pðyijk ¼ ‘‘?’’jhij; ak; bklÞ ¼ pðyijk ¼ ‘‘no’’j:Þ � eakðhij�bk1Þ

ð7Þ

pðyijk ¼ ‘‘yes’’jhij; ak; bklÞ ¼ pðyijk ¼ ‘‘no’’j:Þ
� pðyijk ¼ ‘‘?’’j:Þ � eakðhij�bk2Þ

ð8Þ

where ak is the discrimination parameter for item k (fac-

torloading) and bkl is the lth threshold parameter for item k,

representing the item ‘‘difficulties’’ that an individual has

to ‘‘step through’’ in order to reach the next response cat-

egory. The conditional probabilities can be intuitively

interpreted as though an individual twin ‘‘passes through’’

each of the preceding answer categories before finally

stopping at one response category (Li and Baser 2012). In

order to identify the model, we assumed the first threshold

to be zero for all items k, bk1 ¼ 0, the phenotypic mean l
to be zero and set a3 to one. We estimated the thresholds

for response categories ‘‘?’’ and ‘‘yes’’, bk2 and bk3.

520 Behav Genet (2016) 46:516–528
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Observed item data, Yijk was assumed to have a multino-

mial distribution:

Yijk �Multinomialðpðyijk ¼ yjhij; ak; bklÞÞ ð9Þ

The model is similar for DZ twins, but the genetic

covariance in MZ twins is twice as large as in DZ twins. To

model these different genetic correlations among MZ and

DZ twins, first a normally distributed additive genetic

effect A1 was modelled and then, for each individual twin

j from DZ pair i, a normally distributed additive genetic

effect A2 was assumed. Furthermore, in order to model

common-environmental influences C, we used a standard

normal distribution. We then have for DZ twins:

A1i �N 0;
1

2
r2
A

� �
ð10Þ

A2ij �N A1i;
1

2
r2
A

� �
ð11Þ

Ci �Nð0; 1Þ ð12Þ

In order to model A 9 C, the common-environmental

effect C was scaled by multiplying it with the standard

deviation rCij, where r2
Cij ¼ expðc0 þ c1A2ijÞ, yielding a

common environmental effect C2 that was unique for every

individual twin j from DZ pair i:

C2ij ¼ Ci

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expðc0 þ c1A2ijÞ

q
ð13Þ

To model A 9 E, the residual term was different for

every individual twin:

r2
Eij ¼ expðb0 þ b1A2ijÞ ð14Þ

A variance decomposition on the latent conservatism

variable hij for individual twin j from DZ pair i then yields:

hij �NðA2ij þ C2ij; r
2
EijÞ ð15Þ

As for MZ twins, simultaneous to the variance decom-

position, the latent phenotype, hij, appeared in the GPCM

IRT model for three response categories (see Equa-

tions 6-8) and observed item data was assumed to have a

multinomial distribution (see Equation 9).

Prior distributions

As prior distribution for the additive genetic variance,

we chose an inverse gamma distribution (r2
A � InvGð1; 1Þ).

We chose independent normal distributions for both

intercepts (expðb0Þ, expðc0Þ�Nð�1; 2Þ) as well as for both

slope parameters (c1, b1 �Nð0; 10Þ). For the item thresh-

olds, we used a normal distribution ðbk �Nð0; 10ÞÞ and a

lognormal distribution for the item discrimination param-

eters ðlogðakÞ ¼ Nð0; 10Þ).
In order to find the biometric model that fits the data

well and, at the same time, is parsimonious, we estimated

different biometric models. These included a biometric

model without any interaction effects (simple ACE model),

an ACE model with one (either A 9 E or A 9 C) inter-

action effect and a model with both interaction effects. The

deviance information criterion (DIC, Spiegelhalter et al.

(2002), a measure that estimates the amount of information

that is lost when a given model is used to represent the

data-generating process, was calculated to assess model fit

of each model. The DIC takes account of both the com-

plexity of a model and the goodness of fit. It can be seen as

a Bayesian analog of Akaike’s Information Criterion

(AIC). In the models without interaction effect(s), the

same, independent, prior distributions were chosen for

common-environmental and unique-environmental vari-

ance (r2
C; r

2
E � InvGð1; 1ÞÞ:

After a burn-in phase of 20,000 iterations for each sepa-

rate chain, the characterisation of the posterior distribution

for the model parameters was based on a total of 120,000

iterations from six different Markov chains. This was chosen

on the basis of previous test runs with multiple chains and

computing Gelman and Rubin’s convergence diagnostic

(Gelman and Rubin 1992). The mean and standard deviation

of the posterior point estimates was calculated for each

parameter as was the 95 % highest posterior density (HPD,

see e.g. Box and Tiao 1992) interval. The HPD can be

interpreted as the Bayesian analog of a confidence interval

(CI). When the HPD does not contain zero, the influence of a

parameter can be regarded as significant.

Sum score analysis

In order to compare biometric results gained by this

methodology with results gained by the sum score

approach, the biometric model that was chosen as the best

model for our data was also estimated using sum scores

instead of item scores. In this analysis, sum scores were

calculated from the twin data with answer categories coded

as 0,1 and 2 respectively and re-scaled so that they had a

mean of zero and variance of one in order to make results

of both approaches comparable with respect to the prior

distributions. Sum scores were then analyzed with the same

JAGS script (see online supplementary material) but

without the IRT part. After a burn-in period of 10,000

iterations, the characterisation of the posterior distribution

for the sum score analysis was based on 15,000 iterations

from 1 Markov chain, based on previous test runs with

multiple chains and computing Gelman and Rubin’s con-

vergence diagnostic (Gelman and Rubin 1992).

Results

Based on the original 28 item scale with reverse coding

(following Eaves et al. 1999), the reliability estimate was

0.73 (Guttman’s lambda 2; Cronbach’s alpha = 0.71). Item
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28 (Busing) had a negative correlation (r = -0.18) with the

total score, as did item 16 (Capitalism, r = -0.02).

Homogeneity analysis results

A homogeneity analysis was performed on the original

item responses (no reverse coding). To evaluate the

dimensionality of the scale, the eigenvalues associated with

the first five dimensions were calculated, displayed in

Fig. 1. It can be seen that, while the first two dimensions

have a relatively large eigenvalue, the eigenvalues rapidly

decrease when more dimensions are added to the scale.

Based on these results, a model with two dimensions

was chosen for further analysis. Item loadings on both

dimensions can be seen in Fig. 2. We see that one item has

a negative loading on dimension 2. Furthermore, a large

number of items have strong and positive loadings on

dimension 1, while a smaller subset of items have positive

and strong loadings on dimension 2. Thus, some items

mostly discriminate among individuals along the first

dimension and some items discriminate among individuals

along the second dimension.

In order to interpret the two dimensions, we plotted

category points for the ‘‘yes’’, ‘‘no’’ and ‘‘?’’ answer cat-

egories, which can be found in Fig. 3. To save space, the

category points plots of only two items are displayed, but

category points plots for all items can be found in the

online supplementary material. A category point can be

seen as the centre of gravity of all individuals who gave

that particular response to a catch-phrase. When the cate-

gory points are far apart on the x-axis (y-axis), this means

that this item discriminates well between individuals on the

first dimension (second dimension).

Investigating the category points on the second dimension

of the catch-phrase ‘‘Liberals’’, an item with a higher loading

on the second dimension, we can see that the ‘‘?’’ answer

category falls roughly between the ‘‘yes’’ and ‘‘no’’ answer

categories. This implies that the second dimension

distinguishes between liberal and conservative persons,

assuming that someone with a high latent trait value for

liberalism would be more inclined to approve of liberals (i.e.,

by answering ‘‘yes’’) while someone with a very low latent

trait for liberalism would be more inclined to disapprove of

liberals (i.e. by answering ‘‘no’’). When we look at the first

dimension, we can observe that the distance between the

‘‘yes’’ and ‘‘no’’ answer categories is very small, while their

distance to the ‘‘?’’ category point is relatively large. This

suggests that the first dimension mainly distinguishes

between people who answered with ‘‘?’’ or with either ‘‘yes’’

or ‘‘no’’. When we investigate the category points plot for the

catch-phrase ‘‘Capitalism’’, an item with a higher loading on

the first dimension, we can see the same pattern, but also that,

although the ‘‘?’’ falls roughly in between the ‘‘yes’’ and

‘‘no’’ answer categories on the second dimension, the dis-

tance between the ‘‘yes’’ and ‘‘no’’ answer categories is much

smaller on this dimension (compared to the ‘‘Liberals’’ item)

while the distance between the ‘‘?’’ category point and the

‘‘yes’’ and ‘‘no’’ category points is still large on the first

dimension. This suggests that this item better distinguishes

between people who answered with ‘‘?’’ and people who

answered with ‘‘yes’’ or ‘‘no’’ than between conservative and

liberal persons.

Interpretation of the dimensions

The category points plots suggest that the second

dimension can be interpreted as liberalism (positive

direction)—conservatism (negative direction) dimension

while the first dimension seems to distinguish mainly

between respondents with a ‘‘?’’ answer and respondents

with either a ‘‘yes’’ or ‘‘no’’ answer. To get more insight
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into the nature of the two dimensions, we looked at the

relationship between the itemloadings and the proportion

of ‘‘?’’ answers on each item, which can be seen in Fig. 4

for dimension 1 (left) and dimension 2 (right) separately.

We can see that this relationship seems to be more or less

random for the second dimension, but the proportion of

‘‘?’’ answers increases with higher itemloadings for

dimension 1. A simple regression shows that, indeed, this

relationship is positive and significant for the first dimen-

sion (T(26) = 3.75, p \ 0.01), but non-significant for the

second dimension (T(26) = -0.936, p = 0.36).

The relationship between itemloadings and proportion of

‘‘?’’ answers on each item implies that the tendency of items

to distinguish between individuals with a ‘‘?’’ answer and

respondents who either answered ‘‘yes’’ or ‘‘no’’ is based in a

high level of ‘‘?’’ responses, which might indicate that these

items measure concepts on which many people simply do not

have well-formed attitudes. The interpretation of this

dimension however remains unclear, as we do not know

participants’ true reason to give a ‘‘?’’ answer. Not having a

well-formed attitude might indeed be the reason to give a ‘‘?’’

answer, but there are other possible reasons—for example,

participants might not have understood what a particular

catch-phrase means (e.g., item ‘‘Busing’’).

How can we handle this multidimensionality?

A way to handle the multidimensionality of the Wil-

son-Patterson conservatism scale could be to use a

weighted sum score, weighting items differently based on

their itemloading on the second (liberalism-conservatism)

dimension. However, although it is not possible to retrieve

participants’ true motivation to give a ‘‘?’’ answer, category

points plots as well as the relationship between factor

loadings and the proportion of ‘‘?’’ answers suggest that

items with a high loading on this dimension do not give

much relevant information to distinguish between conser-

vative and liberal persons. Therefore, we decided to use

only items with a higher itemloading on dimension 2

(conservatism-liberalism) than on dimension 1 (ambiguous

interpretation). For further psychometric analysis, we

consequently selected the remaining 9 liberalism-conser-

vatism items Gay rights, Women’s liberation, Living

together, Modern art, Divorce, X-rated movies, School

prayer (reverse-coded), Liberalism and Abortion. In all

items, the ‘‘?’’ category point was in between the ‘‘yes’’ and

‘‘no’’ category points on the second dimension, a require-

ment for the application of the ordinal G(PCM) IRT model.

Evaluation of the new scale

Item-total correlations showed positive signs and were in

the range 0.50-0.68. The reliability was estimated at 0.78

(lambda 2).

A GPCM and a PCM were estimated using the 9 items.

AIC and BIC favoured the GPCM over the PCM. Table 1

gives the estimated GPCM model parameters.

Item fit statistics showed the largest v2 value for the

Liberals item. Observed number of responses for each

response category as well as expected number of responses

for each response category under the GPCM were plotted

for ordered bins of total scores (see online supplementary

material). Supplementary Fig. 1 shows that there is no

systematic misfit for the Liberals item: the red lines (ob-

served number of responses) largely overlap with the cor-

responding black lines (number of responses predicted by

the fitted GPCM), as they do for all items. Supplementary

Fig. 2 shows model fit based on twin data only.
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Biometric modelling

For the biometric modelling, only twin data were used. The

DIC for all fitted biometric models can be found in Table 2.

Based on these results, the model with an A 9 E effect as

well as an A 9 C effect was chosen as the preferred model

for our data.

The results based on the model with an A 9 E and an

A 9 C interaction effect are displayed in Table 3. The

results suggest substantial A and C components, as well as

a negative A 9 E interaction effect such that individuals

having low genotypic values for liberalism show more

residual variance than individuals with high genotypic

values for liberalism. The HPD interval shows that this

effect is significant. Furthermore, a significant and positive

A 9 C interaction effect was found such that individuals

having low genotypic values for liberalism show less

common environmental variance than individuals with a

high genotypic value for liberalism.

The 95 % credibility region for both interaction effects is

displayed in Fig. 5 for the entire range of estimated genotypic

values. Defined as
r2
A

r2
P

where r2
P ¼ r2

A þ expðc0Þ þexpðb0Þ,
the ACE model with A 9 E and A 9 C interaction effects

leads to a narrow-sense heritability estimate h2 of 0.43 (HPD:

[0.34; 0.51]) with a standard deviation of 0.04.

Analysis of sum scores

Figure 6 shows the distribution of sum scores in twins.

The results of the sum score approach can be found in

Table 4. The sum score approach leads to a narrow-sense

heritability h2 of 0.42 (HPD: [0.38; 0.46]) with a standard

deviation of 0.02. Note that, conversely to the results

gained by the new methodology, the sum score approach

found a non-significant positive A 9 E interaction effect

and a significant negative A 9 C interaction effect.

Discussion

In this paper, we evaluated the Wilson-Patterson conser-

vatism scale psychometrically before using a shorter ver-

sion of the scale for a biometric analysis including

genotype–environment interaction.
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dimension 1 (left) and
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item and percentage of ‘‘?’’

answers for each item

Table 1 GPCM parameter

estimates and item fit statistics
a b2 b3 X2 df p

X-rated movies 0.58 -1.52 -1.47 253.53 27 \0.01

Modern art 0.60 0.11 0.09 232.92 27 \0.01

Women’s liberation 1.00 0.22 0.80 204.93 27 \0.01

Abortion 1.01 -0.65 -0.16 112.60 27 \0.01

Gay rights 1.65 -0.90 -1.95 235.90 27 \0.01

Liberals 1.44 0.57 -0.67 357.63 27 \0.01

Living together 1.08 -0.91 -0.53 205.03 27 \0.01

Divorce 0.74 -0.44 0.23 147.16 27 \0.01

School prayer (rev. coded) 0.65 -1.86 -2.04 109.54 27 \0.01

Table 2 Model fit (DIC) for all fitted biometric models

Biometric model DIC

No interaction effects (simple ACE model) 181853

ACE model with A 9 E 181782

ACE model with A 9 C 181849

ACE model with A 9 E and A 9 C 181776

DIC deviance information criterion
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A psychometric evaluation of the 28-item conservatism

scale Eaves et al. (1999) showed that this scale actually

measures two different aspects in people: while one set of

items distinguished between people’s agreement with

either conservative or liberal catch-phrases, another set of

items distinguished mainly between people who answered

‘‘?’’ or either ‘‘yes’’ or ‘‘no’’. Earlier political research (e.g.

Campbell et al. 1960; Converse 1964) has shown that most

Americans are uninformed about politics and are not con-

sistent in their agree- or disagreement with political state-

ments. Arguably, it is likely that the dimension that

differentiated mostly between respondents who answered

‘‘?’’ or either ‘‘yes’’ or ‘‘no’’, mainly distinguished between

individuals with and without an opinion. Considering the

item content of the two sets of items, this seems plausible.

While this dimension mainly consists of politically-loaded

items (e.g., ‘‘Property Tax’’, ‘‘Pacifism’’) and seems to

measure economic liberalism, the conservatism-liberalism

dimension is composed of more approachable items (e.g.,

‘‘Gay Rights’’, ‘‘Abortion’’), likely measuring social lib-

eralism. Exceptions are the item ‘‘Liberals’’ on the con-

servatism-liberalism dimension and the items ‘‘Astrology’’

and ‘‘Death Penalty’’ on the dimension that distinguished

between individuals who answered ‘‘?’’ or either ‘‘yes’’ or

‘‘no’’.

To handle this multidimensionality, we decided to use a

shorter version of the scale, consisting of only 9 items with

a high loading on the liberalism-conservatism dimension.

Ignoring the multidimensionality of the Wilson-Patterson

conservatism scale can threaten validity of future or

existing studies that use this scale. Therefore, we advise

researchers to use the 9-item subscale as presented here

rather than the full 28 items scale. Furthermore, results

from the homogeneity analysis suggest that the item

schoolprayer should be reverse-coded. An IRT analysis of

this 9-item subscale showed good fit with a Generalized

Partial Credit model and the reliability of the new scale

was sufficient. The 9-item subscale is, however, con-

strained in the sense that the content of the remaining items

reflects a measure of social liberalism rather than economic

liberalism or security attitudes.

Comparing model fit and parsimony of different bio-

metric models, an ACE model with both A 9 E and

A 9 C was chosen as the best model for the data of this

study. A biometric analysis that included an IRT model to

correct for bias due to category response frequencies sug-

gested a negative A 9 E and a positive A 9 C: a higher

Table 3 Posterior mean (standard deviation) and HPD of variance components for the ACE model with A 9 E and A 9 C interaction effects

r2
A

expðc0Þ expðb0Þ b1 c1

Mean (SD) 0.43 (0.04) 0.29 (0.03) 0.07 (0.01) -2.81 (0.21) 0.54 (0.14)

HPD [0.33; 0.51] [0.22; 0.35] [0.05; 0.10] [-3.22; -2.39] [0.31; 0.84]
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for A 9 E interaction (left) and

A 9 C interaction (right),
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value. Based on the results of

the ACE model with A 9 E and

A 9 C
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genetic propensity towards liberalism was associated with

less unique-environmental and more common-environ-

mental variance. The finding of a negative A 9 E effect

means that the non-shared environment plays a more

important role in explaining differences in individuals with

a genetic tendency towards favouring conservative ideas

than explaining differences in individuals genetically pre-

disposed towards favouring liberal ideas. Conversely, the

finding of a positive AxC effect means that the shared

environment seems to be more important in explaining

differences in individuals predisposed towards liberalism

than in explaining differences in individuals predisposed

towards conservatism. Arguably, genetic effects important

for the expression of conservatism do not work in isolation,

but instead influence the extent to which individuals are

sensitive to environmental influences, favouring an inter-

actionist framework for the study of conservatism as a

personality trait.

These findings suggest that there are unique environ-

mental factors that affect attitudes in the conservative

genotype but much less affect attitudes in the liberal

genotype. Likewise, the familial environment seems to be

more important in forming political attitudes in families

with a genetic tendency for liberalism than in families with

a genetic tendency for conservatism. These results are

surprising. Conservative people are generally seen as

people who do not like change; they generally favour the

safety of the known over the unknown (Wilson1973).

Research by Carney et al. (2008) showed that two Big Five

personality traits differentiate between liberal and conser-

vative individuals: Openness to New Experiences and

Conscientiousness. In general, conservative participants

score higher on conscientiousness (e.g. being more con-

ventional, orderly and better organized) whereas liberals

score higher on openness to new experiences (e.g. being

more curious, novelty-seeking and creative). The differ-

ences in personalities were even reflected in personal

possessions and the characteristics of living and working

spaces: Liberal participants collected more CDs, books,

movie tickets, and travel paraphernalia, whereas conser-

vative participants showed more sports decor, U.S. flags,

cleaning supplies, calendars, and uncomfortable furniture.

Based on these trait differences, one could expect that

family environmental influences would be more important

for individuals with a genetic tendency for conservatism

than for individuals with a genetic tendency for liberalism.

Likewise, it could be expected that unique-environmental

influences would be more important for individuals

genetically predisposed towards liberalism—with a ten-

dency for novelty-seeking behaviour. Liberalism has been

shown to be associated with higher IQ scores (Kanazawa

2010), which predicts that conservative people generally

end up in different environmental circumstances than lib-

eral-minded people and perhaps different amounts of

variation of those environmental factors that act on polit-

ical views and personality. The finding of a negative

A 9 E suggests that conservatives might come into contact

with people and ideas outside of their shared environment

that might be more reflective of their genetic preference.

Eaves et al. (1997) indeed showed that genetic expression

of conservatism-liberalism only occurs after individuals

have left their parental home. Individuals with a genetic

tendency for conservatism then seem to be likely to be

influenced by unique-environmental influences that might

affect their thinking about political issues, while, surpris-

ingly, individuals with a genetic tendency towards liber-

alism, are still influenced by their family environment.

Future research on genotype–environment interaction in

conservatism should focus on the exact nature of both,

common and unique, influences by including specific,

environmental moderators, measured at the family and

individual level. This can be done, for example, by using

the genotype-environment parametrization introduced by

Purcell (2002) by regressing moderators directly on the

genotypic value.

In order to compare results gained by the new method-

ology with the sum score approach, the same biometric

model was estimated using sum scores instead of item

scores. As the sum score approach does not take into

account measurement unreliability, estimated average

environmental variance was much higher. Furthermore, the

sum score approach suggested a positive A 9 E and a

negative A 9 C interaction effect, meaning that people

with a genetic tendency towards liberalism show more

residual variance and less common-environmental variance

than people with a genetic tendency towards conservatism.

However, since the distribution of sum scores was skewed,

this may be an artefact of item characteristics (see e.g.

Schwabe and van den Berg 2014; Molenaar and Dolan

2014).

Table 4 Sum score analysis: posterior mean (standard deviation) and HPD of variance components for the ACE model with A 9 E and A 9 C

interaction effects

r2
A

expðc0Þ expðb0Þ b1 c1

Mean (SD) 0.64 (0.03) 0.35 (0.03) 0.53 (0.02) 0.10 (0.05) -2.21 (0.09)

HPD [0.58; 0.70] [0.29; 0.41] [0.49; 0.56] [0.00; 0.21] [-2.38; -2.05]
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To our knowledge, this is the first study that used the

Wilson-Patterson scale to investigate genotype–environ-

ment interaction in case of unmeasured environmental

variables. Regarding the testing of genotype–environment

interaction in future research, we advise researchers to use

the same IRT model (i.e., the GPCM) to make results

concerning any interaction effects comparable. Results

regarding genotype–environment interaction replicate only

when the same underlying scale is used, as every trans-

formation leads to a different result (see also Schwabe and

van den Berg 2014; Molenaar and Dolan 2014).

In this research, the psychometric evaluation of the scale

was done on all available data, of parents and offspring,

enhancing statistical power. For the biometric modelling,

however, only twin data was used. Unfortunately it was not

possible to use a parent-offspring model for this paper,

since methodology for the inclusion of a genotype–envi-

ronment interaction effect in parent-offspring design with

significant spouse correlation is still lacking. In future

research, the method that was used in this paper will be

extended to the parent-offspring design.
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