
Using FLOSS for Storing, Processing
and Linking Corpus Data

Damir Mukhamedshin , Olga Nevzorova(B) , and Alexander Kirillovich

Kazan Federal University, Kazan, Russia
damirmuh@gmail.com, onevzoro@gmail.com,

alik.kirillovich@gmail.com

Abstract. Corpus data is widely used to solve different linguistic, educational
and applied problems. The Tatar corpusmanagement system (http://tugantel.tatar)
is specifically developed for Turkic languages. The functionality of our corpus
management system includes a search of lexical units, morphological and lexical
search, a search of syntactic units, a search of N-grams and others. The search
is performed using open source tools (database management system MariaDB,
Redis data store). This article describes the process of choosing FLOSS for the
main components of our system and also processing a search query and building
a linked open dataset based on corpus data.

Keywords: Corpus linguistics · Corpus manager · Linked open data

1 Introduction

In this paper, we discuss the development of the corpus management system for the
Tatar National Corpus “Tugan Tel” [1]. The corpus is organized as a collection of texts
covering different genres, such as fiction, news, science, official, etc. A text consists in
sentences (called contexts). The words from a sentence are provided with morphological
annotation. The annotation of a word includes the lemma, POS and the sequence of
grammatical features expressed by the affixes.

Access to the corpus is provided by the corpus management system. The system
allows users to search for word tokens with a specified full form or lemma and gram-
matical features. The search results are represented as a list of the sentences containing
the found word tokens. Figure 1 shows the search result for the word kuman ‘book’ in
the plural number and the genitive or the directive case. The tooltip under one of the
found tokens contains its morphological annotation.

The general architecture of the corpus management system is represented at Fig. 2.
This model includes three main components: a web interface, a search engine, and a
database. The system imports the annotated texts from the corpus annotation tool, and
exports them to a triplestore of the LLOD publishing platform.

Development of the corpus management system cannot begin without a clear under-
standing of which tools will be used to store and process corpus data. Therefore, one of
the important factors when choosing and using tools for data storing and processing is

© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
V. Ivanov et al. (Eds.): OSS 2020, IFIP AICT 582, pp. 177–182, 2020.
https://doi.org/10.1007/978-3-030-47240-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47240-5_17&domain=pdf
http://orcid.org/0000-0003-0078-9198
http://orcid.org/0000-0001-8116-9446
http://orcid.org/0000-0001-9680-449X
http://tugantel.tatar
https://doi.org/10.1007/978-3-030-47240-5_17


178 D. Mukhamedshin et al.

Fig. 1. The corpus manager GUI

for us their open source code, which is fundamental to ensure transparency and flexibility
of the tool.

When choosing tools for processing and storing corpus data, we were faced the task
of finding a set of FLOSS to ensure high speed of performing search queries (no more
than 0.1 seconds for direct search queries, no more than 1 second for reverse search
queries), wide search capabilities (at least direct and reverse search, search in parts of
word forms and lemmas, mixed search, phrase search), and the possibility of further
growth of system performance and functionality.

Fig. 2. Abstract structure of the corpus data management system

In Sect. 2 we describe using of FLOSS in the corpus management system, and in
Sect. 3 we describe using of FLOSS the LLOD publishing platform.



Using FLOSS for Storing, Processing and Linking Corpus Data 179

2 Using FLOSS in Corpus Management System

To choose FLOSS for storing and processing of corpus data, we formed a list of the most
important selection criteria:

1. Performance. The solution should produce an average of at least 10 search operations
per second.

2. Functionality. The solution should provide a possibility of direct and reverse search
by wordforms and lemmas, search by parts of wordforms and lemmas, and phrase
search.

3. Compatibility with other software. FLOSS for data storage shouldworkwith FLOSS
for data processing and vice versa.

4. Completeness of documentation and presence of a large community. Everyone
should be able to continue its development, focusing on the documentation and
the accumulated experience of the community.

5. Development prospects. The solution should develop and maintain modern tech-
nologies.

We analyzed information in public sources [2] and chose FLOSS according to criteria
2–5. The resulting FLOSS set is presented in Table 1.

Table 1. Chosen FLOSS for storing and processing corpus data.

Name Type and main features

memcacheda Storage system of keys and values in memory

memcacheDBb Distributed key-value storage system. It supports transactions and replication

Redisc Non-relational distributed data storage system. It allows storing strings and
arrays and making selections from them

FoundationDBd NoSQL database with a shared nothing architecture. It provides an ordered
key-value store with transactions

Sphinxe Search system consisting of an indexer and a full-text search module

Elasticsearchf Distributed RESTful search engine. It allows making full-text search for
structured data and performing complex search queries

MySQLg Relational DBMS
ahttps://github.com/memcached/memcached
bhttps://github.com/LMDB/memcachedb
chttps://github.com/antirez/redis
dhttps://github.com/apple/foundationdb
ehttps://github.com/sphinxsearch/sphinx
fhttps://github.com/elastic/elasticsearch
ghttps://github.com/mysql/mysql-server

To verify compliance with the first criterion, we conducted a series of experiments on
writing and searching based on the generated data [3]. The best results were shown by the

https://github.com/memcached/memcached
https://github.com/LMDB/memcachedb
https://github.com/antirez/redis
https://github.com/apple/foundationdb
https://github.com/sphinxsearch/sphinx
https://github.com/elastic/elasticsearch
https://github.com/mysql/mysql-server


180 D. Mukhamedshin et al.

MySQL+ Redis suite, which was chosen by us to store data in the corpus management
system.

To build the system based on the selected components, additional elements must
be included. So, to bind the PHP interpreter and the Redis data warehouse, we use
the PhpRedis extension. In order for the PHP interpreter and MySQL DBMS to work
in tandem, we use the php-mysql package, namely the mysqlnd driver, which allows
working with the DBMS using its own low-level protocol.

Thus, the scripts executed by the PHP interpreter allow operations with data both
from the Redis data storage and from the MySQL DBMS. Performing operations in the
order necessary to solve the tasks assigned to the corpus data management system, PHP
scripts are the link between indexes and cached data stored in Redis storage, index tables
and text data stored in MySQL DBMS.

Let us consider how the processing of a simple direct search query alma tat/apple en
is executed. The process execution of such query is shown in Fig. 3.

Search query: 
‘alma’

Searching the ID 
of ‘alma’

Redis

PhpRedis

Searching IDs of 
sentences in 
index table

MySQLmysqlnd

Selecting texts 
of sentences

Showing results 
in HTML/JSON

Fig. 3. Process execution of search query alma

First of all, the script that performs this task searches the identifier of the word-form
alma in the Redis database, by making a request using the PhpRedis extension. Already
at this point, the script may report an error in the query, if the identifier of the desired
wordform is not found in the corpus data.

In the second step, the script makes a request to theMySQL database using mysqlnd.
In this case, the script needs to get a list of sentences containing the desired wordform.
This data is stored in the index table of corpus data. In response, the script receives a
list of context (sentence) identifiers, according to which in the third step the required
number of sentence texts is requested. The received data is displayed to an user in the
form of an HTML document or a JSON structure.



Using FLOSS for Storing, Processing and Linking Corpus Data 181

3 Building a Linked Open Dataset Based on Corpus Data

The corpus has been published on the Linguistic LinkedOpenData cloud [4]. The dataset
is represented in terms of NIF [5], OntoLex-Lemon [6], LexInfo, OLiA [7] andMMoOn
[8] ontologies.

Fig. 4. LLOD publishing platform

LLOD publishing platform consists in the following open-source components
(Fig. 4). The RDF is stored in the OpenLink Virtuoso triplestore. The dataset is available
via deferrable URI’s and SPARQL endpoint. Deferrable URI’s are accessible throws the
LodView RDF browser, based on the Apache Tomacat webserver. The query interface
is powered by YASQE [9].

Publication of the corpus on the LLOD cloudmakes possible its interlinking with the
external linguistic resources for Tatar, includingRussian-Tatar Socio-Political Thesaurus
[10], TatWordNet and TatVerbBank.

4 Conclusion

The solutions presented in this article are applied in the developed corpus manage-
ment system. Using FLOSS significantly reduced the development time and ensured
the transparency of processes, flexibility, and possibility of in-depth analysis, as well as
opportunities for further development.

The corpus data management system is used to work with Tatar texts. The total
volume of the collection of Tatar texts is about 200 million wordforms. The average
execution time of the direct search query does not exceed 0.05 s in 98% of cases, and the
reverse search is performed by the system within 0.1 s in 82% of cases, which exceeded
the expected system performance. In many ways, such performance is provided by
FLOSS, used for data storage and processing. Also, thanks to FLOSS, search capabilities
were expanded in the system. The search using category lists, the complex search using
logical expressions, the search for named entities and other functions were added to the
advanced version of the system.

Currently, the corpus management system is in open beta testing and available online
at http://tugantel.tatar. After that, we are going to release it under an open license.

http://tugantel.tatar


182 D. Mukhamedshin et al.

Acknowledgements. The work was funded by Russian Science Foundation according to the
research project no. 19-71-10056.

References

1. Suleymanov, D., Nevzorova, O., Gatiatullin, A., Gilmullin, R., Khakimov, B.: National corpus
of the Tatar language “Tugan Tel”: grammatical annotation and implementation. In: Vargas-
Sierra, C., (ed.). Selected Papers from the 5th International Conference onCorpus Linguistics,
(CILC2013) [Special issue]. Proc. Soc. Behav. Sci. 95, 68–74 (2013). https://doi.org/10.1016/
j.sbspro.2013.10.623

2. Katkar, M., Kutchhii, S., Kutchhii, A.: Performance analysis for NoSQL and SQL. Int. J.
Innov. Emerg. Res. Eng. 2(3), 12–17 (2015)

3. Mukhamedshin, D., Suleymanov, D., Nevzorova, O.: Choosing the right storage solution for
the corpus management system (analytical overview and experiments). In: Bouhlel, M.S.,
Rovetta, S. (eds.) SETIT 2018. SIST, vol. 146, pp. 105–114. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-21005-2_10

4. Cimiano, P., Chiarcos, C., McCrae, J.P., Gracia, J.: Linguistic linked open data cloud. In:
Cimiano, P., et al. (eds.) Linguistic LinkedData:Representation,Generation andApplications,
pp. 29–41. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-30225-2_3

5. Hellmann, S., Lehmann, J., Auer, S., Brümmer, M.: Integrating NLP using linked data. In:
Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X. (eds.) ISWC 2013.
LNCS, vol. 8219, pp. 98–113. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-41338-4_7

6. McCrae, J.P., Bosque-Gil, J., Gracia, J., Buitelaar, P., and Cimiano, P.: The OntoLex-lemon
model: development and applications. In:Kosem I., et al. (eds.) Proceedings of the 5th biennial
conference on Electronic Lexicography (eLex 2017), pp. 587–597. Lexical Computing CZ
(2017)

7. Chiarcos, C.: OLiA – ontologies of linguistic annotation. Seman. Web 6(4), 379–386 (2015).
https://doi.org/10.3233/SW-140167

8. Klimek, B., Arndt, N., Krause, S., Arndt, T.: Creating Linked data morphological language
resources with MMoOn - the hebrew morpheme inventory. In: Calzolari N., et al. (eds.)
Proceedings of the 10th International Conference on Language Resources and Evaluation
(LREC 2016), pp. 892–899. ELRA (2016)

9. Rietveld, L., Hoekstra, R.: The YASGUI Family of SPARQL Clients. Seman. Web 8(3),
373–383 (2017). https://doi.org/10.3233/SW-150197

10. Galieva, A., Kirillovich, A., Khakimov, B., Loukachevitch, N., Nevzorova, O., Suleymanov,
D.: Toward domain-specific Russian-Tatar thesaurus construction. In: Proceedings of the
International Conference IMS-2017, pp. 120–124. ACM (2017). https://doi.org/10.1145/
3143699.3143716

https://doi.org/10.1016/j.sbspro.2013.10.623
https://doi.org/10.1007/978-3-030-21005-2_10
https://doi.org/10.1007/978-3-030-30225-2_3
https://doi.org/10.1007/978-3-642-41338-4_7
https://doi.org/10.3233/SW-140167
https://doi.org/10.3233/SW-150197
https://doi.org/10.1145/3143699.3143716

	Using FLOSS for Storing, Processing and Linking Corpus Data
	1 Introduction
	2 Using FLOSS in Corpus Management System
	3 Building a Linked Open Dataset Based on Corpus Data
	4 Conclusion
	References




