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© 2011 The Japan Society of Histochemistry and Cy-Heat shock protein 27 kDa (Hsp27) functions as a molecular chaperon to prevent apoptosis
as well as to contribute to the regulation of cell proliferation and differentiation during
development. In the present study, the localization of Hsp27 in the oral epithelium of rats and
its expression change during formation of the gingiva with the tooth eruption were examined
immunohistochemically to elucidate the roles of Hsp27 in the oral mucosa.
In adult rats, Hsp27-immunoreactivity was localized in the prickle and granular layers but
absent in the basal and horny layers of the oral epithelium. On the other hand, in the outer
and sulcular epithelia of the free gingival, Hsp27-immunoreactivity was detected in the whole
layers, while it was not found in the proliferation zone of the junctional epithelium immuno-
reactive for Ki67. In immature rats on 10th postnatal day, Hsp27-immunoreactivity was
intense in the prickle and granular layers of the oral epithelium, but was not detected in
its basal layer. In rats at the eruptive phase on 15th postnatal day, Hsp27-immunoreactivity
was detected in sites of the basal layer adjacent to where the dental cusps penetrated
through the oral epithelium. Although the immunoreactivity for Ki67 was found in the basal
layer of the oral epithelium, it was not localized in the Hsp27-immunopositive sites of tooth-
penetration in the basal layer. Just after the tooth-eruption on 20th postnatal day, Hsp27-
immunoreactivity was not found in the stratified squamous epithelium at the dentogingival
junction, whereas it was intense in a single layer of cuboidal epithelial cells attached to the
tooth neck. Ki67-positive cells were scattered in the stratified squamous epithelium at the
dentogingival junction, whereas no positive cells were found in the portion of a single layer
of cuboidal epithelial cells.
These findings suggest that the outer and sulcular epithelia of the free gingiva have a
relatively slower rate of proliferation than other gingival and oral epithelia, and that Hsp27
might inhibit the proliferation of the basal cells. Such specific phenomenon in the free gingiva
occurred immediately after the dental cusps were exposed to the oral cavity.
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I. Introduction

The entire surface of the oral cavity is lined by the

stratified squamous epithelium with/without keratinization

[11, 13]. The main function of the epithelial lining is to

protect the subepithelial and further internal environments

[13]. Peculiarly specialized structures of the oral epithelial

lining are teeth. The surface of the tooth-crown is covered

by the enamel, a specialized material formed by ameloblasts

of ectodermal origin. The enamel of erupted teeth lacks

ameloblasts and any other cells which should play essential

roles to regulate biological activities including the regenera-
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tion in response/compensation to attacks by cariogenic

bacteria and daily strong masticatory forces. Accordingly,

the junctional tissues between the oral epithelium and the

tooth enamel should be responsible for guards against the

biohazard and mechanical damages.

The gingiva is specially differentiated oral mucosa

located at the mucosa-tooth junction and covers the alveolar

bone and the cervical neck of the tooth. The gingiva is

covered with keratinized stratified squamous epithelium and

shows morphological variations reflecting the tissue adapta-

tion to the tooth and alveolar bones (Fig. 1). The variations

include the attachment gingival epithelium (AGE), oral

gingival (or outer) epithelium (OE), oral sulcular epithelium

(SE) and junctional epithelium (JE) [26, 27]. The gingival

epithelia, especially SE and JE, are easily affected chemi-

cally and damaged physically by food debris, dental

plaques and calculi including a variety of pathogenic

microorganisms. To correspond to such conditions, the oral

mucosal epithelium has biophylaxis mechanisms such as

rapid renewal and regeneration in addition to the mucosal

immune system [7, 10, 28]. Proliferation and differentiation

of epithelial cells are known to be regulated by a variety of

growth factors and cytokines [8]. However, little is known

about the molecular mechanism regulating the conversion of

cellular conditions such as proliferation, differentiation or

cell death. In recent studies a family of heat shock proteins

(HSP) has been suggested to regulate or switch the pro-

liferation vs. differentiation or the proliferation vs. cell death

[17, 31].

HSPs are induced by heat-shocks and other non-

physiological stimuli, and serve to protect against the cell

death as molecular chaperons [3, 19]. HSPs are also ex-

pressed in cells under non-stress states, and are considered to

play a variety of roles in addition to their anti-apoptotic roles

[14]. HSPs are divided into major groups based on their

respective molecular weights, among which Hsp27, a low

molecular-mass species, plays an essential role in the regula-

tion of cell proliferation, differentiation, and apoptosis [2, 4,

12, 20].

In developing epidermis and oral epithelium consisting

of simple cuboidal epithelium, Hsp27 is strongly expressed

in the basal cuboidal cells [30]. After development of

the flattened suprabasal layer, the occurrence of Hsp27-

immunoreactivity gradually shifts from the basal to supra-

basal cells. Such a shift in the expression pattern of Hsp27 in

developing stratified squamous epithelium from the basal

cells to suprabasal cells representing cells of the mature

prickle and granular layers, is the case widely in mature

stratified squamous epithelium [15, 18, 30, 31]. On the

other hand, because the transitional expression of Hsp27-

immunoreactivity in the basal cells is also the case in spe-

cialized epithelial derivatives such as developing teeth, hair

follicles, and taste buds [1, 30], Hsp27 has been proposed to

regulate the keratinocyte proliferation and differentiation

[15, 18].

In the present study, we examined the immunolocaliza-

tion of Hsp27 in the gingival epithelium of rats, with focus

on the regulation of keratinocyte proliferation with the

histological changes of gingival epithelium during tooth

eruption.

II. Materials and Methods

Laboratory animals

Wistar-strain male rats on postnatal 10th day (P10),

P15, P16, P17, P18, P19, P20 and P45 (Japan SLC,

Hamamatsu, Japan) were used in the present study. Standard

chow and water were supplied ad libitum throughout the

experimental period. Rats were maintained and used in

accordance with the Guidelines for Care and Use of Labo-

Fig. 1. Histology of the gingiva of adult rats. The enamel is com-

pletely decalcified and diminished (dotted line). A, attached gingi-

val epithelium (AGE); B, oral (outer) gingival epithelium (OE),

C, oral sulcular epithelium (SE) facing the gingival sulcus (*),

D, junctional epithelium (JE). In the present study, the outer gingiva

in general is divided by the free gingival junction (arrow) into OE

and AGE. AGE possesses abundant epithelial legs (arrowheads).

Bars=100 µm.
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ratory Animals of Meikai University School of Dentistry,

and the present experimental plan was approved by Meikai

University Animal Ethics Committee (C0717).

Immunohistochemistry

Rats, after the anesthesia by the intraperitoneal injec-

tion with 1 ml/kg pentobarbital sodium (Somnopentyl,

Kyoritsu Seiyaku, Tokyo, Japan), were perfused through

the heart first with saline and subsequently with 4%

paraformaldehyde in 0.1 M sodium phosphate buffer, pH

7.2. Then the heads were extirpated and immersed in the

same fixative overnight at 4°C. After fixation, the specimens

were immersed in 0.1 M EDTA, pH 7.4, for 3 weeks at

4°C and then immersed overnight in 30% sucrose/

phosphate buffer, pH 7.2. Sections of 10 µm thickness were

cut on a cryostat and used for immunohistochemistry and

hematoxylin-eosin (H-E) staining.

Cryosections on glass slides were treated for 60 min

in 0.3% Triton X-100/phosphate-buffered saline (PBS),

pH 7.4, and then in 10% normal goat serum (Nichirei,

Tokyo, Japan) for 30 min.

After rinsing with PBS, the sections were treated over-

night at room temperature with rabbit anti-mouse Hsp27

polyclonal antibody (1:500, Stressgen Bioreagents, Victoria,

Canada) or goat anti-mouse Ki67 polyclonal antibody

(1:500, Santa Cruz Biotechnology, Santa Cruz, CA, USA).

After rinsing with PBS, they were reacted for 60 min with

the secondary antibody, Cy2-labeled goat anti-rabbit IgG

(1:500, Chemicon, Temecula CA, USA) or Cy3-labeled

donkey anti-goat IgG (1:500, Chemicon). As a control,

some cryosections were treated with PBS in the absence of

the primary antibody, and stained in the same way as above.

For double immunostaining, sections were treated

overnight at room temperature with the mixture solution

of rabbit anti-mouse Hsp27 polyclonal antibody (1:500,

Stressgen Bioreagents) plus goat anti-mouse Ki67 poly-

clonal antibody (1:500, Santa Cruz Biotechnology), rabbit

anti-mouse Hsp27 polyclonal antibody (1:500, Stressgen Bio-

reagents) plus goat anti-human keratin polyclonal antibody

(1:500, Abcam plc, Cambridge, UK), or rabbit anti-mouse

Fig. 2. Double immunostaining for Hsp27 (green, a–f) plus Hsp47 (red, a, b), keratin (red, c, d), or Ki67 (red, e, f) in the gingiva of adult rats.

Higher magnification of a, and solid frames in c and e were showed in b, d, f, respectively. Note that Hsp27-immunoreacitivity is localized in

basal and suprabasal layer of OE and SE except for the transitional area (arrows) adjacent to JE. Basal layer of the transitional area (arrows in b

and frames in c, e) is absent from Hsp27-immunoreacitivity and shows the presence of keratin and Ki67 immunoreactivities. Basal membrane is

indicated by dotted line (f). Bars=100 µm (a); 50 µm (b, c, e); 10 µm (d, f).
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Hsp27 polyclonal antibody (1:500, Stressgen Bioreagents)

plus mouse anti-mouse Hsp47 monoclonal antibody (1:500,

Stressgen Bioreagents). After rinsing with PBS, they were

reacted for 60 min with the mixture of secondary antibodies,

Cy2 labeled goat anti-rabbit IgG (1:500, Chemicon) plus

Cy3 labeled donkey anti-goat IgG (1:500, Chemicon) or

Cy2 labeled goat anti-rabbit IgG (1:500, Chemicon) plus

Cy3 labeled donkey anti-mouse IgG (1:500, Chemicon).

III. Results

Hsp27 localization in adult rat gingiva

Intense immunoreactivity for Hsp27 was localized in

the prickle and granular layers of the stratified squamous

epithelium throughout the gingiva, while the immuno-

reactivity in the basal layer was confined to OE and SE

(Fig. 2a, b). No immunoreactivity was found in the horny

layer throughout the gingival epithelium.

In double immunostaining for Hsp27 and keratin, a

marker of epithelial cells, co-localization for the two anti-

gens was found the prickle and granular layers throughout

the gingival epithelium (Fig. 2c). On the other hand, co-

localization was also found in the basal layer of only OE and

SE (Fig. 2d).

In double immunostaining for Hsp27 and Ki67, a pro-

liferating cell marker, no co-localization for the two antigens

was found throughout the gingival epithelia (Fig. 2e).

Immunoreactivity for Ki67 was localized in nuclei of cells in

the basal layer throughout the gingival and alveolar epithelia

except for OE and SE in which Hsp27-immunoreactivity

was detected in the basal layer. In JE, Ki67-immunopositive

basal layer and Hsp27-immunopositive suprabasal layer

were recognized (Fig. 2e, f).

Cells immunoreactive for Hsp47, a marker of fibro-

blasts producing collagen fibers, was localized subjacent to

the epithelium and deeply in the lamina propria (Fig. 3a).

The immunoreactivity for Hsp47 was also found in the basal

layer of long epithelial legs throughout the gingival epithelia

although it was not detected in the basal layer of short legs in

the alveolar mucosal epithelium (Fig. 3b).

Cells immunoreactive for Ki67 were detected in the

basal layer of attachment gingival epithelium (AGE) with

long epithelial legs (Fig. 3c) and of alveolar mucosal epithe-

lium with short epithelial legs (Fig. 3d). All epithelial cells

and layers immunopositive for Ki67 were immunonegative

for Hsp27. These results suggest that expression of Hsp27 is

Fig. 3. Double immunostaining for Hsp27 (green, a–d) plus Hsp47 (red, a, b) or Ki67 (red, c, d) in AGE (a, c) and alveolar mucosa (b, d)

of adult rats. Arrows indicate the Hsp27-immunonegative basal layer with (a) and without (b) Hsp47-immunoreacitivity, and with Ki67-

immunoreactivity (c, d). Bars=20 µm (a–d).



Hsp27 in Rat Gingiva 21

negatively regulated by cell proliferational activity.

Summary of immunohistochemical detection of Hsp27

and Ki67 is shown in Table 1.

Developing gingiva during tooth eruption

Before the tooth eruption (P10), molar tooth germs

were covered by the oral mucosa and the enamel organ and

the oral epithelium was connected by a short dental lamina

(Fig. 4a, b). The oral epithelium covering the tooth germs

showed the same localization pattern for Hsp27 as that of

adult AGE and other types of the oral epithelium described

in the previous section (Fig. 4c). The basal layer immuno-

negative for Hsp27 was continuous to the outer enamel epi-

thelium via immunonegative dental lamina. Intense immuno-

reactivity for Hsp27 was detected in ameloblasts in the inner

enamel epithelium, but was not in the stellate reticulum

(Fig. 4c).

Shortly before the tooth eruption (P15), the oral

mucosa accompanying a very thin lamina propria covered

the molar tooth germ (Fig. 4d, e) and showed the same

immunoreaction pattern as at the previous stage (Fig. 4f).

Ameloblasts were immunopositive for Hsp27 (Fig. 4d).

The stellate reticulum and papillary layer of the tooth germ

were immunonegative for Hsp27 (Fig. 4f).

When small cracks occurred in the gingiva above the

tooth germ and an apex of the cusp was first exposed to

Table 1. Expression of Hsp27 and Ki67 in the rat gingival epithelium

AE, alveolar epithelium; AGE, attached gingival epithelium; OE, oral (outer) gingival epithelium; SE, sulcular epithelium; JE, junctional

epithelium.

Gingival portions AE AGE OE SE JE

Layer/Antigen Hsp27 Ki67 Hsp27 Ki67 Hsp27 Ki67 Hsp27 Ki67 Hsp27 Ki67

basal – + – + + – + – – +

prickle/granular + – + – + – + – + –

Fig. 4. Light micrographs of the tooth germ and covering oral epithelium of rats of 10th day (a–c) and 15th (d–f) day after birth stained with

H-E (a, b, d, e) or anti-Hsp27 antibody (c, f). Higher magnification of solid frames in a and d were showed in b and e, respectively. c and f

represent similar areas to b and e, respectively. Basal membrane is indicated by dotted line (c, f). Hsp27-immunoreactivity was found in the

prickle/granular and ameloblastic layers (arrowheads). The stellate reticulum (double asterisks in b, c) and papillary layer (double asterisks in

e, f) as well as basal layer (arrows) were immunonegative. Single asterisk indicates the decalcified enamel. Bars=500 µm (a, d); 50 µm (b, c);

20 µm (e, f).
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the oral cavity (P16, Fig. 5a), the epithelium covering the

lateral surface of tooth crown was composed of keratinized

stratified squamous cells at the oral cavity (outer) side and of

simple columnar cells originating from the reduced enamel

epithelium at the tooth (inner) side. The oral stratified epi-

thelium suddenly changed to a reduced enamel epithelial

layer about 1/3 from the gingival margin in the developing

gingiva of tooth side (Fig. 5b). The immunoreactivity for

Hsp27 was localized strongly at the prickle and granular

layers of developing gingiva, and it was also found in the

basal layer at a portion close to the gingival margin

(Fig. 5b).

No cell nuclei immunoreactive for Ki67 were found in

the basal layer of a portion of the oral epithelium covering

molar tooth germs close to the gingival margin (Fig. 5c).

The basal layer without Ki67-immunoreactivity was recip-

rocally immunopositive for Hsp27 (Fig. 5b). In other por-

tions of the epithelium farther away from the gingival

margin though covering the still impacted molar crown, the

basal layer was composed of cells Ki67-immunoreactive but

Hsp27-immunonegative (Fig. 5b).

In P20, the tooth eruption advanced and the occlusal

surface of the molar was almost exposed in the oral cavity

(Fig. 5d). The root formation was still incomplete but the

histological architecture of the gingiva was almost the

same as that of adult specimens, although SE and JE were

not fully differentiated in the epithelium facing the develop-

ing gingival sulcus.

The epithelium facing the gingival sulcus was com-

posed of the reduced enamel epithelium and stratified

squamous epithelium continuing to OE at the gingival

margin. Hsp27-immunoreactivity was localized in whole

layers of OE except for the horny layer (Fig. 5e). Hsp27 was

not expressed in the basal layer of AGE while the other

layers, prickle and granular, were immunopositive for

Hsp27 (Fig. 5e). Only portions of stratified squamous epi-

thelium facing the enamel of erupting crown exhibited

Hsp27-immunoreactivity, and simple cuboidal epithelium

formed by the reduced enamel epithelium exhibited Hsp27-

immunoreactivity (Fig. 5f).

Fig. 5. Light micrographs of rats (a–c: 16th day after birth; d–g: 20th day after birth) tooth germ and covering oral epithelium stained with H-E

(a, d), double stained for Hsp27 (green; b) plus Hsp47 (red; b), or single stained for Ki67 (red; c, g), and Hsp27 (green; c, e, f). Areas of black

solid frames in a and d are immunostained and shown at higher magnification in b, c, and e, respectively. Arrows (b, c) indicate the Hsp27-

immunonegative basal layer in oral epithelium with Ki67. Arrowheads (b, c) indicate the Hsp27-immunopositive basal layer without Ki67.

Open arrows in b and c indicate the junction of oral epithelium and reduced enamel epithelium. Area of solid frame (e) is higher magnified in f.

Dotted lines (f, g) indicate the basal membrane. Arrows (f, g) indicate junction of the oral and the reduced enamel epithelia. Note that Hsp27-

immunonegative epithelium (asterisk in f) contains many Ki67-immunopositive cells (asterisk in g). The single layer of cuboidal epithelium

under the arrow (f) has no Ki67-immunopositive cells (g). Bars=500 µm (a, d); 50 µm (b, c, e); 20 µm (f, g).
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No Ki67-immunopositive nuclei were seen in simple

cuboidal epithelium formed by the reduced enamel epitheli-

um, but the immunoreactivity was localized in all layers of

the stratified squamous epithelium (Fig. 5g). At this stage,

no co-localization of Hsp27 and Ki67 was recognized.

IV. Discussion

The major finding of the present study is that, different

from the AGE as well as the oral mucosal epithelium in

which the immunoreactivity for Hsp27 was confined to

the spinous and granular layers of the stratified squamous

epithelium, the immunoreactivity was localized in the basal

layer as well as the spinous and granular layers of the OE

and SE in the free gingiva. It is known that the cell pro-

liferation by mitosis takes place in the basal layer of the

stratified squamous epithelium, and that newly generated

cells migrate toward the epithelial surface through the

spinous and granular layers with the differentiation to

keratinocytes which is intimately associated with expression

and maturation of keratin protein. Considering the knowl-

edge on the cell proliferation and migration with differentia-

tion in the stratified squamous epithelium, the confined

localization of Hsp27 to the spinous and granular layers of

the general stratified epithelium suggests the possibility that

Hsp27 is involved in the differentiation of keratinocytes,

and/or in the inhibition of the cell proliferation [9, 20, 32].

Previous experiments using mouse ES cells have

shown that Hsp27 prevents apoptosis at the initial stage of

differentiation and functions as a molecular switch from

proliferation to differentiation, by involvement in the tran-

sient oligomer formation, prevention of protein aggregation,

and promotion of decomposition of unnecessary protein

[2–4]. It has also been shown that the inhibition of Hsp27

expression induces the ES cell proliferation and apoptosis,

while the enhancement of Hsp27 expression results in

inhibition of cell proliferation, apoptosis and progress of

differentiation [20]. Regarding the possibility of the inhibi-

tion of cell proliferation, it is known that the overexpression

of Hsp27 results in marked increase in the rate of translation

of p21, a cyclin-depending kinase 2-related protein, whose

gene promoter contains a binding site with p53 through

which p21 is involved in inhibition of p53-inducing cell

proliferation [23].

On the other hand, the localization of Hsp27 in the

basal layer of OE and SE suggests the possibility that Hsp27

inhibits the cell proliferation in the free gingival. In support

of this possibility, the present study showed no immuno-

reactivity for Ki67, a marker of cells at all cell cycle stages

except for G0 [16], in the Hsp27-immunopositive cells in the

basal layer of the OE and SE, and there has been data that no

BrdU-positive cells are detected in the basal cells in the free

gingival epithelium [29].

The present study showed that the specific localization

pattern of Hsp27-immunoreactivity in the free gingival

epithelium was completed shortly after the tooth eruption.

A similar specific pattern of Hsp27-immunoreactivity has

already been reported to occur in the nail bed epithelium, in

which Hsp27 is suggested to inhibit the cell proliferation

[30]. These results suggest that low proliferative activity in

the free gingiva becomes evident immediately after the tooth

eruption and gingival differentiation. Further studies are

necessary to clarify detailed molecular mechanism of inhibi-

tion of cell proliferation by Hsp27.

Origin of gingival epithelium except for the JE is still

controversial, whether the gingival epithelium comes from

the reduced enamel epithelium or not. Ameloblasts in the

late tooth germ express Hsp27 constitutively, while earlier

stages of tooth germ express Hsp27 transitionally with the

downregulation of ameloblast proliferation [22, 24]. As

ameloblasts after the secretion phase constitutively express

Hsp27 [24], our results at least indicate that a part of OE

originates from the enamel epithelium during tooth eruption.

The present study also showed intense immuno-

reactivity for Hsp27 in cells located in the most outer zone in

the JE in matured rats. These cells adhere directly to enamel

by hemidesmosomes and outer basal lamina [28]. There

have been data showing that phosphorylated Hsp27 regu-

lates the binding of actin and intermediate filaments and

pemphigus [21], an autoimmune disease characterized by

the blistering of the prickle layer caused by the destruction

of intercellular desmosomes, induces phosphorylation of

Hsp27 and p38MAPK after a binding of the pemphigus IgG

to keratinocytes. While the inhibitor of p38MAPK regulates

a phosphorylation of Hsp27 and suppresses a degeneration

of cytoskeleton in cultured keratinocytes [5, 6], Hsp27 may

act in cell adherence in the gingival epithelium.

Additionally, the expression of Hsp47 was also found

in the basal layer of AGE. Hsp47 has an affinity with vari-

ous types of collagen and is expressed in fibroblasts [25].

Immunoreactivity of Hsp47 in the basal cells may indicate

the active production of basal membrane components such

as type IV collagen. The expression of Hsp47 of the basal

layer was present in AGE accompanying numerous long

epithelial legs. On the other hand, it was absent in other

types of gingival/oral epithelia with smooth junctional

borders. Epithelial legs in AGE may be linked with an

attachment of abundant gingival fibers composed of type I

collagen. Therefore, it is suggested that Hsp47 gingival

epithelial cells is associated with the attachment and/or

production of the components of gingival fibers.
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