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Abstract

Background: DNA mixtures of two or more people are a common type of forensic 
crime scene evidence. A match statistic that connects the evidence to a criminal 
defendant is usually needed for court. Jurors rely on this strength of match to help 
decide guilt or innocence. However, the reliability of unsophisticated match statistics 
for DNA mixtures has been questioned. Materials and Methods: The most prevalent 
match statistic for DNA mixtures is the combined probability of inclusion (CPI), used by 
crime labs for over 15 years. When testing 13 short tandem repeat (STR) genetic loci, 
the CPI-1 value is typically around a million, regardless of DNA mixture composition. 
However, actual identification information, as measured by a likelihood ratio (LR), 
spans a much broader range. This study examined probability of inclusion (PI) mixture 
statistics for 517 locus experiments drawn from 16 reported cases and compared them 
with LR locus information calculated independently on the same data. The log(PI-1) 
values were examined and compared with corresponding log(LR) values. Results: The 
LR and CPI methods were compared in case examples of false inclusion, false exclusion, 
a homicide, and criminal justice outcomes. Statistical analysis of crime laboratory STR 
data shows that inclusion match statistics exhibit a truncated normal distribution having 
zero center, with little correlation to actual identification information. By the law of 
large numbers (LLN), CPI-1 increases with the number of tested genetic loci, regardless 
of DNA mixture composition or match information. These statistical findings explain 
why CPI is relatively constant, with implications for DNA policy, criminal justice, cost of 
crime, and crime prevention. Conclusions:  Forensic crime laboratories have generated 
CPI statistics on hundreds of thousands of DNA mixture evidence items. However, this 
commonly used match statistic behaves like a random generator of inclusionary values, 
following the LLN rather than measuring identification information. A quantitative CPI 
number adds little meaningful information beyond the 
analyst’s initial qualitative assessment that a person’s 
DNA is included in a mixture. Statistical methods 
for reporting on DNA mixture evidence should be 
scientifically validated before they are relied upon by 
criminal justice.
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BACKGROUND

“Among existing forensic methods, only nuclear DNA 
analysis has been rigorously shown to have the capacity 
to consistently, and with a high degree of certainty, 
demonstrate a connection between an evidentiary sample 
and a specific individual or source… However,… there 
may be problems… with how the DNA was… interpreted, 
such as when there are mixed samples…”[1]

National Academy of Sciences, “Strengthening Forensic 
Science” (2009), page 100.

DNA mixtures arise when more than one person 
contributes their DNA to a biological sample. Greater 
sample diversity and instrument sensitivity have increased 
the volume of mixture evidence in the crime laboratory. 
Whereas single source DNA can uniquely identify an 
individual, mixtures give a statistical association between 
evidence and person. Courts rely on these match statistics 
to establish the probative value of DNA mixture evidence.

A likelihood ratio (LR) quantifies the evidential impact 
of data on a hypothesis. The base 10 logarithm of the 
LR is a standard measure of information, expressed in 
“ban” units. In forensic biology, a usual hypothesis is 
that some particular person contributed their DNA to a 

mixture sample. The data are derived from short tandem 
repeat (STR) experiments performed on the mixture 
DNA molecules. All DNA match statistics used in 
forensic identification are LRs, at least formally.

One way to calculate the LR for a DNA mixture is 
to separate the STR data into the genotypes of each 
contributor. Since a person’s genotype at a locus is a pair 
of alleles, and there may be uncertainty in the separation, 
a contributor’s genotype is a discrete probability 
distribution over allele pair possibilities. When using 
a mathematical model that faithfully accounts for the 
quantitative data, sources of variation, and known artifacts, 
an inferred genotype becomes a useful statistical summary 
of a contributor’s genetic identity. Comparison of this 
separated evidence genotype with that of a known subject, 
relative to a population, yields an LR for that person having 
contributed their DNA to the mixture. The log10(LR) of 
this number quantifies the identification information.

Previous validation studies[2,3] on computer-based mixture 
separation methods show a broad distribution of log(LR) 
match information over an ensemble of randomly chosen 
DNA casework samples, as shown in Figures 1a and 2a 
(blue). This happens because log(LR) information is 
roughly proportional to DNA contributor amounts, and 

Figure 1: New York validation study histograms compare TrueAllele 
and combined probability of inclusion (CPI) on the same mixture 
data. A New York validation study recorded match information 
for casework DNA mixture samples that were tested using the 
Federal Bureau of Investigation 13 core short tandem repeat loci. 
Two log(LR) histograms are shown. (a) Computer-based mixture 
separation methods showed a broad log(LR) frequency distribution 
over an ensemble of 87 match comparisons (blue). (b) Human 
review of 12 mixtures gave a log(CPI-1) frequency distribution that 
was narrowly centered around six, corresponding to a CPI-1 value 
of around a million (green)

b

a

Figure 2: Virginia validation study histograms compare TrueAllele 
and combined probability of inclusion (CPI) on the same mixture 
data. A Virginia validation study recorded match information 
for casework DNA mixture samples that were tested using 15 
short tandem repeat loci. Two log(LR) histograms are shown. 
(a) Computer-based mixture separation methods showed a broad 
log (LR) frequency distribution over an ensemble of 101 match 
comparisons (blue). (b) Human review of 81 genotype comparisons 
gave a log(CPI-1) frequency distribution that was largely centered 
around seven, corresponding to a CPI-1 value of around 10 million 
(green). (Reproduced with permission from Figure 7 of Perlin et al., 
PLoS ONE 2014;9(3): E92837)

b

a



J Pathol Inform 2015, 1:59 http://www.jpathinformatics.org/content/6/1/59

so random DNA quantities give similarly random log(LR) 
values.[4,5] Therefore, with accurate and detailed computer 
modeling of DNA mixture evidence, one expects to see 
a uniform distribution of identification information, 
ranging from none (log10(1) = 0) to single source levels 
(log10(1024) = 24) when using 13 STR loci.

Current forensic practice generally does not use 
sophisticated quantitative modeling to analyze DNA 
mixtures. An STR data signal [Figure 3] is comprised of 
quantitative peaks that correspond to allele sizes. The 
peak heights range from 10 to 10,000 relative fluorescent 
units (RFU). Applying an RFU threshold simplifies STR 
data into all-or-nothing “allele” events; peaks over the 
threshold are in the allele set, while those under are out.

At a locus, if the subject’s one or two alleles are included 
in the mixture’s allele set, then the subject is said to be 
“included” in the mixture. A probability of inclusion (PI) 
is then calculated at the locus by adding together the 
population frequencies of the alleles over threshold and 
squaring their sum. The PI reciprocal PI-1 is formally an LR, 
so log10(PI-1) measures this method’s information content.

Multiplying the PI values of included loci produces the 
standard combined probability of inclusion (CPI) match 
statistic for the mixture. CPI has been the dominant 
DNA mixture statistic in the United States for 15 years,[6] 
used on hundreds of thousands of evidence items. Yet 
CPI has an interesting property – it usually returns the 
same number, regardless of the item analyzed. With the 
Federal Bureau of Investigation (FBI’s) 13 core loci, CPI-1 
is around a million;[2] with 15 loci (13 core, plus 2 more), 
the statistic is around 10 million,[3] as shown in Figures 1b 
and 2b (green).

If sophisticated analysis shows a full spectrum of log(LR) 
information between 0 and 24, why is the log(CPI-1) value 
centered around six? This paper examines the disparity 
between relatively constant CPI-1 logarithm values and 
the broad range of true log(LR) information values. The 
explanatory hypothesis is that CPI is essentially unrelated 
to identification information. The approach here is to 
assess this hypothesis by fractionating the CPI statistics 
of many mixture samples into their individual locus 
PI values and studying their empirical distribution.

The paper describes materials and methods for analyzing 
STR mixture data. It then compares the LR and CPI 
methods in case examples of false inclusion, false 
exclusion, a homicide, and criminal justice outcomes. 
Statistical analysis of crime laboratory STR data shows 
that inclusion match statistics exhibit a truncated normal 
distribution having zero center, with little correlation to 
actual identification information. These statistical findings 
explain why CPI is relatively constant, with implications 
for DNA policy, criminal justice, cost of crime, and crime 
prevention. Statistical methods for reporting on DNA 
mixture evidence should be scientifically validated before 
they are relied upon by criminal justice.

MATERIALS AND METHODS

Separating Genotypes for Identification 
Information
Genotype separation
A hierarchical Bayesian probability model can be used 
to model DNA mixture data.[4,7] Matrix algebra linearly 
combines genotype allele pairs to form an STR peak 
height pattern vector as the mean of a multivariate 
distribution.[8] Variance parameters describe peak event 
and artifact variation, computed from a sample’s locus 
experiments;[9] a peak’s variation scales with its height.[10] 
Markov chain Monte Carlo (MCMC)[11] solution of the 
hierarchical model[12] separates the genotypes into allele 
pairs for each contributor at a locus. A contributor’s 
genotype probability is a marginal distribution of the 
joint MCMC posterior distribution.

Likelihood ratio
The LR numerically summarizes the information change 
from one probability measure to another.[13] With h(x) 
the prior probability of a genotype allele pair x at a locus 
based on population data, and f(x) the MCMC posterior 
genotype probability after having seen STR data, 
comparison with subject genotype g(x) gives the LR

LR
f x g x
h xx G

=
Î
å ( ) ( )

( )

where the sum is taken over the discrete set G of 
genotype allele values. When genotype g(x) corresponds 
to a reference subject, the function places all of its 

Figure 3: Short tandem repeat (STR) locus data with PI giving 
statistical false inclusion. An STR signal at the Penta E locus 
comprised of data peaks. The x value is allele size (bp), y is allele 
quantity (RFU), and the allele designation is shown at the top of a 
peak (box). Four allele peaks are shown – a tall 8.13 pair at 1000 
RFU, and a short 10.18 pair at 400 RFU. These two allele pairs 
correspond to the two actual contributor genotypes in this mixture, 
with each pair having allele peaks of comparable height. Inclusion 
mixture analysis does not account for peak height, and so the PI 
match statistic can be overstated, falsely suggesting an inclusion
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probability mass at the subject’s one allele pair value s, 
and the LR reduces to

LR
f s
h s

=
( )
( )

a posterior-to-prior genotype probability ratio.[14] Using 
Bayes theorem,[15] other LR forms can be written.[16] 
The log10(LR) is a standard dimensionless measure of 
information.[17]

TrueAllele software
TrueAllele® Casework (Cybergenetics, Pittsburgh, PA) 
is a computer program that mathematically separates 
STR mixture data into contributor genotypes, and then 
compares such genotypes to calculate LRs. The two-
step process is an objective procedure, since the initial 
mixture separation step does not have the subject’s 
genotype available. Sufficiently long MCMC sampling 
ensures a thorough statistical assessment of the genotype 
(and other parameter) possibilities. Numerous validation 
studies show that the program produces accurate log(LR) 
information values.[2-5,16,18,19]

Applying Thresholds for Inclusion Probability
Threshold application
A simple way to interpret STR mixtures is to heuristically 
classify some data peaks as confident “allele” events, and 
then develop a match statistic from these putative alleles. 
A DNA laboratory sets a “threshold” as an RFU value 
above which they are comfortable calling a data peak 
an allele that represents signal, rather than noise. At a 
sample’s STR locus, the allele designations having peaks 
over threshold are collected into an allele set. When 
the one or two alleles of a subject are all included in 
the mixture sample’s allele set, the subject is said to be 
“included” at the locus. The comparison is made between 
a genotype and (features of) the data, rather than 
between two genotypes. There is potential for subjective 
bias[20] because subject information (e.g., for a defendant) 
is used in making this “inclusion” determination.[21]

Inclusion probability
Once an inclusion has been declared, an inclusion 
probability can be calculated for the locus. The locus PI 
is the sum of the population frequencies of all allele pairs 
included in the mixture allele set. This probability can be 
divided into a sum of homozygous genotype possibilities, 
plus a sum of heterozygous possibilities
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where I is the set of included alleles and pi is the allele 
frequency of allele i. Algebraically rearranging terms 
gives the more familiar squared sum of allele frequencies
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The PI-1 is a qualitative LR based on an all-or-nothing 
likelihood function for a set of included alleles.[22] 
Therefore, log(PI-1) inclusion statistics can be meaningfully 
compared with log(LR) information values.

Population statistics software
PopStats population statistics software (FBI, Quantico, 
VA) can calculate a sample’s CPI statistic based on allele 
inclusion sets. The user also supplies locus allele frequency 
databases for human populations of interest. PopStats then 
gives the PI values for the inclusion sets at each locus, 
relative to a population. Multiplying these PI values together 
yields the combined CPI match statistic.

Mixture Data and Match Statistics
Mixture data
An accredited American crime laboratory analyzed 
31 mixture items from 16 criminal cases. These items 
were amplified using a PowerPlex® 16 STR kit (Promega, 
Madison, WI), and size separated on an AB 3130® genetic 
analyzer (Life Technologies, Foster City, CA). The genetic 
analyzer’s electropherogram (EPG) signal data were recorded 
for each item in a fragment size analysis (.fsa) electronic file.

Likelihood ratio  statistics
TrueAllele Casework analyzed the DNA mixture .fsa 
files to separate genotypes and calculate LR match 
statistics (VUIer™ version 2014a). The MCMC process 
sampled at least 50,000 burn in and read out cycles. All 
items were minimally run in duplicate, and the average 
concordant log(LR) value was recorded. Locus LR values 
were collated for all loci. A co-ancestry coefficient of 1% 
was applied, using a generalization of the θ correction 
formula of NRC 4.10.[23]

Locus inclusion
The crime laboratory determined that 41 individuals 
were included in the 31 mixtures. An individual could be 
included in an item at up to 15 STR loci. A stochastic 
threshold of 150 RFU was used to identify inclusionary 
loci that had sufficient peak heights for statistical 
reporting.[24] A total of 517 statistically usable locus 
inclusions were identified.

Probability of inclusion statistics
The crime laboratory used PopStats to calculate a PI 
value at every included locus. A co-ancestry coefficient 
of 1% was used, following the θ correction formula of 
NRC 4.4.[23] Co-ancestry accounts for relatedness within 
a human population, and conservatively reduces a DNA 
match statistic.

Population databases
African-American, Caucasian, and Hispanic databases 
developed by the Pennsylvania State Police were used 
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to calculate allele frequencies. Multiplying these allele 
frequencies together produces the prior probability h(x) 
of a random person, providing a genotype rarity for the 
match statistic denominator. The smallest match statistic 
across the three populations was recorded.

CASE RESULTS

Using the case locus data, examples are given of how 
inclusion analysis can falsely include (hence wrongly 
implicate) or falsely exclude (i.e., incorrectly exonerate) 
someone from a mixture. A homicide case is presented 
that shows considerable disparity between accurate 
LR analysis and threshold-based inclusion. Finally, the 
impact of reliable mixture analysis on criminal justice 
is demonstrated by examining the outcomes of 72 cases 
from a method comparison study.

False Inclusion
The inclusion method applies a threshold to simplify a 
quantitative STR peak pattern into a list of putative 
“allele” events. Imposing a threshold discards considerable 
information. Peak heights are not used. Also lost are the 
patterns of taller and shorter peaks that can help separate 
genotypes and assess data variation. Ignoring data can 
affect the PI, distorting the match statistic’s reporting of 
inclusion.

Figure 3 shows four allele peaks at the Penta E locus – a 
tall 8.13 pair at 1000 RFU and a short 10.18 pair at 400 
RFU. These two allele pairs correspond to the actual 
contributor genotypes in this mixture, with each pair of 
peaks having comparable height. However, the inclusion 
method ignores peak height; each of the 10 possible 
pairings of the four alleles (8, 10, 13, and 18) is given 
equal likelihood. In this case, an individual with a 10.13 
genotype was falsely included at the locus. Inclusion 
ignores the peak pattern (two tall, two short), and so 
cannot recognize that the 10.13 genotype is an unlikely 
pairing of dissimilar (short and tall) allele peak heights. 
The overstated PI for this noninclusion is a high 9.0866 
(100.9584).

False Exclusion
Figure 4 shows the STR data pattern from locus D3S1358. 
There are six peaks over threshold, a tall pair (15 and 19) at 
1200 RFU, and four shorter ones (14, 16, 17, and 18) at 200 
RFU. The obvious 15.19 peak pair corresponds to a person 
with a 15.19 genotype who contributed their DNA to this 
mixture. However, inclusion with thresholds ignores peak 
height and so confers equal status to all six alleles; equal 
likelihood is then assigned to the twenty-one (n(n + 1)/2, 
n = 6) allele pair possibilities. The inclusion method does 
not identify the major contributor as a highly informative 
15.19 genotype. Therefore, the low PI-1 of 1.4484 (100.1609) 
greatly understates the true probative value of this locus 
data. An inability to separate genotypes leads to a statistical 
false exclusion.

Yelenic Homicide Case
In April of 2006, Blairsville dentist John Yelenic 
was repeatedly slashed on his face and throat in 
his Pennsylvania home.[25] Dr. Yelenic was partially 
decapitated after his head was thrust through a side pane 
window by his front door. He died after exsanguinating 
onto his living room floor. The decedent’s upper 
extremities showed multiple defensive wounds [Figure 5, 
black arrows].

The main suspect was Pennsylvania State Trooper Kevin 
Foley, who at the time resided with Yelenic’s estranged 
wife, Michele. Found on the living room coffee table 
were the unsigned Yelenic divorce papers, splattered with 
the victim’s blood.

Trace DNA under the decedent’s fingernails [Figure 5, blue 
arrows] revealed a mixture containing 93.3% of the dentist 
and 6.7% of an unknown person. The FBI tested the 
fingernail DNA using Profiler Plus® and COfiler® STR kits 
(Life Technologies, Foster City, CA). The FBI determined 
that trooper Foley’s DNA was included at 11 of 13 core 
STR loci having sufficient peak heights and reported a CPI 
statistic of 13 thousand. The locus breakdown of the PI 
statistics is shown [Table 1, log(1/PI)].

Cybergenetics independently analyzed the same STR 
data, using TrueAllele to separate out the minor genotype 
of the 6.7% unknown contributor. Comparison of this 
minor genotype with Foley’s known reference gave the 
LR match statistic of 189 billion.[4] The locus breakdown 
of this LR statistic is shown [Table 1, log(LR)]. Because 
the TPOX data had EPG spike artifacts, that locus was 
not used.

Figure 4: Short tandem repeat (STR) locus data with PI giving 
statistical false exclusion. The data show an STR data pattern at 
locus D3S1358. The x value is allele size (bp), y is allele quantity 
(RFU), and the allele designation is shown at the top of a peak (box). 
There are six peaks over threshold, a tall pair (15 and 19) at 1200 
RFU and four shorter ones (14, 16, 17, and 18) at 200 RFU. The tall 
15.19 peak pair corresponds to a genotype present in this mixture 
clearly differentiated from the four shorter peaks. The inclusion 
method does not separate mixture peaks into genotypes, and so 
a PI match statistic can be greatly understated, falsely suggesting 
exclusion
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The TrueAllele LR was larger than the PI number at 
9 of the 10 common loci that were analyzed using both 
methods [Table 1, Difference]. The average log(LR) 
information was 0.940 ban per locus (ban/loc) for 
TrueAllele, and 0.375 ban/loc for PI, showing an average 
inclusion method information loss of 0.504 ban/loc. The 
small coefficient of determination (r2 = 0.097) indicates 
little correlation between TrueAllele’s identification 
information and the heuristic inclusion statistic.

At Foley’s trial, the FBI testified about their CPI results for 
Yelenic’s fingernail DNA, and (following an admissibility 
hearing) Cybergenetics presented TrueAllele statistics on 
the same data. Foley was convicted of first-degree murder 
and is serving a life sentence. Appellate courts denied 
Foley’s appeal, establishing a legal precedent for TrueAllele 
computer DNA interpretation in Pennsylvania.[26]

Criminal Justice Outcomes
The Virginia Department of Forensic Science had 
Cybergenetics report on 72 criminal cases where CPI 
analysis of DNA mixture items was inconclusive or 
uninformative.[3] TrueAllele reanalysis of the same data 
provided match statistics for 101 of the 111 requested 
genotype comparisons (91%). The computer’s match 
statistics reintroduced DNA mixtures into these cases, 
facilitating evidence-based criminal justice outcomes.

The crime laboratory’s original log(CPI-1) average was 
6.825 ban (6.68 million match statistic). However, 
stochastic thresholds rendered half of the items 
inconclusive, and statistically removed two thirds of 
the loci from the remainder to give an uninformative 
average of 2.145 ban (140). Using all items and loci, the 
computer’s log(LR) averaged 11.054 ban (113 billion).

The 72 cases spanned a full range of violent offenses, 
including 18 prosecuted murders, 12 robberies, and 
6 rapes or sexual assaults [Table 2, Reports]. There were 
20 cases involving weapons, reflecting a considerable 
number of touch DNA firearm cases. The DNA evidence 
items were all mixtures, most having three contributors 
and some with four.

Defendants were found guilty in 59 cases [Table 2, 
Convictions], a 78.7% conviction rate (out of 

Figure 5: Decedent’s hand with defensive wounds and fingernail 
DNA. An autopsy photograph of the decedent’s right hand shows 
multiple defensive wounds (black arrows). Trace DNA under the 
fingernails (blue arrows) contained a mixture of two people, 
primarily the decedent, but also a small amount of an unknown 
person

Table 1: Locus breakdown of TrueAllele and CPI 
statistics from Yelenic case shows little correlation

Locus log (LR) log (1/PI) Difference

CSF1PO 0.329 0.314 0.015
D13S317 0.060 0.277 −0.216
D16S539 0.989 0.222 0.768
D18S51 1.408
D21S11 0.903
D3S1358 0.671 0.520 0.150
D5S818 0.541 0.082 0.459
D7S820 1.765 0.411 1.354
D8S1179 1.460 0.681 0.779
FGA 0.980 0.870 0.110
TH01 1.382 0.229 1.154
TPOX 0.196
vWA 0.791 0.327 0.464
Total 11.279 4.127 5.037
Average 0.940 0.375 0.504

Match statistics are shown for the Yelenic fingernail evidence relative to the Foley 
reference genotype. The first column lists the STR loci examined, the second gives the 
computer’s log(LR) value, the third has the human‑scored logarithmic PI value, while the 
last column gives the numerical difference log(LR) – log(PI−1). The “total” match statistic 
sums over all analyzed loci, and the “average” statistic per locus is shown. PI: Probability 
of inclusion, LR: Likelihood ratio, CPI: Combined probability of inclusion

Table 2: Criminal justice outcomes for Virginia cases where TrueAllele was used instead of CPI

Offense Reports Convictions Guilty pleas Life Years

Homicide 18 16 11 4 32.1
Rape/sexual assault 6 6 2 1 40.1
Robbery 12 11 7 30.5
Weapons 20 17 12 11.2
Drugs 4 4 4 5.9
Other 12 5 1 1 10.2
Total 72 59 37 6 19.6

Criminal justice outcomes are shown for 72 reported Virginia cases that were analyzed by TrueAllele (three cases had two defendants, for a total of 75 defendants). For each criminal 
offense (rows), the number of reports, convictions, and guilty pleas are listed in separate columns. The last two columns list the number of life sentences, along with the average 
number of years in prison for nonlife sentences. CPI: Combined probability of inclusion
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75 defendants). TrueAllele trial testimony was given 
in 10 cases. A guilty plea was entered in 37 of the 
59 convictions (62.7%), thereby avoiding a trial. Indeed, 
most of the 72 cases with TrueAllele reports led to a 
guilty plea (51.4%). Relative to having a trial, a guilty 
plea is a cost-effective strategy for reducing crime.[27]

Of 18 homicides, 2 defendants were found “not guilty by 
insanity”. The other 16 were convicted, with 4 sentenced 
to life in prison and 12 receiving an average of 32 years in 
prison [Table 2, Life and Years]. With rape or sexual assault, 
all defendants were convicted, with one life sentence, and 
average prison time of 40 years. There were 11 convictions 
for robbery (91.7%) and 17 for weapons violations (85%).

STATISTICAL RESULTS

This section provides statistical support for the hypothesis 
that inclusion probability for DNA mixtures is a subjective, 
one-sided match statistic unrelated to identification 
information. It also shows why more STR loci generally 
yield a higher CPI statistic (regardless of information), 
and why the CPI value has tended to be around a million.

One-sided Match Statistic
A probability is a number (inclusively) between zero 
and one.[28] Since an “inclusion” event must include the 
subject’s allele pair, the PI is bounded below by that 
person’s genotype frequency in the population, which 
is a positive number. The locus PI can attain unity only 
when all possible alleles are observed. That surfeit of STR 
alleles would indicate too many contributors for a crime 
lab’s protocols to permit CPI analysis. Therefore, a PI at 
a locus is strictly greater than zero and less than one.

It follows that the reciprocal PI-1 value is a finite number 
greater than one. Hence, log(PI-1) is a positive number; 
exclusionary loci are given no weight. The log(PI-1) 
distribution in the data set is shown in a histogram 
[Figure 6]. The minimum locus value is 0.0023 ban and 
the maximum is 2.0644 ban. Clearly, log(PI-1) is a one-sided 
match statistic that only assumes positive real values.

Truncated Normal Distribution
The Figure 6 histogram looks like the right half of 
a unimodal distribution. One can symmetrize this 
distribution by augmenting the log(PI-1) set with 
corresponding negative values. The symmetrical 
histogram in Figure 7 is shaped like a normal distribution. 
Normality is tested here in two different ways.

A normal probability plot of the symmetrized log(PI-1) 
data shows excellent agreement with a straight line 
[Figure 8]. The Lilliefors test[29] accepts the null 
hypothesis that the data come from a distribution in the 
normal family (p = 0.3825), confirming statistically that 
the symmetrized data are normally distributed. Therefore, 
the log(PI-1) data follow a truncated normal distribution.

Figure 6: Inclusion has a positive-valued truncated normal 
distribution centered at zero. A histogram of 517 log(PI-1) locus 
values that shows a positive valued distribution. The values form 
the right half of a N+(0, 0.6220) truncated normal distribution that 
is centered at zero and has a positive variance

Figure 7: Symmetrized inclusion distribution formed by adding 
negative values. Augmenting the positive locus log(PI-1) values 
with their corresponding negative values forms a symmetrical 
histogram shaped like a normal distribution. A fitted normal curve 
is superimposed

Figure 8: Normal probability plot shows symmetrized inclusion 
follows normal distribution. A normal probability plot of the 
symmetrized locus log(PI-1) data. The points (blue plus) are situated 
along a straight line (red dash) which indicates the data are normally 
distributed
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Positive Tail Centered at Zero
The parameters of a nonnegative truncated normal 
distribution are its center μ and the spread σ. Maximum 
likelihood fitting of the log(PI-1) data to a truncated normal 
on the nonnegative real numbers gives the estimates μ = 
0 ban/loc and σ = 0.6220. Thus, the log(PI-1) values form 
the right half of a normal distribution, centered at zero 
with a positive variance [Figure 6].

Uncorrelated with Identification Information
For each reported locus, the log(PI-1) inclusion statistic 
can be compared with reliable log(LR) identification 
information computed from the same data. A scatterplot 
comparison is shown in Figure 9. The x-axis gives 
real-valued log(LR) information, whereas the y-axis shows 
the reported positive log(PI-1) statistic.

The correlation coefficient of this joint data is r = 0.4360. 
The low r2 value of 0.1901 demonstrates little statistical 
correlation between the log(PI-1) inclusion statistic and 
log(LR) identification information.

Inclusion Distribution Has a Positive Mean
The locus log(PI-1) values are distributed as a truncated 
normal [Figure 6]. The positive values in this distribution 
have an empirical mean x  = 0.4937 ban/loc, with 
a standard deviation of s  = 0.3787. Raising this 
logarithmic mean to a power of 10, the expected PI-1 
value at an included locus is 3.1167 (100.4937).

Law of Large Numbers
The law of large numbers (LLN) holds that a sum of 
L identically distributed random variables, each with 
mean x, will have an expected value of L . x[15] Therefore, 
as the number loci L increases, so too will the average 
combined CPI value. On average, more loci will yield a 
higher CPI statistic, regardless of the sample’s information 
content.

In the New York (NY) study,[2] the 12 log(CPI-1) values 
averaged 6.581 ban. There were L = 13 STR loci used. 
Dividing log(CPI-1) by 13 loci gives a NY locus log(PI-1) 
average xNY  of 0.5062 ban/loc. The Virginia (VA) study[3] 
had 81 log(CPI-1) values averaging 6.825 ban. With 
L = 15 STR loci per sample, the average VA locus 
log(PI-1) xVA  is 0.455 ban/loc.

Why CPI is Always a Million
The average log(PI-1) statistic was x = 0.4937 ban/loc in 
the study. Different studies on other CPI data show similar 
locus log(PI-1) averages around a half, with xNY = 0.506 
ban/loc and xVA  = 0.455 ban/loc. By LLN, the expected 
log(CPI-1) statistic is L·x, where L is the number of STR 
loci that a lab reported for the mixture.

With the NY study, L xNY×  = (13 loci) × (0.5062 ban/loc), 
or 6.581 ban. Raising 10 to the power of this logarithmic 
value gives 106.581, or 3.81 million, the expected CPI-1 
statistic from NY. For the VA study, L xVA×  = (15 loci) × 
(0.455 ban/loc), which equals 6.825 ban. Exponentiating 
this logarithmic value as 106.825 gives an average VA CPI-1 
statistic of 6.68 million.

DISCUSSION

The statistical PI locus results demonstrated little 
correlation between CPI and DNA identification 
information. This CPI deficiency has an impact on 
forensic science, criminal justice, and DNA policy. The 
Virginia case outcomes, where TrueAllele was used to 
resolve DNA mixture evidence when CPI proved to 
be uninformative, have implications for the cost and 
prevention of crime.

CPI has Zero Information
The log(PI-1) locus match statistics follow a N+(0, 0.6220) 
truncated normal distribution [Figure 6]. Sampling from 
this distribution produces positive numbers from a right tail 
centered at zero. The sampling is censored since the inclusion 
method cannot produce an exclusionary PI statistic.

Perhaps PI provides no actual identification information 
since its truncated distribution is centered at 0 ban. An 
observed CPI statistic may merely be a (logarithmic) 
sum of positive numbers, randomly sampled from the 
truncated distribution’s positive right tail.

Uncorrelated with Identification Information
The scatterplot visually indicates little correlation 
between PI inclusion and LR information [Figure 9]. 
Positive x values with zero y values suggest false 
exclusions, whereas negative x values with positive 
y values indicate false inclusions. Higher points along the 
y-axis show inclusionary PI statistics that have no actual 
identification information. A strong correlation would 
place most of the points along a line of slope one in the 
first quadrant, but this arrangement is not seen.

Figure 9: Scatterplot shows little correlation between TrueAllele 
and inclusion locus values. A scatterplot compares log(PI-1) inclusion 
statistics (y-axis) with log(LR) identification information (x-axis) 
calculated on the same locus data. At each data point (blue plus), x 
gives the log(LR) information, while y is the (positive valued) log(PI-1) 
statistic. Visually, there is little correlation between PI inclusion and 
likelihood ratio information, since the points are widely dispersed 
and do not reside along the y = x (black) line
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For a DNA match statistic to meaningfully identify 
people, it should correlate with identification information. 
CPI does not possess such correlation, so it may not be 
suitable for measuring identification strength.

DNA Policy and Number of Loci
The log(PI-1) average is positive. By LLN, testing more 
loci will give a larger CPI-1 match number. However, CPI 
is largely uncorrelated with identification information, so 
testing more loci may not actually add useful information.

The FBI is requiring crime laboratories to use larger 
STR kits containing seven additional loci.[30] This 
policy is expensive since kits with more loci cost more 
money. Moreover, there is the cost of transition and kit 
revalidation. More loci impose a heavier data burden 
that taxes analyst productivity through increased DNA 
laboratory analysis, data artifacts, data review, case 
reporting, and trial testimony effort. Since there is little 
information gained from CPI interpretation of mixture 
data, the additional loci may not be worth the extra cost.

A “Match Estimator” module in the PopStats software 
uses inclusion probability to determine whether a DNA 
mixture may be uploaded to the FBI’s Combined DNA 
Index System (CODIS) DNA database.[31] This filtering 
policy blocks the CODIS upload of most mixture 
evidence, impeding criminal investigation. Testing 
additional STR loci can increase Match Estimator values, 
allowing more mixtures to be uploaded to CODIS. 
However, this increase would come from extra tests, and 
not from extra identification information.

Criminal Justice and Cost of Crime
Eliciting more identification information from DNA 
mixture evidence has an impact on criminal justice. 
DNA evidence without a match statistic is usually 
not admissible; the absence of DNA can hinder the 
prosecution of violent crimes. By providing a meaningful 
statistic where CPI cannot, a computer can bring DNA 
back into a case.

Societal impact can be quantified by examining the 
total cost of crime, both tangible and intangible.[32] 
Tangible costs include loss of productivity and property. 
Intangible costs include medical expenses, lost earnings, 
and psychological damage. Total crime cost is estimated 
to be $8,982,907 for a homicide and $240,776 for rape or 
sexual assault.[32]

In the Virginia study, TrueAllele restored DNA evidence 
in 20 violent crimes where the defendant was convicted. 
The total cost of crime can be estimated for these cases. 
Combining 14 homicides × $8,982,907/homicide, with 
6 rape or sexual assaults × $240,776/rape, gives a total 
crime cost of $127,205,354.

Crime Prevention Through Incarceration
Criminals often reoffend. After release from prison, 

a violent offender has a 33% recidivism rate of being 
arrested for another violent crime within 5 years.[33] 
Therefore, 15 years of violent offender incarceration 
roughly translates into preventing 1 violent crime. This 
rate is conservative since just 72% of homicide offenses 
(and only 21% of rapes) result in an arrest.[34]

In Virginia’s computer reexamination of 72 mixture cases, 
the average prison term (excluding life sentences) for the 
20 convicted murderers and rapists was 35 years [Table 2]. 
Thus, the total incarceration time for these violent 
offenders is 700 years, assuming the criminals serve out 
their full sentences. Multiplying this total time by the “1 
reoffending violent crime every 15 years” rate conservatively 
estimates that TrueAllele’s reanalysis of the 72 Virginia 
cases will help prevent about 46.7 violent crimes.

CONCLUSIONS

Forensic DNA laboratories apply thresholds to their 
STR data, simplifying the quantitative peak pattern into 
a qualitative list of “allele” peaks. When inclusionary 
criteria are met for a mixture and a subject, a PI is 
calculated for the included loci; these numbers are 
multiplied together to calculate a CPI match statistic. 
With a full complement of 13 core STR loci, many labs 
will report a CPI-1 of about a million, often with little 
variation around this average. A DNA statistic at this 
level can be persuasive to juries.[35]

The results reported in this paper explain why CPI-1 is 
often around a million. The positive log(PI-1) values were 
distributed as a truncated normal centered at zero, with a 
standard deviation of 0.6220. The inclusion method censors 
the left half of the true distribution, as only positive 
inclusionary values can be reported. The positive-valued 
log(PI-1) distribution had mean 0.4937 ban/loc. By LLN, 
randomly sampling log(PI-1) values for 13 STR loci gives an 
expected total statistic of 1013 × 0.4937 or 6.42 million. With 
15 loci, the 1015 × 0.4937 expected total is 25.44 million.

CPI did not correlate well with identification information 
(r2 = 0.19), leaving 81% of the variance unexplained. 
This lack of correlation between the CPI statistic and 
LR information has been previously observed.[3] Courts 
generally require a match statistic for DNA evidence, 
and CPI can supply such a number. Testing more STR 
loci usually yields a bigger CPI number, as explained by 
LLN. Since log(PI-1) is largely uncorrelated with DNA 
information, a bigger CPI statistic is just a bigger number, 
not more identification information. While a larger LR 
conveys greater probative weight for DNA identification, 
a larger CPI does not.

DNA mixtures are a highly prevalent type of biological 
evidence, with hundreds of thousands of items having 
been tested in criminal cases. How these mixtures 
are interpreted affects criminal justice outcomes and 
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public safety. For the last 15 years, CPI has been the 
predominant match statistic reported for mixtures. The 
inclusion method subjectively compares evidence data 
features with a reference genotype, relying on CPI to 
provide objective statistical support. However, if CPI 
does not accurately convey identification information, its 
patina of science lends no meaningful support.

The National Academy of Sciences report on 
“Strengthening Forensic Science” provides a way forward.[1] 
Valid forensic results must be based on solid science: not 
just the biological data, but also the statistical evaluation 
of that data. Scientific relevance is demonstrated through 
empirical validation studies that establish accuracy and 
reliability. Rigorous studies have not been conducted 
for CPI and other statistical DNA mixture methods, 
yet courts need such validation assessments. The match 
statistics used to report on DNA mixture evidence should 
be subject to the same scientific scrutiny as unproven 
methods in other forensic disciplines.
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