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Prediction of lung adenocarcinoma 
prognosis and diagnosis 
with a novel model anchored 
in circadian clock‑related genes
Qihang Sun 1,2, Shubin Zheng 1,2, Wei Tang 1, Xiaoyu Wang 1, Qi Wang 1, Ruijie Zhang 1, 
Ni Zhang 1* & Wei Ping 1*

Lung adenocarcinoma is the most common primary lung cancer seen in the world, and identifying 
genetic markers is essential for predicting the prognosis of lung adenocarcinoma and improving 
treatment outcomes. It is well known that alterations in circadian rhythms are associated with a 
higher risk of cancer. Moreover, circadian rhythms play a regulatory role in the human body. Therefore, 
studying the changes in circadian rhythms in cancer patients is crucial for optimizing treatment. 
The gene expression data and clinical data were sourced from TCGA database, and we identified the 
circadian clock‑related genes. We used the obtained TCGA‑LUAD data set to build the model, and the 
other 647 lung adenocarcinoma patients’ data were collected from two GEO data sets for external 
verification. A risk score model for circadian clock‑related genes was constructed, based on the 
identification of 8 genetically significant genes. Based on ROC analyses, the risk model demonstrated 
a high level of accuracy in predicting the overall survival times of lung adenocarcinoma patients in 
training folds, as well as external data sets. This study has successfully constructed a risk model for 
lung adenocarcinoma prognosis, utilizing circadian rhythm as its foundation. This model demonstrates 
a dependable capacity to forecast the outcome of the disease, which can further guide the relevant 
mechanism of lung adenocarcinoma and combine behavioral therapy with treatment to optimize 
treatment decision‑making.
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While cancer remains an enduring global health challenge of paramount concern. According to the Global 
Cancer Burden data from the IARC, the year 2020 alone witnessed a staggering 19.29 million new cancer cases 
worldwide, with lung cancer accounting for a formidable 2.27 million cases, and lung cancer stands as the sec-
ond most frequently diagnosed malignancy and the leading cause of cancer-related  mortality1,2.The American 
Cancer Society estimates that in 2022, the United States will witness approximately 350 new lung cancer-related 
fatalities each  day3. Smoking continues to be the predominant risk factor for lung cancer. Beyond smoking, other 
risk factors further heighten the susceptibility to lung cancer, encompassing environmental and occupational 
exposures, chronic respiratory conditions, and lifestyle  factors4–6.

Lung adenocarcinoma, which is the most prevalent histological subtype of non-small cell lung cancer 
(NSCLC), poses a significant global health challenge, accounting for a substantial share of cancer-related mor-
bidity and  mortality7. This cancer originate from the bronchial mucosal epithelium, and occasionally from the 
mucous glands of the larger  bronchi8. Surgery is currently the most effective treatment for early-stage LUAD. 
However, non-surgical radiotherapy and chemotherapy have become the primary modalities for managing 
advanced-stage lung cancer patients, owing to its insidious nature and lack of specificity, often presents with 
advanced-stage  diagnoses9. Despite considerable progress in deciphering its genetic and molecular intricacies, 
many facets of this intricate disease remain elusive. The clinical prognosis of lung adenocarcinoma, character-
ized by inherent heterogeneity and diverse outcomes, continues to be a complex  puzzle4,10,11. Thus, it is vital to 
establish an effective prognostic model.
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The circadian rhythm represents a fundamental phenomenon in the organism’s life processes, encompassing 
physiological, biochemical, and behavioral aspects, cyclically driven by clock genes and clock-controlled genes 
with a periodicity of approximately 24  hours12. Circadian rhythm plays a pivotal role in maintaining internal 
equilibrium. In recent years, the World Health Organization (WHO) has identified circadian rhythm disrup-
tion as a plausible carcinogen based on population and laboratory research findings. Perturbations in circadian 
rhythms have been linked not only to a heightened cancer risk but also to compromised treatment outcomes 
and early mortality in cancer patients, including breast, colon, liver, prostate, pancreatic, ovarian, and lung 
 cancers13–17. Besides, disruption of the circadian rhythm plays a key role in tumorigenesis and facilitates the 
establishment of cancer  hallmarks18.

Moreover, emerging evidence suggests the involvement of circadian rhythms in the tumor immune 
 microenvironment19–21. Dysregulation of circadian rhythm genes can impact critical pathways in cancer develop-
ment and progression, including metabolic regulation, cell cycle control, apoptosis, and DNA damage  response22. 
Given the substantial influence of the tumor immune microenvironment on the efficacy of cancer immuno-
therapy, circadian rhythms may potentially influence the sensitivity to immunotherapeutic interventions by 
modulating the immune  milieu23. Furthermore, it can lead to increased cellular heterogeneity, affecting gene 
transcription and modification, which in turn accelerates tumor  growth24–26. Therefore, it is very important to 
consider circadian clock-associated genes for cancer treatment optimization. Nevertheless, the impact of circa-
dian clock-related genes on the prognosis of lung adenocarcinoma patients, as well as their potential as prognostic 
biomarkers and therapeutic targets, presents an intriguing area for further exploration.

This paper embarks on a comprehensive exploration of the complex relationship between circadian clock-
related genes and the outcome of lung adenocarcinoma. Leveraging advanced computational techniques, includ-
ing monogram and Lasso regression models, we delve into the molecular intricacies of these genes and their 
multifaceted roles in cancer biology. Although we do not present experimental evidence, our research provides 
significant findings into the potential of circadian clock-related genes as key determinants of clinical outcomes 
in lung adenocarcinoma. Through a rigorous analysis of clinical data and a sophisticated predictive model, our 
endeavor is to unearth previously uncharted territory at the nexus of circadian biology and cancer prognosis. 
We anticipate that the findings from this investigation will provide a solid foundation for future advancements in 
precision oncology, offering innovative avenues for personalized treatment strategies and enhancing the overall 
management of lung adenocarcinoma patients.

Materials and methods
Data set acquisition and data processing
The NCI Genomic Data Commons (https:// portal. gdc. cancer. gov/ repos itory) was utilized to obtain the clini-
cal characteristics and RNA sequencing data (HTSeq-FPKM) of 515 patients diagnosed with LUAD. From this 
cohort, 535 samples were collected from LUAD tumor tissue, while 59 samples were obtained from adjacent 
normal tissue. 469 of 500 individuals have both complete sequencing data and comprehensive clinical informa-
tion available.

297 genes related to the circadian rhythm were extracted from 13-gene sets in  MSigDB27,28, and they are pre-
sented in Table S1. The circadian clock-related genes (CCRGs) expression validation data sets  GSE3121029 and 
 GSE6846530 were obtained from the GEO database (https:// www. ncbi. nlm. nih. gov/ geo/). The data containing 
normalized counts was downloaded, with a cut-off date of February 2, 2023. Patients without follow-up data or 
information on circadian gene expression were excluded from the analysis.

The DESeq2 algorithm was used for gene expression data  processing31. Data retrieved from the TCGA and 
GEO databases is a public resource, so ethical clearance was not deemed necessary for the conduct of this 
research, which adhered to their data access and publication policies.

Investigation of differentially expressed gene and pinpointing the circadian clock‑related 
genes
Primary objective of this step was identifying DEGs within the tumor and normal samples using the "DESeq2" 
package, with a p adjust < 0.05, and fold change > 2 or < 0.5. We analyzed the DEGs obtained from the above 
steps, along with 297 circadian clock-related genes by Venn diagram and identified 76 genes related to circadian 
rhythm. The gene expression data from the GSE31210 and GSE68465 datasets were obtained from the GEO 
repository. The "ComplexHeatmap" package for R software (version 4.2.1) was utilized to create a gene expression 
heatmap representing the 76 circadian clock-related  genes32. Functional enrichment analysis and visualization 
were conducted on a set of 89 genes associated with immune infiltration using the software packages "cluster-
Profiler," "org.Hs.eg.db," and "GOplot." 33–35.

Establishment and validation of a risk scoring system
Preliminary univariate Cox regression analyses were carried out among the 76 genes associated with circadian 
rhythm. Subsequently, 16 circadian clock-related genes were chosen for additional examination due to having 
a p value < 0.05. The 16 genes underwent LASSO tenfold cross-validation using the "glmnet" and "survival" 
 packages36,37. Through the analysis, a selection of the 8 most significant predictive genes and the risk-score models 
was made. Following this, the GENEMANIA software was employed to construct protein–protein interaction 
(PPI) networks for these identified  genes38. After that, the genes were assimilated into risk features, resulting in 
the creation of a risk evaluation mechanism that was founded upon the standardized values of gene expression 
and their respective coefficients. The risk evaluation mechanism was devised according to the subsequent math-
ematical expression: Risk score=

∑n
i=1

exprgenei × coef f ieicentgenei 39. The TMM algorithm from the "edgeR" 
package was utilized to compute standardized gene expression  level40. The risk-factor plot was created with the 

https://portal.gdc.cancer.gov/repository
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"ggplot2", and ROC curves were generated utilizing the "timeROC" software  package41,42. Patients were divided 
into high risk group and low risk group depending on the median risk score. Survival curves were generated using 
the "survminer"  package43, and the association between risk score and clinical features was examined through 
dot plots produced by the "ggplot2" software package.

Building and evaluation of the nomogram
To ascertain the viability of the risk scoring system as the stand-alone predictor, the eight gene expression 
parameters (ADRB1, LGR4, BMAL2, RORA, TYMS, NPAS2, PTGDS, and SFTPC) underwent both univari-
ate and multivariate Cox regression analyses using the "survival" package. And by using the "rms" package, a 
nomogram, which helped predict overall survival (OS) probabilities for 1, 3, 5 years, was constructed based on 
the genes. ROC and calibration analyses were carried out to assess the discriminatory power of the nomogram. 
We integrate the data of GSE31210 and GSE68465 as the external verification group of our clinical prediction 
model to test the effectiveness of the model.

GSEA analysis
The "clusterProfiler" package was employed for Gene Set Enrichment Analysis (GSEA), while the "ggplot2" 
package was utilized for data visualization.

Immune cell infiltration level and correlation analysis
Single-sample gene enrichment analysis (ssGSEA) was introduced to quantify the correlation of 28 immune cell 
types in the circadian clock-related  genes44–46.

Statistical analysis
R software (version 4.2.1) was utilized to carry out all statistical analyses in this study. Kaplan–Meier survival 
analysis was performed using the log-rank test, while hazard ratios (HRs) and 95% confidence intervals (CIs) 
were calculated during the regression analysis. For the comparison of two groups of continuous variables, the 
statistical significance of normally distributed variables was estimated using the independent Student’s t test, 
while the differences between non-normally distributed variables were analyzed using the Mann–Whitney U test 
(also known as the Wilcoxon rank-sum test). Chi-squared tests or Fisher’s exact tests were employed to compare 
and analyze the statistical significance between two groups of categorical variables. Univariate and multivariate 
Cox analyses were conducted to identify independent prognostic factors. All statistical P-values were two-sided, 
with a p value of < 0.05 considered statistically significant.

Results
Identification of circadian clock‑related genes in LUAD patients
Utilizing the DESeq2 algorithm, a total of 5382 DEGs were identified between 535 TCGA-LUDA samples and 
59 normal lung samples, in accordance with the DEGs criteria. Venn diagrams were analyzed for these 5382 
DEGs and 276 circadian clock-related genes retrieved from the MsigDB database. The analysis conducted above 
led to the identification of 76 genes related to circadian rhythm (Fig. 1A). We then validated the expression of 
76 circadian clock-related genes in the TCGA-LUAD as well as the GSE31210 and GSE68465 datasets obtained 
from the GEO database (Fig. 1B, C and Figure S1). Figure 1D and E. display the Top10 results of each ontology 
enrichment analysis. From Fig. 1D, we can observe that in the GO analysis, these genes show significant enrich-
ment in areas such as regulation of rhythmic behavior, response to radiation and light, gene expression, gene 
transcription, biological metabolism, and signal transduction. Figure 1E presents the KEGG results, revealing 
notable enrichment in embryonic neural development, signal transduction, osteoclast differentiation, ampheta-
mine addiction, and renin secretion. The comprehensive findings were presented in Table S2.

Establishment and evaluation of risk scoring system
First, a univariate Cox regression analysis was conducted to examine the expression of 76 circadian clock-related 
genes in relation to the OS time of patients in the TCGA-LUAD cohort. By applying a Cox P-value threshold 
of less than 0.05, a total of 16 potential predictive genes associated with OS were identified and documented in 
Table S3. Subsequently, the gene sets were further refined using LASSO regression analysis, as depicted in Fig. 2A 
and B. From this refinement process, eight genes were determined to be the most significant predictive genes. 
We used  RhythmicDB47 to investigate whether these 8 genes have been experimentally validated as oscillating 
genes. The results showed that all 8 genes have been identified as oscillating genes in multiple species. In Homo 
sapiens, PTGDS, ADRB1, and TYMS have been confirmed as oscillating genes. Based on the formula, a risk 
scoring system was established and documented in Table 1. The results of Kaplan–Meier analysis are presented 
in Figure S2. A gene–gene interaction network was developed for the eight genes in order to investigate their 
functions utilizing the GeneMANIA database. The central hub node, which symbolized these genes, was encir-
cled by 20 nodes that represented genes showing significant correlations with them. Additionally, the network 
highlighted the top seven related functions associated with these genes (Fig. 2C).

To examine the manifestation of the selected genes between LUAD and normal tissues, additional investiga-
tion was carried out utilizing immunohistochemical information sourced from the Human Protein Atlas (HPA) 
 database48. The findings are depicted in Fig. 3. Regrettably, the immunohistochemical data for certain genes were 
not accessible at the time from the HPA database.

Subsequently, we assessed the correlation between eight specific genes and various clinical indicators (Fig. 4). 
Our analysis revealed distinct variations in the expression of "ADRB1", "BMAL2", and "RORA" across different 
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T stages. Similarly, "BMAL2", "RORA", and "PTGDS" showed differential expression across various N stages. 
Notably, "TYMS" exhibited significant differences in expression between different M stages. These five genes dem-
onstrated substantial variability in expression across different pathological stages. We also observed significant 
differences in the expression levels of "RORA" between smokers and non-smokers. In individuals smoking ≥ 40 
packs per year, the expression level of "ADRB1", "LGR4" and "RORA" was significantly less compared to those 
smoking < 40 packs annually, and the expression of "TYMS" demonstrated a contrasting trend. Additionally, we 
conducted a correlation analysis of these eight genes with different tumor locations. Besides, analysis demon-
strated increased levels of "NPAS2" expression in tumors located on the left side, and "BMAL2" showed higher 
expression in central-type lung cancers. Besides, significant variations in the expression of these eight genes 
were also observed across different biological sexes, ages, and races. "BMAL2" and "TYMS" exhibited higher 
expression levels in males, while "PTGDS" showed significantly increased expression in females. The expression 
of "ADRB1" and "PTGDS" was more pronounced in individuals over 65 years of age. Additionally, "LGR4" and 
"BMAL2" demonstrated more significant expression in white people.

Through an examination of the expression levels and regression coefficients of 8 circadian clock-related genes, 
the risk score for each patient was calculated. The distribution of risk scores and the expression levels of the 8 
circadian clock-related genes are visually represented in Fig. 5A. Subsequently, patients were categorized into 
high- and low-risk groups based on median risk scores.

Furthermore, the analysis of the survival time distribution revealed a clear association between risk score 
and prognosis, with higher risk scores indicating a worse forecast (P < 0.001; Fig. 5B). Additionally, our findings 
demonstrate a negative correlation between the expression levels of four genes (BMAL2, LGR4, NPAS2, and 
TYMS) and overall survival (OS), while the expression levels of four other genes (ADRB1, PTGDS, RORA, and 
SFTPC) show a positive correlation with OS (Figure S2). Figure 5C presents the evaluation of the risk scoring 
system’s performance using time-ROC curves for 1-, 3- and 5-year prognoses. The AUCs for 1-, 3-, and 5-year 
OS times were found to be 0.726, 0.679, and 0.654, respectively.

Association between risk scores and genes
Additionally, we examined correlation ship between risk scores and circadian clock-related genes, and there are 
a noteworthy association among them (Fig. 6A). The high-risk group exhibit a higher level in LGR4 (P < 0.001), 

Figure 1.  Identification and functional enrichment analysis of circadian clock-related genes between the 
TCGA-LUAD cohort and normal lung samples. (A) Venn diagram of the intersection between circadian clock-
related genes and DEGs identified by the DESeq2 algorithm. (B) Heat map of 76 DEGs related to circadian 
rhythm in the data set TCGA-LUAD. (C) Heat map of 76 DEGs related to circadian rhythm in the data set 
GSE31210. Terms of Gene Ontology (GO) enrichment analysis (D) and KEGG pathways (E) related to the 76 
circadian clock-related genes.
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Figure 2.  Demonstration of DEGs with univariate Cox regression P value < 0.05. (A) The LASSO regression 
model of the 16 circadian clock-related genes performed by Lasso-ten-fold cross-validation. (B) The coefficient 
distribution in the LASSO regression mode. (C) The gene–gene interaction network for the eight potential 
genes.

Table 1.  8 circadian clock-related genes identified by LASSO regression analysis. adj.P, adjusted P value.

Gene Symbol Description logFC P.Value adj.P

ADRB1 Beta-1 adrenergic receptor 2.488927511 2.91089E − 36 8.78832E − 35

LGR4 Leucine-rich repeat-containing G-protein coupled receptor 4 − 3.147768189 1.13084E − 42 4.74852E − 41

BMAL2 Basic helix-loop-helix ARNT-like protein 2 − 1.021687521 4.75207E − 13 3.06504E − 12

RORA Nuclear receptor ROR-alpha − 1.72205315 1.38125E − 21 1.68858E − 20

TYMS Thymidylate synthase − 4.729705542 4.24937E − 37 1.33646E − 35

NPAS2 Neuronal PAS domain-containing protein 2 1.22031332 4.02077E − 16 3.29097E − 15

PTGDS Prostaglandin-H2 D-isomerase 1.875724194 5.19283E − 48 2.88576E − 46

SFTPC Pulmonary surfactant-associated protein C 2.720691626 1.03421E − 90 4.13116E − 88
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BMAL2 (P < 0.001), TYMS (P < 0.001) and NPAS2 (P < 0.001), the low-risk group has a higher score in ADRB1 
(P < 0.001), RORA (P < 0.001), PTGDS (P < 0.001), SFTPC (P < 0.001). Besides, the scores had a negative cor-
relation with ADRB1, PTGDS, RORA and SFTPC, while positively correlated with BMAL2, LGR4, NPAS2 and 
TYMS (Fig. 6B-I).

Development and validation of nomogram
Initially, univariate and multivariate Cox regression analyses were conducted on candidate circadian clock-
associated genes, including ADRB1, LGR4, BMAL2, RORA, TYMS, NPAS2, PTGDS, and SFTPC, to investigate 
their impact on the prognosis of patients with lung adenocarcinoma (Table 2).

The findings of the study indicated that several genes, namely LGR4, BMAL2, RORA, TYMS, NPAS2, and 
SFTPC, were identified as autonomous predictors of overall survival (OS) among individuals diagnosed with 
lung adenocarcinoma. These 8 genes were then incorporated into a nomogram model, as depicted in Fig. 7A. The 
nomogram model we developed exhibited a C-index of 0.692 (0.664–0.720), indicating its moderate predictive 
accuracy. Subsequently, we assessed its predictive ability through ROC analysis. In the TCGA-LUAD cohort, the 
area under the AUC curve values of the nomogram for the 1-, 3-, and 5-year OS were 0.710, 0.667, and 0.648, 
respectively, as shown in Fig. 7B.

Figure 3.  Immunohistochemical analysis of LUAD and normal lung tissue determined by HPA database. (A) 
LGR4; (B) NPAS2; (C) PTGDS; (D) RORA; (E) TYMS. 
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Furthermore, we employed calibration curves to assess the agreement of the nomogram. The calibration 
plots of the model demonstrated favorable coherence with the ideal model for the 1-, 3-, and 5-year OS rates, 
as depicted in Fig. 7C.

We integrate the data of GSE31210 and GSE68465 as an external verification group to test the effectiveness of 
the model. The C-index of the external validation set was 0.686(0.669–0.703). The AUCs for the 1-, 3-, and 5-year 
were 0.685, 0.659, 0.645 (Fig. 7D), and we also used the calibration curve to evaluate the effectiveness (Fig. 7E).

Figure 4.  The correlation between eight specific genes and various clinical indicators.
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GSEA
To assess the potential influence of the genes on incidence and progression of LUAD, GSEA was performed. And 
results demonstrated that DEGs between high-risk group and low-risk group were predominantly enriched in 
various pathways. These pathways include CD22 mediated BCR regulation, FcγR activation, the role of phospho-
lipids in phagocytosis, the role of LAT2/NTAL/LAB in calcium mobilization, antigen activation of BCR leading 
to the generation of second messengers, FcεRI mediated Ca2 + mobilization, FcεRI mediated MAPK activation, 
FCGR3A mediated IL10 synthesis, assembly of the ORC at the origin of replication, and HDACs deacetylate 
histones (Fig. 8). The results indicate that genes associated with circadian rhythm could potentially influence 
the regulation of the immune system, lipid metabolism, calcium mobilization, cell signaling pathways, and cell 
cycle in LUAD.

Immune cell infiltration level analysis
Correlation analysis of the circadian clock-related genes and the 28 different immune cell types (immunome) 
showed that TYMS had a positive correlation with 27 of 28 the different immune cell types (P < 0.01), and no 
correlation with Eosinophil. ADRB1 had a negative correlation with all 28 different immune cell types, with 
significance of P < 0.01 for 24 pathways, and 2 pathways with significant P < 0.05, and the remaining 2 pathways 
were not significant. BMAL2 had a positive correlation with Type 2 T helper cell and neutrophil, and a negative 
correlation with the other 26 of 28 pathways. NPAS2 had no correlation with the 28 immune cell type. There was 
no clear trend or significance between LGR4, RORA, PTGDS and SFTPC and these immune pathways (Fig. 9A).

The association between the forecasting model and the infiltration of immune cells were also computed. 
There is a reduce in immune cell infiltration among individuals classified as high-risk, such as activated B cell 
(P < 0.001), eosinophil (P < 0.001), immature B cell (P < 0.001), immature dendritic cell (P < 0.001), and mast cell 
(P < 0.001). Conversely, the high-risk group displayed elevated levels of activated CD4 T cell (P < 0.001), central 
memory CD8 T cell (P < 0.01), gamma delta T cell (P < 0.01), natural killer T cell (P < 0.01), neutrophil (P < 0.01), 
and type 2 T helper cell (P < 0.001) (Fig. 9B). Furthermore, there was a negative correlation observed between the 
risk score and the infiltration of immune cells, including activated B cell, eosinophil, immature B cell, immature 
dendritic cell, and mast cell (Fig. 9C-M).

Finally, in order to investigate the potential therapeutic drugs, we conducted drug prediction using the DGIdb 
database (https:// dgidb. org/). A total of 137 drugs that target 5 specific genes were identified. To establish a 
prognostic genes-drug network, we utilized 5 prognostic genes (ADRB1, LGR4, PTGDS, RORA, TYMS) and 137 

Figure 5.  The risk score analysis, prognostic performance and survival analysis of the risk scoring model based 
on the differential expression of the 8 circadian clock-related genes in TCGA-LUAD patients. (A) The risk score, 
survival time distributions and gene expression heat map of circadian clock-related genes in the TCGA-LUAD 
cohort. (B) The ROC curves of the risk scoring model predicting OS of 1-year, 3-year, and 5-year in the TCGA-
LUAD cohort. (C) Kaplan–Meier survival analysis of the OS between the risk groups in the TCGA-LUAD 
cohort.

https://dgidb.org/
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drugs (including ROSMANTUZUMAB, AMINOCAMPTOTHECIN, and INTERFERON BETA-1A) (Fig. 9N). 
This network consisted of 142 nodes and 137 edges.

Discussion
Lung adenocarcinoma, which poses a significant global health challenge, accounting for a substantial share of 
cancer-related morbidity and mortality, is the most prevalent subtype of NSCLC, and has a highly heterogene-
ous morphological characteristic and is remarkably variable in  prognosis7,10,11,49,50. In recent years, due to the 
rapid advancements in high-throughput technologies and bioinformatics methods, increasing attention has 
been focused on the crucial role of gene markers based on specific correlations in predicting the prognosis of 
 LUAD51–53.

There is clear evidence of differential expression of CCRGs in various diseases, including  cancer54. Besides, 
in recent years, the World Health Organization (WHO) has identified “night shift work involving circadian 
disruption” as “probably carcinogenic to humans” (Group 2A) based on population and laboratory research 

Figure 6.  Correlation between the risk score and the circadian clock-related genes in the TCGA-LUAD data 
set. (A) The box plot showed the expression levels of the circadian clock-related genes between the high-risk 
group and low-risk group in LUAD patients. Scatter plots of correlation between the expression and risk score 
(B) ADRB1; (C) BMAL2; (D) LGR4; (E) NPAS2; (F) PTGDS; (G) RORA; (H) SFTPC; (I) TYMS). *P < 0.05, 
**P < 0.01, ***P < 0.001.
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Table 2.  Univariate and multivariate Cox regression analysis between the genes’ expression level and OS in the 
TCGA-LUAD cohort. HR Hazard ratio, 95%CI 95% confidence interval.

Characteristics Total(N)

Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

ADRB1 530 0.089

  Low 264 Reference Reference

  High 266 0.779 (0.584–1.040) 0.090 0.984 (0.715–1.354) 0.921

LGR4 530 0.003

  Low 265 Reference Reference

  High 265 1.540 (1.154–2.055) 0.003 1.351 (1.005–1.818) 0.047

BMAL2 530 0.001

  Low 265 Reference Reference

  High 265 1.616 (1.206–2.165) 0.001 1.391 (1.008–1.919) 0.044

RORA 530 0.004

  Low 263 Reference Reference

  High 267 0.647 (0.481–0.871) 0.004 0.700 (0.514–0.953) 0.024

TYMS 530 0.003

  Low 264 Reference Reference

  High 266 1.547 (1.158–2.067) 0.003 1.278 (0.937–1.744) 0.121

NPAS2 530 < 0.001

  Low 266 Reference Reference

  High 264 1.675 (1.255–2.236) < 0.001 1.530 (1.137–2.057) 0.005

PTGDS 530 0.171

  Low 264 Reference Reference

  High 266 0.819 (0.615–1.091) 0.172 0.983 (0.727–1.331) 0.913

SFTPC 530 0.042

  Low 265 Reference Reference

  High 265 0.742 (0.556–0.990) 0.042 0.898 (0.657–1.227) 0.498

Figure 7.  Prognostic nomogram for the 1-year, 3-year, and 5-year OS of LUAD patients. (A) The independent 
risk factors that affect the OS of LUAD patients screened by multiple Cox regression were incorporated into the 
nomogram model. (B) The ROC curves for predicting the nomogram of 1-year, 3-year, and 5-year OS in the 
TCGA-LUAD cohort. (C) The nomogram calibration curves for predicting the 1-year, 3-year, and 5-year OS of 
the TCGA-LUAD cohort. (D) The ROC curves in the external verification group. (E) The nomogram calibration 
curves of the external verification group.
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Figure 8.  GSEA analysis of the DEGs between the high-risk group and the low-risk group in the TCGA-LUAD 
cohort. Top 10 terms of GSEA analysis (CD22 mediated BCR regulation, FcγR activation, role of phospholipids 
in phagocytosis, role of LAT2/NTAL/LAB on calcium mobilization, antigen activates BCR leading to gen-
eration of second messengers, FcεRI mediated Ca2+ mobilization, FcεRI mediated MAPK activation, FCGR3A 
mediated IL10 synthesis, assembly of the ORC at the origin of rep-lication and HDACs deacetylate histones).

Figure 9.  Analysis of immune cell infiltration in TCGA-LUAD cohort. (A) The heatmap showed the correlation 
between the circadian clock-related genes and the 28 different immune cell types. (B) The box plot showed the 
levels of immune cell infiltration between the high-risk group and low-risk group in LUAD patients. Scatter 
plots of correlation between immune cell infiltrations and risk score (C) Activated B cell; (D) Activated CD4 
T cell; (E) Central memory CD8 T cell; (F) Eosinophil; (G) Gamma delta T cell; (H) Immature B cell, (I) 
Immature dendritic cell; (J) Mast cell; (K) Neutrophil; (L) Natural killer T cell; (M) Type 2 T helper cell). (N) 
The network of drugs and prognostic genes. *P < 0.05, **P < 0.01, ***P < 0.001.
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 findings55. Existing research results indicate that CCRGs play a significant role in the regulation of epigenetic 
control mechanisms during tumor initiation and progression. Disruption of circadian rhythms can promote 
the expression of cancer biomarkers, increase cellular heterogeneity, affect gene transcription and modification, 
and accelerate tumor  growth24–26. This has been reported in various studies on different types of tumors, high-
lighting the increasing importance of circadian rhythm biology in enhancing our understanding of molecular 
mechanisms in cancer  cells13–15,56.

By analyzing, we identified 5382 DEGs. Comparing these differentially expressed genes with CCRGs, we 
obtained a total of 76 DEGs associated with circadian rhythm. Among them, 16 genes which significantly cor-
related with overall survival were identified as potential prognostic markers. After performing LASSO regression 
and multivariate Cox regression analysis, we identified 8 potential prognostic markers (ADRB1, BMAL2, LGR4, 
NPAS2, PTGDS, RORA, SFTPC and TYMS). According to the results from RhythmicDB, PTGDS, ADRB1, and 
TYMS have been identified as oscillating genes in Homo sapiens. Additionally, the other genes have been con-
firmed as oscillating genes in different species. This warrants further research to explore the specific effects of 
these genes. We constructed a prognostic model using these 8 CCRGs. Among them, the expression levels of 4 
genes (BMAL2, LGR4, NPAS2, and TYMS) were negatively correlated with OS, while the expression levels of 4 
genes (ADRB1, PTGDS, RORA, and SFTPC) were positively correlated with OS (Figure S2).

ADRB1, also recognized as β-1 adrenergic receptor (AR), is part of the G-protein coupled receptor family. 
Anna-Maria Globig and her colleagues have pointed out that in situations where there is long-term exposure to 
antigens, the signaling of adrenergic receptors on T cells through ADRB1 is crucial in the final differentiation 
of T cells into an exhausted  state57.

BMAL2 plays a crucial role in the regulation of biological rhythms and exerts a substantial influence on the 
clinical characteristics and prognosis of individuals diagnosed with lung adenocarcinoma. Researchers have 
identified a significant correlation between elevated BMAL2 expression and lymph node metastasis in individu-
als diagnosed with lung adenocarcinoma. Moreover, the expression level of BMAL2 in lung adenocarcinoma is 
associated with tumor immune infiltration and immune checkpoint  activity58,59.

LGR4 is a transmembrane receptor member of the GPCRs  superfamily60 and is highly expressed in lung 
adenocarcinoma. Yang and colleagues demonstrated that miR-449b targets LGR4, with decreased expression 
levels observed in LUAD in comparison to normal tissues. The upregulation of miR-39b results in decreased 
proliferation and invasion abilities of lung cancer cell lines through the downregulation of LGR4  expression61, 
thus, highlighting the role of LGR4 in migration and invasion processes.

The absence of normal NPAS2 may lead to several defects in the aspects of the circadian rhythm system, such 
as sleep and behavioral  patterns62. Previous reports have indicated that NPAS2 is involved in tumorigenesis by 
regulating PER2, which can act as a tumor  suppressor63, and by inhibiting transcription of the oncogene c-Myc64 
and there is a close correlation between genetic variations in NPAS2 and clinical outcomes in NSCLC  patients65.

PTGDS is the key enzyme responsible for regulating the synthesis of PGD2. Currently, research indicates that 
PTGDS is downregulated in lung adenocarcinoma and is associated with the  prognosis66. The invasive ability of 
tumor cells is closely related to PTGDS67,68.

RORα belongs to the superfamily of orphan nuclear receptors (NRs). The fundamental capacity of RORα to 
control the expression of target genes plays a crucial role in the activation of tumor-suppressive  genes69.

Surfactant protein C (SFTP-C) is the key element of pulmonary surfactant that helps to prevent the collapse of 
 alveoli70. A previous research report observed the absence of SFTPC in NSCLC  tissues71, and Bin Li et al. found 
that SFTPC was downregulated in lung adenocarcinoma tissues and cell lines (H1650, H441, and A549), and 
low expression of SFTPC was associated with poor  prognosis72.

TYMS, a rate-limiting enzyme in the process of DNA  synthesis73. High expression levels of TYMS have been 
associated with adverse reactions to 5-FU, shorter survival time, and other unfavorable clinical outcomes in 
various solid  tumors74,75.

The correlations identified in this study between various circadian rhythm genes and clinical indicators sug-
gest that these genes might have a multifaceted impact on the initiation and advancement of tumors through 
multiple  pathways76,77. BMAL2 is highly expressed in individuals with higher T or N stages, consistent with 
previous findings that elevated BMAL2 levels affect lymph node  metastasis59. In contrast, RORA and PTGDS 
exhibit an opposite trend to BMAL2 across different T and N stages. According to previous research, high 
PTGDS expression reduces tumor metastasis, which aligns with our  findings66,67. It is well known that smoking 
is a significant risk factor for lung cancer. In our subgroup analysis of smokers, we found that RORA expression 
is elevated in individuals with no smoking history and those who smoke fewer than 40 packs per year. This sug-
gests that tobacco may influence tumor suppression through the RORA pathway, leading to the development of 
lung  cancer69. Besides, the observed differences in circadian rhythm gene expression across biological sexes, ages, 
ethnicities, and tumor locations were unexpected, underscoring the critical role these genes play in biological 
growth and development. These results indicate that these genes possess commendable sensitivity and specificity.

The GSEA indicated that these CCRGs could play a potential part in CD22 mediated BCR regulation, FcγR 
activation, role of phospholipids in phagocytosis, role of LAT2/NTAL/LAB on calcium mobilization, antigen 
activates BCR leading to generation of second messengers, FcεRI mediated Ca2+ mobilization, FcεRI medi-
ated MAPK activation, FCGR3A mediated IL10 synthesis, assembly of the ORC at the origin of replication and 
HDACs deacetylate histones. Tuscano et al. determined through experiments that CD22 antigen is broadly 
expressed on lung cancer cells and suggested its potential as a therapeutic target for lung  cancer78. Multiple 
studies have indicated that the utilization of FcγR binding may potentially enhance anti-tumor activity, offering 
a promising strategy for the treatment of lung  cancer79. Yingfang Lu et al. discovered that the FcεRI signaling 
pathway may be closely associated with the inhibition of lung cancer and the regulation of gut microbiota 
 balance80. Geetha Shanmugam et al. further elucidated the significance of HDAC inhibitors in the treatment 
of lung cancer, highlighting the potential of HDAC as a targeted therapeutic  approach81. The above-mentioned 
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study has already demonstrated the dependability of our result; however, extra research is needed to explore the 
mechanisms of different pathways.

Our analysis demonstrated the engagement of these genes in diverse biological activities, encompassing 
cell cycle management, metabolic processes, immune system regulation, inflammatory reactions, cytoskeleton 
restructuring, chromatin modification, DNA damage-induced apoptosis, and protein synthesis and trafficking. 
Therefore, these processes in tumor cells may be influenced by circadian rhythms. Some studies have suggested 
that significant epigenetic changes in circadian clock-related genes promote the occurrence and progression of 
lung cancer, leading to decreased survival  rates77,82.

Examination of immune cell infiltration reveals that an appreciable surge in the levels of infiltration was noted 
for key cells, such as activated CD4 T cells and central memory CD8 T cells, while immature immune cell infiltra-
tion decreases, in specific anti-tumor immune processes in high-risk patients. The current viewpoint suggests that 
the CCRGs are widely expressed in immune cells and exhibit a fixed circadian  rhythm83. Differential expressions 
of the CCRGs gene are important in the development and specificity of immune cell lineages. Evidence suggests 
that disruptions in circadian rhythm caused by differential gene expression in cancer cells may lead to immune 
dysregulation, which could be attributed to mutations in clock genes, environmental disturbances, or age and 
the tumor itself. Disruption of normal circadian rhythm may result in differential expression of CCRGs and 
metabolic rhythm, potentially contributing to both host immune support and increased susceptibility to tissue 
damage and catastrophic  vulnerability84.

Moreover, the drug prediction outcomes indicated that various small-molecule drugs specifically target 
ADRB1, LGR4, PTGDS, RORA, TYMS. Among them, ROSMANTUZUMAB targeted LGR4. ROSMANTU-
ZUMAB, a humanized monoclonal antibody designed for the treatment of cancer, has been shown to modulate 
the Wnt pathway for tumor cell  survival85. ROSMANTUZUMAB demonstrated promising antitumor activity 
in some preclinical models of colon  cancer86. We hypothesize ROSMANTUZUMAB could exert its effects by 
targeting LGR4. AMINOCAMPTOTHECIN has been found to exhibit inhibitory biological activity against repair 
of single-strand DNA  breakages87. Thus, AMINOCAMPTOTHECIN might exert inhibitory effects on LUAD 
by targeting TYMS. Numerous other pharmaceuticals that target prognostic genes have also shown potential 
in treating cancer. Moving ahead, our group aim to validate the effectiveness of these drugs through clinical 
data and investigate their mechanisms of action. All of the findings imply this work could pave the way for new 
approaches to treating LUAD.

Conclusions
In summary, we have innovatively constructed and rigorously a novel risk stratification system founded upon cir-
cadian clock-associated genes, meticulously derived from the TCGA dataset. This pioneering approach facilitates 
the precise prognostic assessment of patients afflicted with LUAD. Furthermore, we built a nomogram model, 
meticulously designed for the prediction of OS, showcasing remarkable predictive precision. And through our 
meticulous investigation, we have successfully unearthed eight differentially expressed genes closely linked to 
the circadian rhythm in the context of LUAD. These groundbreaking findings are poised to serve as the bedrock 
for the future advancement of precision oncology. They open innovative avenues for tailoring personalized 
treatment strategies and, in turn, promise to elevate the overall standard of care and management for individuals 
grappling with lung adenocarcinoma.

Data availability
The data sets analyzed during the current study are all available in public databases. The gene expression data and 
clinical data of 535 LUAD samples and 59 control samples were obtained from the TCGA database (https:// portal. 
gdc. cancer. gov/). The immune infiltration-related gene expression validation data sets GSE31210 and GSE68465 
were obtained from the GEO database (https:// www. ncbi. nlm. nih. gov/ geo/). The immune infiltration-related 
gene data were downloaded from MSigDB (https:// www. gsea- msigdb. org/ gsea/). The immunohistochemical data 
of immune infiltration-related genes in HCC and normal liver tissues were obtained from the Human Protein 
Atlas (HPA) database (https:// www. prote inatl as. org/).
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