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Abstract

The fatal transmissions of highly pathogenic avian influenza A viruses (IAV) of the H5N1 subtype to humans and high titer
replication in the respiratory tract indicate that these pathogens can overcome the bird-to-human species barrier. While
type I interferons (IFN-a/b) are well described to contribute to the species barrier of many zoonotic viruses, current data to
the role of these antiviral cytokines during human H5N1 IAV infections is limited and contradictory. We hypothesized an
important role for the IFN system in limiting productive infection of avian H5N1 strains in human cells. Hence, we examined
IFN-a/b gene activation by different avian and human H5N1 isolates, if the IFN-a/b response restricts H5N1 growth and
whether the different strains were equally capable to regulate the IFN-a/b system via their IFN-antagonistic NS1 proteins.
Two human H5N1 isolates and a seasonal H3N2 strain propagated efficiently in human respiratory cells and induced little
IFN-b, whereas three purely avian H5N1 strains were attenuated for replication and provoked higher IFN secretion.
Replication of avian viruses was significantly enhanced on interferon-deficient cells, and exogenous IFN potently limited the
growth of all strains in human cells. Moreover, IFN-a/b activation by all strains depended on retinoic acid-inducible gene I
excluding principal differences in receptor activation between the different viruses. Interestingly, all H5N1 NS1 proteins
suppressed IFN-a/b induction comparably well to the NS1 of seasonal IAV. Thus, our study shows that H5N1 strains are
heterogeneous in their capacity to activate human cells in an NS1-independent manner. Our findings also suggest that
H5N1 viruses need to acquire adaptive changes to circumvent strong IFN-a/b activation in human host cells. Since no single
amino acid polymorphism could be associated with a respective high- or low induction phenotype we propose that the
necessary adaptations to overcome the human IFN-a/b barrier involve mutations in multiple H5N1 gene .
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Introduction

Influenza A viruses (IAV) are the prototypic members of the

Orthomyxoviridae and cause seasonal epidemic outbreaks of respira-

tory disease in humans with significant morbidity and mortality

[1]. The epidemiology of human influenza is strongly influenced

by a large natural reservoir of IAV in avian species. The

segmented RNA genome of influenza viruses allows for reassort-

ment of segments between human and avian IAV strains, which

was elemental for the generation and introduction of pandemic

IAV strains into the human population in 1957 and 1968 [2–4]. In

contrast, direct transmission of avian IAV to humans in toto has

been rarely noticed until the emergence of certain Asian H5N1

strains at the end of the last century [5,6]. While this indicates the

existence of a robust species barrier for avian IAV, it is still not

completely understood which factors prevent efficient replication

of avian influenza viruses in human hosts.

For a long period it was believed that the different receptors

avian and human IAV recognize via the hemagglutinin (HA) to

infect their respective target cells were the main reason for

inefficient replication of avian IAV in humans. The HA of most

avian strains recognizes terminal sialic acids with an a2,3-linkage

expressed on the surface of avian cells, while human IAV prefer

a2,6-linked sialic acids present on human tracheal cells [7].

However, human H5N1 isolates only rarely express HA proteins

with adaptive changes facilitating binding of ‘‘human’’ receptor

determinants [8–10]. In addition, a2,3-linked sialic acids were

recently shown to be present especially in the lower human

respiratory tract [11–15] indicating other factors to limit avian

IAV replication in humans in addition to receptor specificity.

Mutations in the viral polymerase increasing enzymatic activity

and enabling replication at lower temperatures have then been

identified as important requirements for adaptation [16,17].

Remarkably, human H5N1 infections are rather rare in regard

to the widespread exposure of humans to H5N1 viruses endemic

in poultry [18]. On the other hand, high virus loads observed in

H5N1 patients indicate that H5N1 viruses have the capacity to

efficiently replicate in human hosts despite the presence of a

vigorous cytokine response [19–22].
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It is well established that seasonal influenza viruses activate the

innate type I IFN response via viral 59-triphosphorylated (59-PPP)-

RNAs, which are sensed by the cytoplasmic sensor RIG-I [23–25].

Subsequently, RIG-I signaling activates the expression of IFN-a/b
genes via upregulation of the transcription factors IRF-3/27, NF-

kB and ATF-2/c-jun [26] and secreted IFN-a/b stimulates the

expression of more than 100 latent genes, many of which encode

factors with potent antiviral activity [27]. Type I interferon (IFN-

a/b) induction, if not avoided or dealt with by the virus, leads to

the establishment of an antiviral state in infected and bystander

cells, which effectively suppresses virus replication [28]. Seasonal

human influenza viruses achieve efficient replication by suppress-

ing the activation of IFN-a/b genes via their NS1 protein, a

pleiotropic factor that is abundantly expressed in infected cells

[24,25,29–35]. Earlier studies of H5N1 infections of human lung

epithelial cells and macrophages were inconclusive in this respect

as they reported either weak [30] or strong induction [36–38] of

IFN-a/b genes. This raised questions about the specific sensitivity

of H5N1 strains to IFNs, whether H5N1 viruses trigger an

alternative IFN induction pathway in human cells, and whether

they possibly encode NS1 proteins with compromised functions.

The purpose of this study was to examine our hypothesis that

the innate type I IFN response restricts the replication of H5N1

viruses in the human host and thereby contributes to the avian to

human species barrier. Hence we compared a panel of available

human and avian H5N1 strains with a prototypic seasonal IAV.

Since the viral NS1 proteins are known as the main influenza viral

regulator of the IFN-a/b response, we also put a special emphasis

on the functionality and mode of action of H5N1 NS1 proteins in

human cells.

Our analysis showed that two highly pathogenic human H5N1

isolates replicated at least as efficient as a prototypic seasonal

H3N2 strain in different human epithelial cells and induced

comparably low IFN-b secretion. In contrast, three analyzed avian

H5N1 isolates activated a much more pronounced IFN-b
secretion and were attenuated for replication indicating profound

differences in their interaction with cellular innate defenses.

Growth analyses of the H5N1 strains in IFN-deficient- and in IFN-

a pre-conditioned cells demonstrated that the human type I IFN

system potently reduces H5N1 virus growth. Viral IFN upregula-

tion uniformly depended on the RIG-I sensor protein indicating

that H5N1 viruses do not trigger an alternative IFN induction

pathway. Reverse genetic analyses showed that all H5N1 NS1

proteins antagonize IFN induction similar as their counterpart of a

prototypic seasonal strain. Hence we conclude that the IFN system

contributes to the bird-to-human species barrier and suggest that

efficient replication of H5N1 viruses in human cells requires

adaptive changes to accommodate to the new host.

Materials and Methods

Cells and Viruses
Human A549 lung epithelial cells (ATCC CCL-185) and 293T

cells (ATCC CRL-11268) were grown in Dulbeccòs modified

eagle medium (D-MEM) supplemented with 10% heat-inactivated

fetal bovine serum (FBS), 2 mM L-glutamine and antibiotics.

Madin Darby canine kidney cells (MDCK) cells (ATCC CRL-

2936) were cultivated in minimum essential medium (MEM)

containing 10% FBS, glutamine and antibiotics and Vero cells

were grown in serum-free Opti-Pro medium (Invitrogen). Unpo-

larized human bronchial epithelial Calu-3 cells (ATCC HTB-55)

were grown in Eagle’s minimal essential medium as described, but

15% FBS were used [30]. Normal human bronchial epithelial

(NHBE) cells (Lonza, Walkersville, USA) were grown as recom-

mended by the manufacturer. Frozen stock cells were thawed,

passaged once, seeded in 24-well-plates and used when nearly

confluent. All cells were cultured in monolayers, maintained at

37uC and 5% CO2.

The two highly-pathogenic H5N1 influenza A virus strains A/

Hong Kong/156/1997 (clade 0; obtained from the National

Institute for Biological Standards and Control, Hertfordshire, UK)

and A/Thailand/1 (KAN-1)/2004 (clade 1; obtained from P.

Puthavathana, Bangkok, Thailand) were previously isolated from

infected patients and are referred to as human H5N1 isolates

throughout this report [39,40]. The H5N1 strains A/chicken/

Indonesia/R132/2004 (clade 2.1.1), A/duck/Vietnam/TG24-

O1/2005 (clade 1) and A/common buzzard/Berlin/1/2006

(clade 2.2) were obtained from Brunhilde Schweiger (German

National Reference Centre for Influenza at the Robert Koch-

Institut, Berlin). All experiments and handling of samples

containing H5N1 infectious particles were done in a biological

safety level 3 facility. Stocks of human H5N1 isolates were grown

in MDCK cells, while the avian isolates were propagated in 10 day

old embryonated chicken eggs. The influenza A/Panama/2007/

1999 virus (Pan/99) was grown in MDCK cells and used in its

recombinant form as a prototypic seasonal influenza virus (see

below).

Generation of Recombinant Viruses
A recombinant eight plasmid system for the Pan/99 strain and

respective constructs encoding the NS segments of H5N1 viruses

were generated with the pHW2000 vector according to published

procedures [41]. All plasmids were verified to contain the specific

inserts with the expected sequence. The delNS1 construct was

generated by reverse transcription from NS2-mRNA using an

oligo-dT primer and amplification using the primers 59-TAT

TCG TCT CAG GGA GCA AAA GCA GGG TG-’3 and 59-

ATA TCG TCT CTT ATT AGT AGA AAC AAG GGT GTT

TTT TAT TAA ATA AGC TGA AAT G-‘3 resulting in an insert

encoding only the NS2 open reading frame flanked by the non-

coding regions of the viral NS segment. Recombinant Pan/99 and

mutant viruses were rescued by passaging cell culture supernatants

of 293T cells transfected with the eight respective pHW2000-

derived plasmids on Vero cells. The recombinant Pan/99 WT

virus showed similar multi-cyclic growth and IFN-b induction on

A549 cells compared to the natural isolate (data not shown).

IFN-aA/D- treatment of Cultured Cells
A549 cells were treated with 500 IU/ml of human IFN-aA/D

[BglII] (PBL) 6 hrs before infection and viral growth media was

supplemented with the same IFN-a concentration. Infected

cultures received fresh media containing IFN-a at each time-point

of sample acquisition to maintain media volume and IFN-a
concentration.

Infections and Plaque Titrations
For infections, 80 to 90% confluent cell cultures were incubated

with diluted stock virus for 45 min at room temperature. Infected

cells were washed and incubated with D-MEM supplemented with

0.2% bovine albumin, 2 mM L-glutamine, 100 U/ml penicillin,

100 mg/ml streptomycin and 0.4 mg/ml (A549 cells) or 1.0 mg/ml

of trypsin (MDCK, Vero cells). Plaque titer determination was

done by infecting confluent layers of MDCK cells with serial

dilutions of virus, which were then overlaid with 1.25% Avicel

RC581 (FMC) in MEM supplemented with 0.2% BA, 0.05%

NaHCO3 and 0.01% DEAE dextran [42]. Plaques were visualized

by either immunostaining of cells for viral nucleoprotein at 24 hrs

p.i. (hpi) or by staining with crystal violet at 48 hpi. To stain for

IFN-b Induction by H5N1 Influenza A Virus
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the IAV nucleoprotein, cells were permeabilized with 0.2% Triton

X-100 and plaques were visualized on a Li-Cor Odyssey platform

using a viral NP-specific monoclonal antibody (AbD Serotec

Division of MorphoSys, clone AA5H) and a secondary anti-mouse

IgG antibody (Li-Cor).

IFN-b ELISA
Cell culture supernatant samples from infected cell cultures

were stored at 280uC, thawed at room temperature and IFN-b
concentrations were measured using a human IFN-b ELISA Kit

(Fujirebio Inc./Invitrogen) according to the manufacturer’s

instructions.

Immunoblotting Analysis
Cells were lysed in Tris-HCl, pH 7.5 containing 1% NP40,

0.1% SDS, 2 mM EDTA, 10% glycerol, 137 mM NaCl and

protease inhibitors. Protein content of lysates was estimated via

Bradford assay (BioRad) and equal amounts of protein were

separated by SDS gel electrophoresis and transferred to Pro-

tranTM nitrocellulose membranes (Schleicher & Schüll, Germany).

The following primary antibodies were used for antigen detection:

mouse a-NP (AbD Serotec, clone AA5H), rabbit a-actin (Acris,

NB600-532), rabbit a-RIG-I (Axxora, ALX-210-932) as well as the

fluorophore-labeled secondary antibodies IRDye 800CW goat a-

rabbit and IRDye 600 goat a-mouse (Li-Cor) or respective

horseradish peroxidase-conjugated antibodies (Dako). Band inten-

sities were quantified using the Li-Cor Odyssey software.

siRNA Transfection Experiments
RIG-I-specific small interfering (si)RNA and non-target control

siRNA used were previously described [25]. A549 cells seeded in

12-well plates were transfected with 150 ng siRNA and 6 ml

HiPerfect (Qiagen, Hilden) according to the manufacturer’s

protocol. 36 to 48 hrs after transfection, cells were infected with

virus and IFN-b concentrations and knock-down efficiencies were

determined by densitometric quantification of immunoblot blot

bands from RIG-I and tubulin loading controls.

IFN-b Promoter Luciferase Reporter Assay
293T cells were transfected in triplicates in poly-D-lysine coated

12-well plates using Lipofectamine2000 (Invitrogen). Cells were

co-transfected with 1 mg of empty vector or pHW2000-NS

plasmid, 50 ng of the IFN-b promoter reporter p125-luc and the

pRL-TK-luc plasmid (Promega) to normalize transfection effi-

ciency as described [25,43]. 30 hrs post transfection cells were

infected with Pan-delNS1 virus (MOI = 1) or mock infected.

Cellular luciferase activities were determined 16 hrs p.i. using the

Dual Luciferase Kit (Promega). The respective firefly luciferase

activities were normalized and the increase in reporter activity in

Pan-delNS1 infected cells compared to mock-infected cells was

calculated.

Statistical Analysis
Data is presented as mean +/2 SEM if not indicated otherwise.

The two-tailed student’s t-test was used to delineate significant

differences between data points using the Prism6 software (Graph

Pad), p#0.05 was considered significant. Significance is depicted

as * for p#0.05, ** for p#0.01 and *** for p#0.001, respectively.

Sequences
The hitherto unpublished sequences for A/Common buzzard/

Berlin/1/2006 (EPI349049-52, EPI346565, EPI346566, and

EPI346568) and A/Chicken/Indonesia/R132 (EPI354072–78

and EPI354080) were submitted to the GISAID database

(http://gisaid.org) and complete sequence information for A/

Panama/2007/99 (DQ487333-40) was deposited at Genbank

(http://www.ncbi.nlm.nih.gov). Sequence information of the

remaining H5N1 strains can be accessed in GISAID (A/Duck/

Vietnam/TG24/05, EPI_ISL_70397) and Genbank (A/Hong

Kong/156/97 and A/Thailand/1 (KAN-1)/2004).

Results

Replication of Human and Avian Influenza H5N1 Virus
Isolates in Human Lung Epithelial Cells

We compared five closely related influenza A virus isolates of

the H5N1 subtype with the prototypic seasonal H3N2 strain A/

Panama/2007/99 (Pan/99) for viral growth and activation of the

type I IFN system in human cells. The H5N1 strains A/Hong

Kong/156/97 (HK/97) and A/Thailand/1(Kan-1)/2004 (Thai/

04) were derived from lethally infected human patients, whereas

A/chicken/Indonesia/R132/2004 (Ch/Ind), A/duck/Vietnam/

TG24-O1/2005 (Duck/VN) and A/common buzzard/Berlin/1/

2006 (Buzz/Bln) were of avian origin. Since we analyzed the

contribution of the viral NS1 protein in the control of type I IFN

induction, we also included a delNS1 deletion variant of the Pan/

99 (H3N2) virus lacking the NS1 coding region in our study [44].

The two human H5N1 isolates reached approximately four

times higher titers during multi-cyclic growth on human A549

lung epithelial cells than the seasonal H3N2 strain at 48 hrs p.i.

(Figure 1A). In contrast, growth of the three avian H5N1 isolates

was considerably lower in the range of one (Duck/VN, Buzz/Bln)

to four (Ch/Ind) orders of magnitude, respectively. The Pan-

delNS1 virus did not replicate in these cells demonstrating the

essential contribution of NS1 to efficient viral growth, which is

consistent with previous findings for delNS1 derivatives of the

mouse-adapted strains A/PR/8/34 (H1N1) and A/SC35M

(H7N7) [29,45]. Replication of avian H5N1 viruses was also

attenuated in human bronchiolar Calu-3 cells and primary

bronchiolar epithelial cells by one or more logs compared to the

human H5N1 isolates, suggesting a generally compromised

capacity of the avian strains to replicate in human cells (Figure

S1A and B). Single-cycle growth analysis confirmed the compro-

mised growth of the avian H5N1 strains in human cells, since the

human H5N1 isolates also replicated considerably faster, with the

Thai/04 isolate reaching titers three orders of magnitude higher

than the avian H5N1 isolates at 15 hrs p.i. (Figure 1B). The poor

growth of the avian H5N1 isolates was most likely not caused by a

generally low rate of primary infection, since the amounts of viral

nucleoprotein (NP) detected in cells infected with avian strains

were comparable or even higher than in cells infected with human

isolates (Figure 1C).

Differential Induction of IFN-b of Human and Avian
Influenza H5N1 Virus Isolates

Analyzing the accumulation of type I IFN in the supernatants of

infected A549 cells, we noticed that the poorly growing avian

H5N1 strains induced an up to 15 times stronger IFN-b secretion

from human cells than the human H5N1 and seasonal viruses,

regardless whether infection was initiated at low (24 and 48 hpi) or

high (16 hpi) multiplicity (Figure 1D and E). Conversely, there

were only minor differences in the low IFN-b inductions between

the well growing human isolates (HK/97 and Thai/04) and the

seasonal Pan/99 strain. The Pan-delNS1 mutant virus strongly

induced IFN-b when applied at high MOI (Figure 1E), but failed

to do so after low multiplicity infection (Figure 1D), most likely due

to its inefficient replication (Figure 1A). Of note, we also evaluated

IFN-b Induction by H5N1 Influenza A Virus
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the human and avian virus strains for their capacity to stimulate

IFN-b secretion from primary monocyte-derived macrophages

and human bronchiolar Calu-3 cells, and noticed similar ratios of

IFN secretion as were observed for A549 cells infected at high

MOI (Figure S2 and data not shown). These findings indicated

that H5N1 influenza viruses vary in their capacity to inhibit and/

or to induce antiviral IFN-b in human cells and suggested that IFN

Figure 1. Replication and IFN-b induction by human and avian H5N1 strains in human cells. (A, B) A549 cells were infected at a
multiplicity of 0.01 (A) or 1 (B) with the highly-pathogenic human H5N1 IAV isolates A/Hong Kong/156/1997 (HK/97) and A/Thailand/1 (KAN-1)/2004
(Thai/04), the avian H5N1 strains A/chicken/Indonesia/R132/2004 (Ch/Ind), A/duck/Vietnam/TG24-O1/2005 (Duck/VN) and A/common buzzard/Berlin/
1/2006 (Buzz/Bln) as well as with the prototypic seasonal A/Panama/2007/99 (Pan/99) H3N2 virus and its mutant variant with a deleted NS1 gene
(Pan-delNS1; shown only in panel A). Supernatant of infected cell cultures was sampled at the indicated time points and viral titers were determined
by plaque assay. Mean data+SEM of at least three independent experiments is shown. (C) Immunoblot analysis of lysates from A549 cells infected at
MOI = 1 using a viral NP-specific antibody at the indicated time points post infection (p.i.). Relative intensities of NP bands normalized to actin
controls are depicted in comparison to Thai/04, which was arbitrarily set as 100%. (D, E) Concentrations of IFN-b in cell culture supernatants of A549
cells infected with the indicated viruses at low (MOI = 0,01, panel D) or high multiplicity (MOI = 1, panel E) determined via ELISA at 24 and 48 hpi (D)
or at 16 hpi (E). Mean data of at least three independent experiments +/– SEM is shown. Symbols indicate significant differences between given
results with p,0.05 (*), p,0.01 (**), or p,0.001(***), respectively, as determined by unpaired two-tailed t-tests.
doi:10.1371/journal.pone.0056659.g001
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hyper-induction can cause or contribute to the attenuated

propagation of the avian H5N1 isolates.

H5N1 Virus Growth is Sensitive to IFN-a/b
To examine if there was a causal relationship between strong

IFN-b secretion and low replication of some H5N1 strains, we

studied their replication in A549 cells pre-conditioned and treated

with 500 IU/ml IFN-a throughout the experiment. IFN treatment

strongly reduced the growth of all human and avian strains up to

five orders of magnitude compared to non-treated cells (Figure 2A).

The human Thai/04 (H5N1) strain still reached the highest titers

among the investigated strains. Thus, IFN-a/b potently restricted

H5N1 virus growth in human cells and its strong induction by the

avian H5N1 viruses is likely to compromise their growth on

human lung cells.

To further validate that the IFN system does restrict H5N1

growth, we also examined viral propagation on Vero cells that lack

functional IFN-a/b genes [46,47] and expected enhanced growth

especially of the strongly IFN inducing strains. In fact, the

replication of the Pan-delNS1 mutant virus in these IFN-deficient

cells was increased by six logs compared to A549 cells (compare

Figures 2B and 1A), highlighting the importance of NS1-mediated

suppression of the innate antiviral defense [48]. The human H5N1

strains and the Pan/99 WT virus reached similar titers in both cell

lines, indicating their capacity to replicate efficiently in an

interferon-competent host cell. Interestingly, in Vero cells the

replication of the avian strains was much more similar to that of

the human isolates. While in A549 cells at 48 hrs p.i. the titers for

avian strains Ch/Ind, Duck/VN and Buzzard/Bln were approx-

imately 52.000-, 81- and 69-fold lower than that of the human

HK/97 strain (Figure 1A), these differences were reduced to 25-,

2- and 2-fold in Vero cells, respectively (Figure 2B).

The IFN-a/b System is Activated via RIG-I during H5N1
Infection

An explanation for the higher levels to which the avian H5N1

isolates induced IFN-b secretion in human cells could be that they

stimulate IFN-a/b induction in a different manner than human

IAV, which are known to trigger IFN-a/b secretion via the RNA

helicase RIG-I and to suppress this pathway via their NS1 proteins

[25,49]. We hence considered three different explanations for the

more extensive induction of IFN-b by the avian H5N1 strains in

our analysis: First, activation of a cellular receptor governing an

alternative or additional IFN-a/b inducing pathway not blocked

by the viral NS1 protein. Second, an insufficient inhibition of

RIG-I signaling by the ‘‘avian’’ NS1 proteins, or third, a

hyperstimulation of RIG-I signaling during avian H5N1 infec-

tions.

To test whether H5N1 isolates might induce IFN-a/b via a

different pathway, we explored the consequences of siRNA-

mediated knock-down of RIG-I in A549 cells on IFN-a/b
induction during H5N1 virus infection. Immunoblot analysis of

siRNA-treated cells confirmed a reduction of RIG-I protein levels

by 85% on average (Figure 3, lower panel) as determined by

densitometric analysis. Expression of other RNA sensors like

MDA5, DDX1 and TLR3 was not affected by siRNA treatment

(data not shown). Significantly, cells transfected with the RIG-I-

specific siRNA secreted uniformly about 80% less IFN-b after

infection with each of the viruses compared to control siRNA

transfected cells (Figure 3) (p = 0.0411, exact p-value, two-tailed

Mann-Whitney test). The strong decrease in IFN-b accumulation

in supernatants of cells with little detectable RIG-I, suggests that

other, RIG-I-independent, signaling pathways do not contribute

significantly to the induction of IFN-a/b during avian H5N1 virus

infections in human cells.

The H5N1 NS Segments Complement the Growth of a
Seasonal H3N2 Virus in Human Cells and Encode
Functional IFN Antagonists

Next, we examined the capacity of the H5N1 NS1 proteins to

inhibit the RIG-I mediated induction of IFN-b in human cells. All

five NS1 proteins share less than 80% sequence identity on the

amino acid level with their counterpart of the seasonal Pan/99

virus. Among the H5N1 NS1 homologs, the HK/97 differed by

up to 13% from the four other strains, which in turn differed by

less than 6% from each other. Thus, we generated and

characterized 7+1 reassortant viruses that carry the respective

H5N1-NS gene segments in the background of the seasonal Pan/

99 strain (H3N2). Interestingly, the heterologous H5N1-NS

segments complemented the growth of the H3N2 reassortants in

human A549 cells to a similar level as was observed for the

parental Pan/99 virus. Only the Pan/996Ch/Ind-NS reassortant

was attenuated to some extent (Figure 4A), but still rescued the

replication of the reassortant by more than 4 orders of magnitutde

compared to the NS1-deleted Pan/99 mutant virus (Figure 1A).

Figure 2. H5N1 virus growth is sensitive to IFN-a/b. (A) A549 lung
epithelial cells were treated with 500 U/ml recombinant IFN-a before
and during infection with the indicated virus strains (MOI = 0.01). Viral
titers were determined by plaque assay. Mean titers at 24 and 48 hours
post infection of at least 3 independent experiments+SEM are
presented. For comparison, the graph also depicts virus titers
determined in untreated A549 cells at 24 and 48 hpi. shown in
Figure 1A. Symbols indicate significant differences between given
individual results with p,0.05 (*) or p,0.01 (**), respectively. (B) Virus
growth of human and avian H5N1 isolates, Pan/99 (H3N2) and its
deltaNS1 variant on IFN-a/b-deficient Vero cells infected at a MOI of
0.01. Samples of the infected cell cultures supernatants were taken at
the indicated time-points and viral titers were determined by plaque
assay (mean data+SEM; N $3).
doi:10.1371/journal.pone.0056659.g002

IFN-b Induction by H5N1 Influenza A Virus
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Thus, the efficient growth of the reassortant viruses indicated that

the encoded H5N1-NS1 proteins function well in human cells.

We also examined the propagation of these reassortant viruses

in IFN-a-treated cells, since H5N1 NS1 proteins had previously

been reported to interfere with IFN signaling and enhance virus

replication [50]. However, the growth of all reassortants was

strongly attenuated by IFN treatment (Figure 4B) as had also been

observed for the parental viruses (Figure 2A).

Figure 3. IFN-a/b secretion in response to H5N1 infection depends on RIG-I expression. A549 cells, transfected with either RIG-I-specific (+,
open columns) or control (–, solid columns) siRNA were infected with the indicated H5N1 and the Pan/99 (H3N2) derived viruses (MOI = 1). IFN-b
concentrations were determined via ELISA (Fujirebio, Japan) in cell culture supernatants taken 16 h post infection (upper panel) and RIG-I expression
was determined by immunoblotting (lower panel). Mean data +/– SEM of four independent experiments and a representative immunoblot is shown.
doi:10.1371/journal.pone.0056659.g003

Figure 4. Replication of reassortant Pan/99 (H3N2)6H5N1-NS viruses in lung epithelial cells. (A) A549 cells were infected with the
indicated Pan/99 (H3N2) wild-type and reassortant viruses carrying a H5N1-NS segment (MOI = 0.01). Aliquots of the supernatants were taken at the
indicated time points and viral titers were determined by plaque titration. Mean data of at least two independent experiments+SEM are shown. (B)
Virus growth on IFN-a treated A549 cells (500 IU/ml, 6 h before infection (MOI = 0.01) and during virus growth) was determined as described in panel
A. Shown are the average results of two independent experiments+SEM.
doi:10.1371/journal.pone.0056659.g004
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To further explore the IFN antagonistic activity of the different

H5N1 NS1 proteins, we quantified IFN-b release from human

cells infected with the reassortant viruses. This analysis showed

that the reassortants induced equally low (Pan/996HK/97-NS) or

even less IFN-b secretion compared to the Pan/99 WT virus

(Figure 5A), which was consistent with their efficient growth in

A549 cells (Figure 4A). Hence, the reduced growth of the Pan/

996Ch/Ind-NS reassortant virus (Figure 4A) resulted most likely

from a reduced compatibility between the Ch/Ind NS- and

residual Pan/99 proteins, but not from a stronger type I IFN

induction.

We also employed an established reporter assay to examine the

suppression of viral IFN-beta promoter activation by the H5N1

NS1 proteins [25]. 293T cells were co-transfected with an IFN-b
promoter reporter and NS1 expression plasmids or empty vector.

Subsequently, cells were infected with the Pan-delNS1 virus for

16 hrs before reporter activity was determined. The Pan-delNS1

virus increased IFN-b promoter activity by 8-fold, whereas the

reporter was hardly activated in cells expressing the respective

NS1 proteins regardless of whether they were derived from a

human or an avian virus strain (Figure 5B). Equal infection of the

transfected A549 cells by the Pan/99-delNS1 mutant virus was

verified by immunoblot detection of the viral NP (Figure 5C).

Collectively, these findings demonstrate that NS1 proteins

encoded by either human or avian H5N1 strains efficiently

antagonize the induction of the IFN-a/b system in human lung

cells.

Comparison of the H5N1 Influenza Virus Backgrounds
The results indicated so far that differential activation of the

IFN-a/b system by the panel of H5N1 viruses was neither

influenced by a RIG-I-independent signaling pathway nor by a

failure of some NS1 proteins to silence IFN-a/b gene expression.

Thus, other viral signatures appear to be responsible for the

observed strain-specific growth- and IFN induction phenotypes.

To discover a putative underlying genetic element(s) we sequenced

the examined H5N1 isolates and screened them for genetic

polymorphism(s) previously described to be involved in H5N1

adaptation to mammalian hosts and/or pathogenicity [51–56]. In

Table 1, these specific amino acid positions in the viral proteins

previously linked with viral pathogenesis and/or adaptation to

mammalian hosts are summarized for the different virus strains.

Unfortunately, none of those specific amino acid constellations

alone such as the PB2 polymorphisms E627K or D701N could

explain the differences observed between the avian and human

strains as these did not display common phenotype-specific

variations. In fact, the three analyzed avian H5N1 strains have

only two differences to the human strains in common: Ile-168 of

the M1 protein and Thr-127 of the NS1 protein (Table 2). Thr-

168 in the M1 protein of the human H5N1 isolates is unlikely to

reflect an adaptive change as 30% of avian and 50% of human

H5N1 isolates have a Thr residue at this position. Interestingly,

NS1 amino acid 127 of seasonal IAV has been described to

regulate the antiviral kinase PKR [57]. However, we did not

observe differences in the activation of PKR by human or avian

H5N1 strains (data not shown). Hence, the different phenotypes

observed are presumably caused by the interplay of strain-specific

polymorphisms and are possibly encoded in more than one single

viral gene.

In conclusion, our study revealed that the ability to prevent or

avoid induction of the human type I IFN system substantially

contributes to enhanced replication of H5N1 viruses. This finding

is corroborated by the inverse correlation of strong IFN-b
induction with reduced replication among the human and avian

H5N1 strains. Surprisingly, all H5N1 NS1 proteins functioned as

effective IFN antagonists in infected and transfected cells

indicating that not a limitation in avian NS1 activity but rather

Figure 5. H5N1 NS1 proteins inhibit the induction of type I IFN in human cells. (A) IFN-b concentrations of supernatants sampled from
A549 cell cultures infected with the Pan99 WT and different NS reassortant viruses (H3N2) (MOI = 0.01) at 24 and 48 hrs p.i., (N$2+/–SEM). (B) Human
293T cells were co-transfected with plasmids expressing the H5N1- or Pan/99 (H3N2)-derived NS segments or empty vector, the human IFN-b
promoter reporter plasmid p125-Luc and pRL-TK-Luc to control for transfection efficiency. Subsequently, cells were infected for 16 h with Pan-delNS1
to stimulate the IFN-b promoter before luciferase reporter activity was determined in cell lysates. IFN-b promoter activation in infected cells is shown
as x-fold stimulation of firefly luciferase activity compared to transfected and mock infected cells. Mean data of three independent experiments is
shown +/– SD. (C) Immunblot detection of viral NP after Pan-delNS1 (H3N2) infection confirmed equal stimulation of the transfected cells analyzed in
panel B.
doi:10.1371/journal.pone.0056659.g005
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an exceptionally strong IFN induction by the tested avian strains

restricts viral replication in human cells.

Discussion

Highly pathogenic H5N1 strains of the Asian lineage circulating

in birds since 2003 are unique as they cause few but regular

human infections and a case fatality of almost 60% [58], while

most other avian influenza viruses are not known to infect humans.

Given the recent indications for the occurrence of mild or even

asymptomatic H5N1 infections, it is unclear whether all or only a

fraction of the circulating H5N1 strains have this high virulence

potential in humans as even highly related virus isolates differ

considerably in their pathogenicity in mammalian species like mice

and ferrets [59–61]. Since human airways express both a2,6- and

a2,3- linked receptors [13] and therefore receptor specificity is

unlikely to completely explain the severe outcomes of H5N1

infections in humans, we examined a potential contribution of the

human type I IFN system to the bird-to-human species barrier.

Special emphasis was put on the activation and suppression of the

human type I IFN system by H5N1 viruses since many examples

have shown that innate immune responses restrict the replication

Table 1. Differences in H5N1 influenza virus proteins*.

Virus strain PA PB1 PB1-F2 PB2

127 336 317 66 271 318 355 627 701 702

A/Hong Kong/156/1997 V L I N T R K E D K

A/Thailand/1 (Kan-1)/2004 V L M N T R R E N K

A/chicken/Indonesia/R132/2006 V L M N T R R E D K

A/duck/VietNam/TG24-01/2005 V L M N T R R E D K

A/common buzzard/Berlin/1/2006 V L M N T R R K D K

A/Panama/2007/1999 V L M N A R R K D R

NS1 NS2

42 D80–84 92 103 106 189 195 228 31 56

A/Hong Kong/156/1997 S 2 E L I D S P M H

A/Thailand/1 (Kan-1)/2004 S + D F M D T S M H

A/chicken/Indonesia/R132/2006 S + D F M D S S M H

A/duck/VietNam/TG24-01/2005 S + D F M D T S M H

A/common buzzard/Berlin/1/2006 S + D F M D S S M H

A/Panama/2007/1999 S 2 D F M D S S M H

HA1 NA

86 124 138 156 212 228 263 DStalk

A/Hong Kong/156/1997 A N L A E G T +

A/Thailand/1 (Kan-1)/2004 V S Q T R G T +

A/chicken/Indonesia/R132/2006 A D L A K G A +

A/duck/VietNam/TG24-01/2005 V S Q T R G T +

A/common buzzard/Berlin/1/2006 A D Q A K G T +

A/Panama/2007/1999 A 2 R K N S S 2

*Shown are amino acids at positions associated with high pathogenicity or replication competence of H5N1 viruses in mammals. Amino acids described to confer high
pathogenicity/virulence are shown in bold [51–57,79–82]; summarized in: [101]. No relevant positions were noticed in NP, and parts of the human H5N1 isolates’ PB2
and NP sequences were taken from public databases.
doi:10.1371/journal.pone.0056659.t001

Table 2. Common differences between examined human
and avian H5N1 strains*.

NS1 M

Virus strain 127 168

A/Hong Kong/156/1997 D T

A/Thailand/1 (Kan-1)/2004 V T

A/chicken/Indonesia/R132/2006 T I

A/duck/Vietnam/TG24-01/2005 T I

A/common buzzard/Berlin/1/2006 T I

A/Panama/2007/1999 N T

*Shown are the only two amino acid positions in which the examined avian
H5N1 isolates commonly differ to the human H5N1 strains.
doi:10.1371/journal.pone.0056659.t002
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of RNA viruses in a new host [62–66] and we wondered whether

this is also the case for avian and/or human H5N1 isolates.

We observed, that the growth of different H5N1 isolates from

birds or humans was significantly reduced on IFN-a pretreated

cells which is in line with and extends previous reports showing

that type I IFNs have a clear antiviral effect against H5N1 viruses

in several mammalian species [18,30,50,67–70]. Interestingly, at

least two of three avian isolates examined induced an enhanced

secretion of IFN-b from human epithelial cells and showed an

attenuated growth, while a seasonal H3N2 strain and the two

human H5N1 isolates induced only little IFN secretion and

replicated efficiently (Figure 1). Although it is tempting to

speculate that low IFN induction is a distinctive feature of

H5N1 patient isolates, we are aware that additional analyses are

required to validate this conclusion. Replication of the avian

isolates but not the human strains was strongly increased on IFN

deficient primate Vero cells (Figure 2B), which is in line with a role

of the type I IFN system to limit their growth in IFN-competent

cells. Hence, our study revealed a significant contribution of the

type I IFN system to limit H5N1 replication in human cells.

Enhanced IFN-a/b responses in human cells have also been

reported for avian H4, H7 and H12 subtype viruses [71,72] and

may indicate a common feature of avian IAV in human cells.

Interestingly, the human H5N1 isolates and the seasonal H3N2

strain showed similarly efficient growth and provoked only a

modest type I IFN response in human lung cells and macrophages,

which agrees with an earlier report [30], but seemingly differs from

others [36,37]. However, these apparent differences in the

outcomes might be explained retrospectively by strain specific

differences in regard to the H5N1 strains analyzed and the

respective H1N1 and H3N2 seasonal control strains [73,74].

The heterogeneous phenotypes of the examined human and

avian H5N1 viruses concerning growth and IFN control in human

cells, prompted us to examine possible mechanistic explanations

for this phenomenon. We and others have previously established

that seasonal IAV infections are recognized via RIG-I that is

regulated by the viral NS1 protein [25,30,32,49]. However, it had

not been excluded that H5N1 viruses stimulate an additional or

alternative IFN inducing signaling pathway such as the ones

governed by the cellular MDA5, DDX1, TLR3 or TLR8/9

receptors [75,76]. Still, our analysis showed that human RIG-I

functions also as the major sensor for avian H5N1 viruses since its

knock-down almost eliminated IFN-b production in infected

epithelial cells (Figure 3). This confirms and extents a similar

recent finding for H5N1 virus of the outbreak in Hong Kong in

1997 [77]. Interestingly, the phenotypes of Pan/99-derived 7+1

reassortant viruses expressing heterologous NS segments indicated

that the NS1 proteins of both avian und human H5N1 isolates

promoted virus replication (Figure 4) and suppressed activation of

the human IFN-b promoter (Figure 5) in human cells. The latter

aspect is reminiscent to a study of divergent NS1 proteins from

unrelated avian viruses which also effectively antagonized the

human type I IFN system [71]. Hence, we have to reject the

possibility that differences in the NS1 proteins explain why some

H5N1 strains replicated well in the human host, while others did

not. This is in contrast to the findings of a recent study showing

that mutations in the NS1 protein of a H3N2 subtype virus

contribute to enhanced IFN antagonism and replication in

mammalian cells [78]. Rather than NS1, our results suggest the

involvement of other viral factors, in which allelic differences

generated before or during virus transmission from an avian to a

human host contribute to the low IFN inducing potential of the

examined human H5N1 strains, in contrast to the avian isolates.

Previous comparisons of closely related H5N1 isolates with high

and low pathogenicity identified a number of amino acid

polymorphisms in the HA, polymerase and NS genes that increase

viral virulence and/or replication in mammalian hosts (Table 1)

[51,54,78–82]. To explain the abundant IFN induction by some

H5N1 strains despite expression of functional NS1 proteins, we

consider two possibilities: First, the viral polymerase synthesizes

full-length genomic viral 5̀-PPP RNAs and shorter versions thereof

that stimulate RIG-I in infected cells [24,83,84]. Thus, we

speculate that strong viral IFN-b induction could be caused by

an excess production of 59-PPP-RNAs that overwhelms the

inhibition by viral antagonistic proteins in infected human cells.

Accordingly, increased polymerase activity and IFN-b induction

correlated in a study with chimeric viruses expressing the PA

subunit of an H5N1 virus [85]. Our amino acid alignments failed

to associate a single genetic determinant in the viral polymerase

genes with this phenotype. However, identification of the

responsible element(s) is likely to be a complex task, since the

activity of influenza virus polymerase in mammalian cells is not

only controlled by polymorphic amino acids such as the ones

found at positions 701 or 627 in PB2 [19,86–88]. Rather, the levels

of viral 59-PPP-RNAs synthesized in infected cells are also

regulated by the viral NEP [89,90] indicating that the kinetic,

stability and level of NEP expression are important elements of

polymerase regulation, which are poorly defined yet. Second,

control of RIG-I-dependent signals by IAV is more complex than

was previously appreciated. Recent analyses showed that not only

NS1, but also the viral RNA polymerase subunits (PB2, PB1 and

PA) and the PB1-F2 proteins regulate IFN induction, possibly by

interactions with the mitochondrial MAVS/IPS receptor protein

for activated RIG-I [91–94]. It is therefore possible that (an)

uncharacterized polymorphism(s) in one or more of the respective

genes determines or contributes to the high- and low IFN

induction phenotypes of H5N1 strains. Even sequence compari-

sons of the two most potent IFN-b inducing strains Buzz/Bln and

Ch/Ind with the human H5N1 isolates did not reveal any known

polymorphic position(s) associated with a high virulence or IFN-b
inducing phenotype. Both avian strains differed from the human

H5N1 viruses in the HA1 (124, 212), PA (653), PB2 (339) and NA

(363, 435) proteins in addition to the previously discussed positions

in M1 and NS1. The differences in the HA proteins presumably

reflect that these viruses belong to different clades [95] and the

variations G363N and S435G in NA and Thr339Lys as in PB2 are

common to both avian and human H5N1 isolates [96]. Amino

acid 653 in the PA protein (S in both avian isolates instead of P in

the human H5N1 strains) is part of an a-helical region described to

be important for the interaction with PB1. The mutations E656A

und G657A are known to reduce this interaction resulting in

reduced transcription and replication of IAV [97,98]. To

determine if those or other individual differences in the

polymerase or other proteins encoded by human and avian

H5N1 isolates cause the different levels of IFN-a/b induction will

be part of future work. Future work may also clarify, whether the

human H5N1 isolates acquired their adaptation(s) during initial

replication in the human host [99], or if they were randomly

acquired in birds as a prerequisite for transmission into humans,

which would foster our ability to assess the zoonotic threat by

H5N1 strains [100].

Supporting Information

Figure S1 H5N1 virus replication in human Calu-3 and
normal human bronchial epithelial (NHBE) cells. Virus

growth on Calu-3 (A, MOI 0.01) and NHBE (B, MOI 1) cells was
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analyzed via plaque titration of samples of cell culture supernatants

taken at the indicated time points after infection (N$2,+SEM).

(TIF)

Figure S2 IFN-b secretion of influenza virus-infected
human monocyte derived macrophages. (A) Monocytic

cells were isolated from buffy coats of healthy human blood donors

and were differentiated in vitro. The resulting cultured cells are

shown to express the typical markers for macrophages via

antibody staining and FACS analysis. The prominent population

of cells in the forward/sideward scattering (.90% of the cells, data

not shown) expresses CD206, CD14, HLA-DR and little CD86.

Black lines indicate the number of cells with a specific signal

intensity of the used antibodies, grey lines represent isotype

antibody controls. (B) Monocyte-derived human macrophages

were infected for 24 h (MOI = 2) with the human and avian H5N1

strains, Pan/99 (H3N2) and its mutant variant with a deleted NS1

gene. IFN-b concentrations of cell culture supernatants were

determined via a bead-based cytokine assay (Panomics). Shown

are mean IFN-b concentrations +/2 SEM of macrophage

cultures obtained from three different donors independently

infected in triplicates.

(TIF)

Methods S1 Preparation and infection of monocyte-
derived macrophages and FACS analysis.
(DOCX)
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