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Accurate lung tumor identification is crucial for radiation treatment planning. Due to the low contrast of the lung tumor in
computed tomography (CT) images, segmentation of the tumor in CT images is challenging. This paper effectively integrates
the U-Net with the channel attention module (CAM) to segment the malignant lung area from the surrounding chest region.
The SegChaNet method encodes CT slices of the input lung into feature maps utilizing the trail of encoders. Finally, we
explicitly developed a multiscale, dense-feature extraction module to extract multiscale features from the collection of encoded
feature maps. We have identified the segmentation map of the lungs by employing the decoders and compared SegChaNet
with the state-of-the-art. The model has learned the dense-feature extraction in lung abnormalities, while iterative
downsampling followed by iterative upsampling causes the network to remain invariant to the size of the dense abnormality.
Experimental results show that the proposed method is accurate and efficient and directly provides explicit lung regions in
complex circumstances without postprocessing.

1. Introduction

Lung cancer is the leading cause of cancer-related death
globally. According to the World Health Organization
(WHO) forecasts for 2019, cancer is the major or second
leading cause of death in 112 of 183 nations, and it ranks
third or fourth in an additional 23 countries before the age
of 70 [1]. The 5-year survival rate is approximately 34%
for patients with early-stage, resectable cancer, while the 5-
year survival rate is less than 10% for unresectable cancer.
Therefore, early identification and diagnosis of lung cancer
are essential in enhancing patient treatment results. When
images reveal the existence of a tumor, it is critical to histo-
pathologically evaluate diagnostic samples collected by fiber-
optic bronchoscopy following National Comprehensive
Cancer Network guidelines [2].

The criterion for diagnosing lung cancer is a patholo-
gist’s diagnosis of biopsy tissue. On the other hand, diagnos-
tic precision is less than 80% [3]. The four most prevalent
malignant lung tumor subtypes are squamous carcinoma,
adenocarcinoma, small-cell carcinoma, and undifferentiated
carcinoma [4]. To make the optimal treatment decisions,

scientists must employ the proper techniques to diagnose
distinct cancer subtypes during the biopsy. After the
National Lung Screening Trial (NLCT), the leading cancer
research and training organization, developed a method to
use a low-dose helical computed tomography (CT) to detect
lung cancer nationwide in 2015, scientists were finally able
to use low-dose CT to diagnose lung cancer nationwide. Fur-
thermore, the Dutch-Belgian lung cancer screening trial, the
world’s second-largest randomized control trial, confirms
the advantages of lung cancer screening [5]. However,
implementing the US and prospective lung cancer screening
in Europe would likely lead to many whole-slide histopa-
thology images, biopsies, and excised tumors. Researchers
have proposed many medical image analysis methods in
CT scans to segregate the lung parenchyma region automat-
ically [6]. For example, authors in [7] describe signal thresh-
olding strategies based on contrast information for most
methods. Because of their lower densities than the rest of
the body, the lung region looks darker when framed by a
denser region. The underlying framework of these approaches
is straightforward and effective for normal lung segmentation.
Still, they fall short when expanding the word “lung” to
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include aberrant tissues, blood arteries, and normal lung tis-
sues [8]. First, it is crucial to obtain a segmented region
using iterative thresholding and then refine the obtained
region using an opening-closing morphological operator.
Significant success has been found in noninvasive therapy
and clinical examination in the health industry, especially
when utilizing medical image analysis [9]. Researchers use
CT imaging for specific diagnostics, and hence, images such
as X-rays, MRIs, and CTs are effective therapeutic methods.
Because cancer is the deadliest disease, the value of CT
images grows even further, given that 1.61 million individ-
uals die from lung cancer each year, according to the World
Health Organization [10]. Despite the progress made in
medical imaging technology, including CT scans, lung can-
cer accounted for 76 million deaths in 2018, and about
13% of those newly diagnosed with lung cancer die from
cancer [11]. Most cancer deaths occur in low- and middle-
income nations, as over 70% of cancers are found in these
regions [12]. The automated identification of lesions and
automatic categorization of lung diseases have seen signifi-
cant advancements in CT scans during the last two decades
[13]. Machine learning (ML) systems have played a key role
in processing images.

Recently, there has been a significant increase in the
attention paid to deep learning (DL) in several domains,
including image recognition and biomedical image analy-
sis [14]. After retrieving CT scan features, image process-
ing techniques are applied to the image data to assess
whether the patient’s cancer is benign or malignant.
Figure 1(a) displays a lung cancer nodule view, and
Figure 1(b) shows an arrow that indicates a 1.25mm
thick CT slice.

As seen in Figure 1, smaller nodules are in almost any
CT scan indicative of problems. For example, the arrow on
Figure 1 (b) indicates a tiny nodule to be malignant.
Table 1 displays the causes and detection phases of lung
cancer.

The objectives and justification of the work are as the
following:

This study was aimed at developing a DL-based auto-
mated lung cancer tumor segmentation network utilizing
CT scans.

(i) In current procedures, the lung images were taken
and subjected to segmentation, to benefit from the
support vector machine classifier [16]

(ii) The present framework has a restriction as it could
not predict the type, form, or size of the tumor,
and it dealt with several pixels, which is not benefi-
cial for the early detection of cancer. Now, when
artificial neural network (ANN) develops a testing
solution, it does not reveal some information as to
why and how. This diminishes trust in the network

(iii) Neural networks (NN) are a black box and have
been confined in their capacity to perceive the
potential causal links expressively. On the other
hand, NN features deep networks with numerous
hidden layers and is helpful for modeling complex
systems. However, the training process is again
more complex and constantly sensitive, creating a
few complications

(iv) It is expected that by applying this model, many
current data mining and image processing proce-
dures operate jointly in numerous ways. However,
the fundamental drawback of the linear discrimi-
nant analysis approach is that it only differentiates
the images having abnormalities

(a) (b)

Figure 1: (a) Lung cancer nodule view. (b) An arrow indicates this 1.25mm thick CT slice to contain approximately 2mm long lung
nodules.

Table 1: Lung cancer: causes and prevention.

(i) Detection of lung cancer is generally difficult because specialists
cannot find the infected area until it reaches the next stage. As a
result, the chance of survival for lung cancer, in 54% of detected
cancers, not in the advanced stages, with early intervention, is
only 4% [15].

(ii) The probability of increasing lung cancer diagnoses due to the
number of cigarettes consumed and sometimes after drinking
is proportional. As a result of harmful habits, a minor case of
lung cancer may occur even in individuals without disease risk.

(iii) X-ray, CT, or MRI scans are performed to examine lung
cancer and differentiate abnormal lung development. The best
technique is CT, which experts can overlook when not in ML.
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(v) Because of the issues with classifiers, segmentation
performs better in accuracy

The contribution of this work is as below:

(i) This research presents a lung segmentation utilizing
3 traditional and a novel model. This study was
aimed at developing a DL-based automated lung
cancer tumor segmentation network utilizing CT
scans

(ii) Developed a methodology, SegChaNet, that achieves
the state-of-the-art performance on numerous seg-
mentation tasks dealing with lung cancer segmenta-
tion; of foremost importance is the increase
acquired in the precision of tumor segmentation

(iii) Using the channel attention module (CAM) to
achieve the goal of managing the feature selection
of the bottom-level feature map

(iv) Consequently, this study reveals the capability of
early detection of lung cancer, which is known to
improve treatment outcomes

The rest of the paper is structured in the following way.
The next section contains several examples from the litera-
ture and will contrast them with the present study. Next,
we explain the methods in Section 3, including methods
for the segmentation of lung cancer. Then, we have pre-
sented a detailed analysis of the proposed model in Section
4. In addition, the results and a discussion are in this section.
Finally, we summarize the full text in Section 5 and present
the future work.

2. Literature Scan

Numerous studies on lung segmentation have been con-
ducted using conventional image processing techniques such
as thresholding, edge detection, and clustering [17, 18].
When faced with chaotic input images, many image process-
ing algorithms resort to primitive techniques and perform
poorly. This project was aimed at developing an automated
lung cancer tumor segmentation network based on deep
learning using CT images. Researchers are examining lung
segmentation using convolutional neural networks (CNNs).
The researchers now want to enhance lung segmentation
performance through complex image segmentation network
topologies and other strategies such as attention modules. It
has been demonstrated that the attention mechanism signif-
icantly improves performance on many DL-based activities.

As a result, our research focuses on segmentation tech-
niques based on attention. For example, attention U-Net
[19] outperforms U-Net by sandwiching an attention mod-
ule with a fundamental structure between the current U-
Net structure’s contracting and growing channels. Similarly,
the authors of [20–22] enhanced the structure of the corrective
adversarial network, which was the first attempt to use adver-
sarial learning for lung segmentation on chest X-rays by incor-
porating attention U-Net and focal Tversky loss for the
generating network and binary cross-entropy, respectively.

Additionally, the researchers in [23, 24] used CC-Net
as the backbone network, an image segmentation network
based on the criss-cross attention module. Additional
learning data were generated using image-to-image transla-
tion. XLSor is state-of-the-art software. This project was
aimed at developing an automated lung cancer tumor seg-
mentation network based on deep learning using CT
images. Numerous lung image segmentation networks use
a reference lung segmentation model based on chest X-ray
images [25].

In their study, the authors in [26] proposed an algorithm
for classifying lung nodules by considering the data learned
from tissue, shape, and the D technique. This algorithm uti-
lized a “gray level coformation matrix”-based surface identi-
fier, a Fourier shape identifier, and CNNs to train the
properties of nodes to depict the heterogeneity of nodules.
However, the authors in [27] focused on computer-aided
diagnosis (CAD), which they designed manually, so it is
not ideal or sufficient for the solution.

U-Net employs the skip connection, which is symmetri-
cal, to directly supervise and lose back propagate on seman-
tic features instead of using these other procedures. The
aspect of scale integration permits the implementation of
various features from multiple sizes to support multiscale
prediction. Because of this, U-Net is primarily used in the
medical imaging industry [28]. The researchers in [29] sug-
gested using a recurrent; the residual convolutional neural
network (RRCNN) was introduced in conjunction with a
U-Net to train more complex networks and extract deep
semantic information. The results obtained using R2U-Net
in the vascular, lung, and skin datasets are above expecta-
tions. As a result, the depth of the U-Net network varies
according to the applications it serves. As a result, Liang
et al. designed U-Net, which included smaller-scale U-Net
levels in larger-scale U-Net levels, with deep supervision,
which allows the network to self-select the appropriate
amount of depth via training [30].

On the other hand, the researchers in [31] developed the
cellular neural network algorithm to detect lung cancer
symptoms. In this study, the authors employed X-ray images
and thus the CNN algorithm to diagnose lung cancer. The
authors in [32] focused on developing CNNs for lung cancer
screening in CT scans. The researchers in [33] used multi-
layered neurons with independent principal components to
diagnose lung cancer.

In their study, the researchers in [34] performed a diag-
nostic classification of lung nodules using 3D-CNNs. They
did not foresee overfitting in their model, so they had to
include a retraining phase method to address issues linked
to image label imbalance. Chon et al. [35] proposed a
method that uses an ANN community chart to differentiate
benign from cancerous lung nodules. The experimental
results show that the scheme has 78.7% classification accu-
racy [36]. On the other hand, the authors in [37] utilized
an ANN model with a classification accuracy of 92 percent
in their study. Zhang et al. [38] presented a methodology
with an accuracy rate of 75.01% using the Automatic coder
(AC), a DL technique. Table 2 includes the comparison of
the literature review in the related field.
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3. Methodology

3.1. Data Acquisition. Images of 46,698 CT scans, both with
and without tumors, from the Cancer Imaging Archive
(https://wiki.cancerimagingarchive.net/display/Public/RIDER
+Lung+CT) were made available. 80% of the data were used
for training and 10% for validation to obtain a reliable and
accurate network, while the remaining 10% of the data were
for testing.We have used different parameters for training seg-
mentation models. We have applied the data augmentation
steps to the data. On each patient’s scan, we employed inten-
sity normalization based on the mean and standard deviation
of the intensities. We implemented our models on a machine
with an NVIDIA GeForce RTX 2080 8GB and Intel Core i9-
9980hk processor configuration. We utilized Python (3.8.12),
the major programming language, for constructing the frame-
work’s subsequent phases. The proposed architecture is imple-
mented using the libraries Anaconda3 (64-bit), Jupyter
Notebook, TensorFlow, and Keras.

As seen in Table 3, the dataset is split into train, test, and
validation. The CT scan slices are as with tumors and with-
out tumors.

3.2. Preprocessing CT Scans. Preprocessing CT scans dealing
with high variation in data is a typical job performed during
preprocessing. The first step was to truncate all the Houns-
field unit (HU) values between −1000 and 400 [52]. The
HU is a metric that measures the density of materials where
the air has a value of −1000 HU and bone has a value of 1000
HU; values outside the range of −1000–400 is not considered

necessary for lobar segmentation [18]. We then normalized
the CT scans to a zero mean with unit variance. To fit the
images into a 3D model, we resized all the images and made
them the same size, satisfying the memory constraints of the
GPU. Two main approaches to this task achieve similar per-
formance: downsampling CT images or applying a patch-
based method by partitioning the images into overlapping
patches. Since we needed to incorporate tracheal and bron-
chial segmentation as an auxiliary task into the segmenta-
tion, we opted for the downsampling technique, ensuring
that the trachea and bronchi were present in each image.
The size should be the same on all three axes to downsample
the image [53]. If one axis is of better resolution than
another, the performance along lower resolution axes is
worse, as they contain less information than the other axes.
All the CT scans, with their masks, were resized to 128 ×
128 × 128 using linear and neighbor interpolation, respec-
tively, as it was the most significant cube size shape we could
fit into memory. What makes SegChaNet different from U-
Net is that U-Net was initially designed for medical image

Table 2: Comparison to the literature works.

References Datasets Method Result (%)

Chaturvedi et al. 2019 [39] LUNA 16 3D DL DÖ, V-Net architecture
Sensitivity: 96.5

FP:19.7

Chapaliuk et al., 2019 [40] ACDC LUNGH VGG16, ResNet50, and CNN
Sensitivity: 97.9
Accuracy: 93

Petrellis et al., 2018 [41] UCI Gaussian blur, Otsu thresholding
Sensitivity: 87
Accuracy: 97

Yuan et al., 2019 [42] 134 BT Shandong hospital Watershed transform
Sensitivity: 88.8
Accuracy: 90

Cao et al., 2016 [43] LUNA16 3D and 2D CNN
Precision: 87

Sensitivity: 99.1

Xie et al., 2019 [44] LUNA16 2D CNN and RCNN AUC: 95.4

Sun et al., 2017 [45] LIDC-IDRI CNN, deep belief network, and Boltzmann machine
Sensitivity: 82.2

AUC: 81.8

Huang et al., 2018 [46] LIDC-IDRI CNN, extreme learning machine, and deep transfer
Sensitivity: 91.6
Accuracy: 86.5

Pehrson et al. (2021) [47] LIDC-IDRI
This study was aimed at developing a DL-based automated
lung cancer tumor segmentation network utilizing CT scans

Sensitivity: 91.7
Accuracy: 93.8

Sharma et al., 2011 [48] LIDC-IDRI Diagnostic indicators Accuracy: 80.1

Akram et al., 2012 [49] LIDC-IDRI Neurofuzzy Accuracy: 95.5

Paulin et al. 2011 [50] LIDC-IDRI
For MLP SVM training, the back propagation technique

is employed
Accuracy: 83.6

JIA et al. 2007 [51] NCA
For MLP SVM training, the back propagation technique

is employed
Accuracy: 92.4

Table 3: Some distinct sorts of CT scan slices in the dataset.

Data
Number of
patients

Tumor
Without
tumor

Notes

Train 370 14,848 20,840 35,688

Test 90 4520 4740 9260

Validation 50 850 900 1750

Total 510 20,218 26,480 46,698
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interpretation and segmentation, while we developed Seg-
ChaNet for lung image segmentation.

U-Net has a wide variety of industrial applications and
has played an important part in the development of the
image automation society. The architecture of SegChaNet
is defined by its appealing and expansive components. The
contracting path comprises several convolutional patches
with 3 × 3 filters and unity strides in both directions, which
are preceded by ReLU layers. This path takes the input and
extracts the key features, yielding a feature vector of a certain
length. The second path uses information from the contrac-
tive path to creating an output segmentation map by copy-
ing and cropping the feature vector using upconvolutions.
The exploit that connects the first and second channels is
vital for this system. This connection enables the network
to get very precise information from the contractive route,
developing a segmentation mask close to the desired output.
SegChaNet benefits from extremely asymmetric datasets
because of its composition of big chunks of lung images.
Due to the lungs’ different geometries and image density dis-
tributions, it is difficult to distinguish them in clinical ultra-
sound images automatically.

SegChaNet resembles U-Net but as explained above,
combining two different paths, and utilizing Binary cross
Entropy, integrated with the Channel Attention Module, dif-
fers it from the rest. The encoder layers are similar to the
convolutional layers of the U-Net.

For SegChaNet, nine distinct hyperparameters are used
in training to determine the optimal configuration. These
training hyperparameters are listed in Table 4. For training
purposes, all trials were done in 500 epochs for training pur-
poses. Training time variation was small across networks,
with an average of 18 minutes.

3.3. U-Net Model. U-Net is a technique for automatically
segmenting images. U-Net is a pixel-based image segmenta-
tion algorithm for various architectural and convolutional
neural network layers. It outperforms traditional models in
terms of success. It also performed well on datasets with a
minimal number of photos. The term “U-Net” comes from
its U-shaped design. U-Net is made up of encoding and
decoding components. The content of the images is recorded
in the code section. It is made up of top pooling layers. On
the other hand, the decoding portion is the symmetric
expansion route utilized to obtain exact localization via the
use of delegated convolutions. The U-Net model is shown
in Figure 2. Each of the 32 × 128 × 128 voxels included
inside the input layer corresponds to a single channel. We
did 1D convolution on the input by applying a 1 × 3 × 3, 2
× 3 × 3, and 1 × 1 × 1 filter. Using max pooling, we perform
one-dimensional max pooling. By using 1D upsampling, the
voxel size was raised from 2 2 to 4 4. To model U-Nets, we
use the rectified linear unit (ReLU) as the input and the sig-
moid function as the output layer’s activation function. Data
augmentation is a strategy that may assist avoid overfitting
and increase performance by increasing the quantity of data
points. The left-to-right inversion and white-to-black inver-
sion methods were used in this work to provide data aug-
mentation. We used Adam as an optimizer because of its

adaptive moment estimation. To arrive at the ideal learning
rate, various values were tried, including those between 0.3
and 0.1, with every successive change made along with the
range. To optimize a solution, we must minimize the loss
function, the difference between the projected result, and
the correct answer. We calculated these equations to get
the following:

Loss function = 2 − IOU A, Bð Þ + DSC A, Bð Þf g,

IOU A, Bð Þ = A ∩ Bj j
A ∪ Bj j ,

DSC A, Bð Þ = 2 A ∩ Bj j
Aj j + Bj j :

ð1Þ

In this case, the estimated value, B, is an estimation and
the actual value, A, is accurate. The intersection over union
(IOU) and dice similarity coefficient (DSC) are represented
as the Jaccard Index (JI). The JI and the DSC are both
methods of measuring class similarity. To determine the
accuracy of contour demarcation, we use DSC. The ensem-
ble learning for five inference results comprises 5-fold
cross-validation; afterward, we obtained DSC for U-Net.
The following example illustrates this principle in ensemble
learning, for which we have found a pixel value of 1 for three
inferences but a value of zero for two inferences. In this case,
we selected a majority value of 1.

In Figure 2, the path has two distinctive sections: a
contracting section and an expansive one. A typical convo-
lutional architecture often features a contracting path. It is
a 2 × 2 max pooling with stride 2 and a ReLU followed by
two unpadded convolutions such as 3 × 3 convolutions.
We have increased the amount of feature channels by a
factor of two each time while performing downsampling.
The enlarging path has upsampling, followed by 2 × 2
convolutions.

3.4. V-Net Model. We applied the V-Net architecture using
the TensorFlow and Keras frameworks in Anaconda, as
stated in Data Acquisition. We have employed the V-Net,
an autoencoder, for 3D image segmentation. Its residual
connections aid networks to converge and perform well on
small datasets. Figure 3 shows the model’s architecture,

Table 4: Hyperparameters used for training SegChaNet.

Exp. SegChaNet
ILR Minibatch

1 1e−4 2

2 1e−4 8

3 1e−4 12

4 1e−3 2

5 1e−3 4

6 1e−3 8

7 3e−3 4

8 3e−3 12

9 3e−3 8
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where the input image is 128 × 128 × 128 × 1 (height, width,
depth, and channels) and passes through six encoder layers.
As seen from Figure 3, V-Net, we used convolutional layers
with a stride of 2 × 2 × 2 instead of the max pooling opera-
tion. The last layer before each output was a 1 × 1 × 1 convo-
lution with a softmax activation function that gives us the
probability that each voxel belongs to one of the classes. Var-
ious regularization techniques enhanced the model’s gener-
alizability, including dropout and batch normalization.
Training the model on distinct but relevant tasks has been
shown to increase a model’s performance. The model’s per-
formance is measured using the DSC, a function of sensitiv-
ity and specificity typically used in segmentation studies,
permitting a comparison of our model’s performance to
others. We compared our model to other models by
researchers who released the original dataset. A p value
obtained using a t-test, more diminutive than 0.05 between
the models, was considered statistically significant for inde-
pendent comparisons. Figure 3 shows V-Net architecture.

We illustrate our CNN using the schematic in Figure 3.
To both find features in the data, we use convolutions, as

well as to reduce the resolution after each stage by employ-
ing stride suitable to the level. In the left portion of the net-
work, we used a compression path to reduce the file size, and
in the right portion, we decompressed the file until we
reached its original size. We employed all of the convolu-
tions with the proper amount of padding.

3.5. SegChaNet Model. Segmentation tasks generally concen-
trate on learning multiscale features and the integration of
local and global contexts. However, computationally
demanding training segmentation networks including these
qualities and implementing these directly on volumetric data
is difficult. To help promote multiscale learning, we integrate
CAM convolutions into the network and place these convo-
lutions at the very end of the feature extraction process.
They work together with the output of the decoder layers
to promote the learning of multiscale features. We use this
connection to assist the training of network gradients as
well. We maintained residual links between the decoding
component and the alteration when we adjusted. The pro-
posed network consists of four blocks of encoders and
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Figure 2: U-Net architecture.
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decoders each using two 3D convolution layers with a 3 ×
3 × 3 kernel size and a batch normalization and leaky ReLU
activation function.

However similar it may seem, SegChaNet varies from U-
Net. For example, we use the maximum linked component
detection to extract the whole region, and SegChaNet addi-
tionally takes use of CAM. Besides, preprocessing steps have
been applied before the SegChaNet model is applied. So, it
necessarily comprises a preprocessing phase. Figure 4 dis-
plays the main novel architecture.

As seen in Figure 4, this decoder uses a 2× upsampling
method. We proposed the convolution of the augmentation
module’s CAM convolution layers such that the first layer
utilizes a dilation rate of one, and each subsequent layer dou-
bles the dilation rate. It is upsampled to scale each decoder’s
output, followed by all concatenated outputs.

3.5.1. Channel Attention Module. This section delves further
into SegChaNet’s model architecture (illustrated in Figure 4).
Because of its higher performance, the pixel-level classification
strategy is employed in medical image segmentation tasks
based on the U-Net model.We included the cross-level feature
fusion module (CFFM) in our end-to-end network architec-
ture, SegChaNet, to create a merged network with two primary
components and CAM. The CFFM enables the fusion of fea-
tures from the top-level feature map into the feature map of
the bottom layer, allowing the CAM to regulate feature selec-
tion in the bottom-level feature map. The second component
is the U-Net, a two-part encoder-decoder architecture in
which the first half is used to extract features and the second
half is upsampled. Special caution is required when using a
skip connection topology between the encoder and the
decoder. Additionally, a skip link was used to connect the
downsampled and upsampled feature maps. The CAM and

architecture used are shown in Figure 4. Because the high level
includes much semantic information, it may help guide the
low-level choices. Several studies have shown that attentive-
ness is vital in human perception. Recently, attention pro-
cesses have been included in complicated sequences and
transformation models for various activities. Channel atten-
tion modules, in particular, have been utilized to boost deep
learning performance in a variety of computer vision applica-
tions. DL methods for image classification and semantic seg-
mentation rely on continuous fundamental convolutional
processes. Consequently, deep learning networks can only
manage the local components of an image, resulting in the loss
of global information.

A sophisticated method must be used to estimate the
parameters. The parameters of the investigation were deter-
mined in three steps. Attenuation coefficients can be derived
from the attenuation profile using a single-path model and a
least squares estimator. The number, position, and ampli-
tude of key pathways may be calculated from the impulse
response using a basic peak detection approach. In simpler
cases, this phase usually gives enough precision. To expand
the number of pathways, parameters must be developed
using either impulse response or amplitude and phase
responses. To estimate parameters, complex procedures
must be applied. The parameters of the investigation were
determined in three steps. An initial estimate of the attenu-
ation coefficients can be generated from the attenuation pro-
file using least squares estimators. The number, position,
and amplitude of key pathways may be calculated from the
impulse response using a basic peak detection approach. In
most cases, this is all that is required. To increase the num-
ber of pathways, the parameters must be further changed
through an evolutionary process employing quality criteria
such as impulse response or amplitude and phase response.
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Figure 3: V-Net architecture.
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We have provided a more specific resolution informa-
tion option. Furthermore, the SegChaNet model may learn
the weight of each channel via CAM, resulting in attention
in the channel domain. The CAM procedure is as follows:

Xcam = CAM XL, XHð Þ, ð2Þ

where Xcamrepresents the output of the CAM module and
XL and XH represent the low-level feature map and high-
level feature map, respectively.

xi,j,kcam = xi,j,kgL + up xi,j,kH

� �
, ð3Þ

Channel attention module
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Figure 4: An encoder-stage-to-decoder stage residual connection network architecture. The encoder uses residual connections and 3D max
pooling operations.
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where xi,j,kcam represents the pixel value of the ith row, jth
column, and kth channel in the output feature map of
the CAM.

In addition, xi,j,kH H is the pixel value of the ith row, jth
column, and kth channel of the high-level feature map. up
ð:Þ means the bilinear interpolation.

XgL = Conv1 XL′k × g Xk
H

� �h ik=c−1
k=0

� �
: ð4Þ

Global pooling transforms the feature map XgL and low-
level feature map XL. The 3 × 3 convolution operation
adjusts the feature map size and merges the channel features.
Still, because the low-level and high-level features’ feature
map size and channel number are different, the low-level
feature needs a 3 × 3 convolution operation.

XL′ = Conv3 XLð Þ: ð5Þ

Global pooling, convolution with a 3 × 3 convolution ker-
nel, and convolution with a 1 × 1 convolution kernel which are
known as gð:Þ, conv3ð:Þ, and conv1ð:Þ, respectively. The letter
“c” denotes the total number of channels [54].

When global pooling is used, CAM gives an initial global
context that serves as a guide for recognizing low-level fea-
tures. To decrease the number of feature mappings in the
encoder, we first apply three convolution filters to the low-
level features. A global context is created by multiplying
the low-level features by the high-level features using a 1 ×
1 convolution process. Finally, we have combined low-level
and high-level features. Thus, the CAM module uses scale
feature maps more effectively while delivering information
to lower-level feature maps.

When it comes to the model’s performance, as seen,
Table 5 shows the performance of the U-Net method with
and without CAM.

As seen in Table 5, accuracy of the U-Net method with-
out CAM is 88.61.21 while with CAM is 95.94. Table 6 dis-
plays the methods and performance of the V-Net method
with and without CAM.

From Table 6, the accuracy of the V-Net method without
CAM is 87.35 while with CAM is 95.75. Table 7 shows the
methods and performance of the novel method SegChaNet
with and without CAM.

From Table 7, it is evident that the accuracy of the Seg-
ChaNet method without CAM is 96.81% while with CAM
is 98.48. Figure 5 shows the performance of SegChaNet,
illustrating the comparison of the novel model with the
state-of-art ROC performance. Table 8 compares models’
accuracy evaluated in DSC, JI.

Table 8 displays the results with CAM. As seen, SegCha-
Net is far better when compared with the other methods.

From Figure 5, it is evident that the AUC of V-Net, U-
Net, and SegChaNet without CAM is lower when compared
with used models plus CAM.

3.6. Training Procedures. We are creating a new model from
scratch and will use the DSC, JI, and normalized surface dis-
tance to test it. We computed normalized surface distance as
a combination of the model-predicted segmentations that
overlap with the ground truth. In the segmentation process,
we utilized these variables to determine segmentation accu-
racy. Segmentation networks’ segmentation binary cross-
entropy is commonly employed. As proposed, we employed
binary cross-entropy and DSC loss functions to train the
networks in this investigation. The loss value applied on
SegChaNet is in Equation (2), proving that the overall loss
is less sensitive to class imbalance. Our tests found greater
segmentation accuracy when utilizing the binary cross-
entropy over the individual loss. The equation in [55] is as
follows:

ζ y, ŷð Þ = ζdc y, ŷð Þ + ζbce y, ŷð Þ: ð6Þ

Table 5: U-Net method with/out CAM performance.

U-Net method Dice (%) Sensitivity Specificity Precision F-measure Accuracy (%)

Without CAM 88.61 97.45 93.12 93.01 93.21 93.21

With CAM 95.94 97.62 90.43 89.87 95.56 95.14

Table 6: The V-Net method with/out CAM performance.

V-Net method Dice (%) Sensitivity Specificity Precision F-measure Accuracy (%)

Without CAM 87.35 88.29 84.74 86.51 91.14 91.63

With CAM 95.75 96.96 89.77 89.21 94.91 94.48

Table 7: SegChaNet method with/out CAM performance.

SegChaNet Dice (%) Sensitivity Specificity Precision F-measure Accuracy (%)

Without CAM 96.81 93.79 90.19 92.15 96.89 96.47

With CAM 98.48 92.82 94.08 96.66 98.49 98.90
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In Equation (6), ŷ denotes the model’s output, and the
ground truth labels are denoted by y. We use the two-class
version of the DSC loss ζðy, ŷÞ proposed in [56], a fully con-
nected DL model trained on 500 epochs with an Adam opti-
mization learning rate of 0.0005. If the validation binary
cross-entropy did not improve after 15 epochs, we would
reduce the learning rate by 0.1 per ten epochs. We updated
the dataset with additional random rotations and flipping to
help minimize overfitting and improve the resilience of our
technique to varied hippocampus shapes. Our research
noticed that the segmentation masks became poorer during
additional large rotation angles. So, to remain consistent, we
reduced the rotation angles to fall within roughly 10
degrees.

3.7. Evaluation Metrics. The precision of segmentation
directly affects the success or failure of the segmentation
process. Therefore, three measurement variables, DSC, sen-
sitivity, and specificity, are utilized to assess the accuracy of
the suggested techniques. In addition, true positives (TP),
false positives (FP), true negatives (TN), and false negatives
(FN) are also crucial in the assessment [57].

Dice: designed to evaluate the overlap rate of prediction
results and ground truth. DSC ranges from 0 to 1, and the
better-predicted result will have a more considerable DSC
value.

DSC = 2TP
2TP + FP + FN

: ð7Þ

Sensitivity (also known as the true positive rate or the
recall) indicates the percentage of genuine positives that
are accurately detected.

Sensitivity =
TP

TP + FN
: ð8Þ

Specificity (also called the true negative rate) measures
the proportion of correctly identified actual negatives.

Specificity =
TN

TN + FP
, ð9Þ

where TP denotes the true positive voxels, TN denotes the
true negative voxels, FP denotes the false positive voxels,
and FN denotes the false negative voxels. We use the 4-
union (IOU), DSC value, and Hausdorff distance [58]. Here,
we defined IOU as

IOU =
TP

FN + FP + TP
ð10Þ

To understand what this output means, think of a med-
ical test proposed target capture, in which a group of clini-
cians manually label the target region, and the network
prediction shows the areas around it.

The intersection and union of two sets are equivalent
when defined as the IOU ratio [59]. Researchers use the
IOU score widely to quantify pixel-level image segmentation
performance in image recognition algorithms. IOU can have
a value from 0 to 1. As the IOU increases, the overlap
between the two zones will decrease and vice versa.

4. Results and Discussion

As demonstrated in Figures 2 and 3, we enhanced lung can-
cer segmentation in the proposed model SegChaNet by com-
paring it to two state-of-the-art models. Despite having
almost identical encoder and decoder designs, U-Net

Table 8: Evaluation of segmentation accuracy in DSC, JI for 3
models.

Training Val Testing
Models DSC DSC DSC JI

V-Net 0.953 0.907 0.893 0.949

U-Net 0.955 0.893 0.911 0.956

SegChaNet 0.989 0.947 0.937 0.957
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Figure 5: SegChaNet, U-Net, and V-Net model with and without CAM.
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structures and their variants outperform non-U-Net struc-
tures. While decoders on other networks employ the addi-
tion operation, the skip connector and upsampling set of
inputs are concatenated in the decoder. We lowered the data
dimension to compensate for the value lost during the addi-
tion procedure. In addition, to impact the behavior of other
network features, we paired SegChaNet’s encoder and
decoder with a large number of recurrent, residual convolu-
tions. As a result, when we utilized SegChaNet to evaluate
the CT scan dataset, we found that it was prone to overfit-
ting. That is why we used CAM, which performs a function
by correctly utilizing all of the feature information on each
level. Unlike attention U-Net, which segments the esophagus
with an air hole, the SegChaNet considers the air hole a
boundary when segmenting. Furthermore, U-Net cannot
identify small airways [60], required for esophageal analysis.
This is due to the underutilization of complex features.
However, neither can they use the features of several layers
to guide feature selection, nor can they combine low-level
and high-level features with driving feature selection at a
lower level. On the other hand, CAM uses the channel to
combine the features of many stages.

In contrast, CFFM selects low-level, fine-grained features
based on high-level semantic features, resulting in the net-
work producing features on the shape and border of the
esophagus. As a result, we achieved our primary goal of
enhancing segmentation effects and generalization capaci-
ties. Figure 6 depicts a comparison of the DSC coefficient
performance of the employed models.

When compared to other works in the literature, such as
segmentation techniques in [61], we can observe that, while
they have profited from alpha attribute maximization, the
result is not as expected, with an IOU of 74.18 percent and
84.80 percent. Furthermore, compared to 3D-U-Net neural
in [62], they used 3D U-Net, and their DSC performance
reached 95.30 percent. Speaking of which, the SegChaNet
approach performs significantly better.

As seen from Figure 6, V-Net shows a good perfor-
mance, but it fails in the final part, while the best perfor-
mance is from the SegChaNet model. For the first 20

epochs, U-Net shows the worst performance. Figure 7 dis-
plays marked images using grad cam.

As seen in Figure 7, we have marked images using grad
cam. Also, we utilized the DSC, JI, and normalized surface
distance (NSD) with 4mm performance to test various net-
works. As illustrated in Figure 8, we examined the segmenta-
tion performance of V-Net, U-Net, andU-Net and V-Net with
CAM convolutions. The V-Net attained mean DSC scores of
95.75% without CAM, 87.35% for the training, validation,
and test sets. At the same time, the U-Net results match the
V-Net scores relatively well. CAM convolutions allowed U-
Net to improve the scores to 88.61% and 95.94%. The pro-
posed technique demonstrated 96.81% without CAM and
98.48% with CAM for the training, validation, and test sets.

Furthermore, our method outperformed other cutting-
edge networks for both the JI and NSD metrics. This is high-
lighted clearly. Figure 7 shows the segmentation quality of
the proposed method next to other methods so that it can
be compared visually. When used to color coordinate
ground truth with predictions, red represents the ground
truth, while yellow, green, and cyan represent the V-Net,
U-Net, and method provided in this article predictions.
The top-right area of the mask in Figure 7 comprises small
discontinuous portions; we demonstrated the advantage of
CAM convolutions by effectively segmenting such small sec-
tions. However, when the learned qualities become more
prevalent worldwide, the U-Net and the suggested method
might effectively gather the regions. Figure 8 depicts the
three-dimensional surface meshes of two different patients.
We can observe how the SegChaNet model influences our
conclusions in the method provided in columns 3 and 4.
The bottom boundary of the red component of the hippo-
campus is about one hundred millimeters below the
ground’s surface. Figure 8 depicts SegChaNet’s top and
worst performance ratings.

Figure 8 displays the SegChaNet model’s best and worst
performance. As seen, the best score is about 95 while the
worst one is 51.47.

For the segmentation of lung nodules using low-dose CT
imaging, we investigated the imaging features of lung
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Figure 7: Marked images using grad cam.
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nodules ranging in size from 5 to 32mm in diameter in can-
cer patients undergoing low and normal voltage CT scans.
This study was aimed at developing a DL-based automated
lung cancer tumor segmentation network utilizing CT scan
segmentation approaches combined with the assessment of
segmentation uncertainty. Additionally, we investigated the
influence of two widely used cost functions, dice and JI, on
the model output’s uncertainty measures. All three segmen-
tation models perform well on the segmentation challenge,
with dice-trained models marginally outperforming JI-
trained models. The most precise methods for predicting
nodule volumes were not the most repeatable, emphasizing
the need to evaluate their precision and accuracy. Significant
variations in algorithm performance were seen, especially in
a sample of heterogeneous nodules, highlighting the need to
use the same software throughout a longitudinal study.

In contrast to some recently proposed methods, we
aimed to increase segmentation prediction variability by
producing segmentation hypotheses with our novel method.
Importantly, SegChaNet encompasses the entire space of
possible segmentations rather than providing information
about the models’ uncertainty [63]. As is well known, man-
ual, automated, and semiautomatic segmentation pose diffi-
culties in terms of repeatability. The ability to accurately and
consistently target lung cancer regions from surrounding tis-
sues using CT images is critical for the clinical assessment of
disease progression. The obtained features contribute to Seg-
ChaNet throughput and are subsequently decoded to pro-
vide an automatic network segmentation. In addition, these
features are expected to encapsulate some of the intratumo-
rally and peritumoral area’s complex structural and func-
tional geometry, some of which may be related to cancer
survival. Overall, we show that SegChaNet, when combined
with UQ, shows the best accuracy in lung cancer segmenta-
tion. When the existing V-Net models’ results are studied, a
novel SegChaNet model is proposed that capitalizes on the
SegChaNet’s superior qualities over the V-Net and U-Net
models. On this dataset, three models were run, including
the SegChaNet model, and the organ and tumor segmenta-
tion procedures were carried out independently. It has been
shown that V-Net models can efficiently segregate organs
and tumors using computerized images and that by handling
the coding and decoding phases separately, more successful
models may be developed than present V-Net models. Using
medical imaging may be possible to develop more accurate
models for multiorgan segmentation. The study may poten-
tially be utilized as a reference for future SegChaNet models
due to the success of the original SegChaNet model imple-
mentation and the beneficial contribution of the CAM archi-
tecture. Since the CAM design was applied solely to the
output layer, tiny segmentation characteristics may be
recorded. This is crucial for model design since each param-
eter is only effective when introduced to the appropriate
model blocks. Table 9 compares the SegChaNet segmenta-
tion model’s performance to that of other leading-edge
studies.

Table 9 shows the performance of the SegChaNet seg-
mentation model compared with other state-of-the-art
works. Because of utilizing preprocessing stages and UQ

methods, SegChaNet demonstrates the highest accuracy
and dice outcomes.

5. Conclusions

The primary goal of this work is to offer a practical
approach to lung segmentation. This paper describes a
novel method, SegChaNet, that compared two traditional
models (V-Net and U-Net) for lung cancer segmentation
in CT scan images. SegChaNet achieves its top performance
by utilizing a U-Net framework with CAM convolutions in
the network’s deepest layer and substantial supervision in
its decoder layer. The proposed architecture surpasses
state-of-the-art methods in segmentation accuracy and
demonstrates initial feasibility in autosegmentation of the
lung. Furthermore, it is likely to perform with various data-
sets and apply to other segmentation challenges in medical
imaging. Overall, the SegChaNet method without CAM is
96.81% while with CAM is 98.48%.

Future studies will focus on whether the segmentation
results help clinicians in the clinical setting while treating
cancer. Additionally, we believe SegChaNet still has poten-
tial for improvement in terms of computing costs.
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