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Abstract

Genome-wide association and fine-mapping studies in 14 autoimmune diseases (AID) have 

implicated more than 250 loci in one or more of these diseases. As more than 90% of AID-

associated SNPs are intergenic or intronic, pinpointing the causal genes is challenging. We 

performed a systematic analysis to link 460 SNPs that are associated with 14 AID to causal genes 

using transcriptomic data from 629 blood samples. We were able to link 71 (39%) of the AID-

SNPs to two or more nearby genes, providing evidence that for part of the AID loci multiple 

causal genes exist. While 54 of the AID loci are shared by one or more AID, 17% of them do not 

share candidate causal genes. In addition to finding novel genes such as ULK3, we also implicate 

novel disease mechanisms and pathways like autophagy in celiac disease pathogenesis. 

Furthermore, 42 of the AID SNPs specifically affected the expression of 53 non-coding RNA 

genes. To further understand how the non-coding genome contributes to AID, the SNPs were 
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linked to functional regulatory elements, which suggest a model where AID genes are regulated by 

network of chromatin looping/non-coding RNAs interactions. The looping model also explains 

how a causal candidate gene is not necessarily the gene closest to the AID SNP, which was the 

case in nearly 50% of cases.
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1. Introduction

The genetic basis for autoimmune diseases (AID) has been successfully demonstrated by 

GWAS, which have now firmly associated more than 250 loci to 14 common AID [1]. Some 

of these loci are also shared by more than one AIDs. Fine-mapping studies have drastically 

refined the regions of association and revealed that more than 90% of the AID-associated 

SNPs are found in non-coding regions (summarized by Ricaño-Ponce & Wijmenga) [2]. 

These studies have further shown that more than 40% of AID-associated SNPs affect the 

expression levels of nearby protein-coding genes (cis-eQTLs) [2,3] and sometimes those of 

genes located elsewhere in the genome (trans-eQTLs) [4]. These studies indicate that 

causative genes can be located outside the peak of association and that fine-mapping merely 

points towards the location of the causal variants. Moreover, eQTL studies have focused on 

the protein-coding genes while completely ignoring the 65% of annotated human genome 

transcribed into non-coding RNAs (ncRNAs) [5]. To date, only a few ncRNAs have been 

implicated in diseases, but this mostly seems to reflect the difficulty of studying them. 

Although the function of the majority of ncRNAs is unknown, it has become clear that they 

are important regulators of gene expression. In a proof-of-concept study, we recently showed 

that disease-associated SNPs can also impact the expression of ncRNAs [6]. By annotating 

GWAS loci with ncRNA transcripts, we demonstrated that ncRNAs can physically overlap 

AID-SNPs [2]. These two observations led us to hypothesize that ncRNAs might be crucial 

regulators in AIDs by affecting the expression levels of protein-coding genes, either in cis or 

in trans, thereby providing a link between non-coding AID-SNPs and protein-coding genes.

In this study we performed cis-eQTL analysis on AID-SNPs using RNA-sequencing data 

from peripheral blood mononuclear cells (PBMCs) from 629 healthy individuals. We 

identified cis-eQTL effect on 233 genes, including 53 ncRNAs. We found that the regulation 

is rather more complex than a single SNP affecting the closest gene, as we observed that half 

of the SNPs affect more than one gene and that in more than 50% of the loci, the gene 

closest to the AID-SNP was not the candidate causal gene. Moreover, some of the loci 

shared by AID do not share causal SNPs or candidate causal genes, further contributing to 

the complexities of AID genetic architecture.
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2. Materials and methods

2.1. Ethical statement and study cohorts

The study procedures were approved by the authorities in all the participating centres and 

the studies were conducted according to Dutch rules for approval by ethics committee and 

for gaining informed consent. Participants of the LifeLines Deep population cohort were 

enrolled after giving informed consent, following an institutional review board protocol 

approved by the University Medical Centre Groningen (Groningen, the Netherlands). The 

Rotterdam Study (Rotterdam cohort) was approved by the medical ethics committee 

according to the Dutch Population Screening Act, Rotterdam Study, as executed by the 

Netherlands Ministry of Health, Welfare and Sports. Written informed consent was obtained 

from all the participants. Blood samples for DNA isolation and subsequent genotyping 

analysis were collected in EDTA Vacutainer® tubes (BD Biosciences, San Jose, CA, USA). 

Blood samples for RNA isolation and subsequent RNA-seq analysis were collected in 

PAXgene tubes (PAXgene Blood RNATube, PreAnalytix GmbH, Switzerland, ref 762165). 

Peripheral blood mononuclear cells (PBMCs) were isolated using 2 ml of whole blood with 

EDTA in a cell preparation tube (CPT) containing Heparin (BD Vacutainer CPT, ref 

362780), according to the manufacturer's instructions.

2.2. SNPs associated to autoimmune diseases

We collected data on 14 different AID phenotypes (Supplemental Table 1) previously 

genotyped by Immunochip analysis [as of February 2014] in 15 different studies (including 

two studies on rheumatoid arthritis). In total, we extracted 543 SNPs that showed significant 

association (P < 5 × 10−8) to any of the 14 AID (referred to as AID-SNPs); 35 SNPs are 

shared by at least two diseases, yielding 508 unique SNPs. After applying SNP genotype 

quality control filters, we obtained a final set of 460 different AID-SNPs for cis-eQTL 

mapping (Supplemental Table 2).

2.3. Genotyping and genotype imputation

DNA isolation was performed by the Qiagen robots using Autopure LS kits. Genotyping of 

DNA from the LifeLines Deep cohort was performed using both the HumanCytoSNP-12 

BeadChip and the ImmunoChip platforms (Illumina, San Diego, CA, USA). First, SNP 

quality control was applied independently for both platforms. SNPs were filtered on MAF 

above 0.001, a Hardy-Weinberg equivalent P value >1e−4 and a call rate of >0.98 using Plink 

[7]. Genotyping of the Rotterdam samples was performed with the Infinium II HumanHap 

550K + 610K Quad Genotyping GenomeStudio® (Illumina). Polymorphisms were 

genotyped according to the manufacturer's instructions. Quality controls and the results of 

the genotyping have been published elsewhere [8].

The genotypes from both platforms were merged into one dataset. After merging, SNPs 

were again filtered on MAF 0.05 and a call rate of 0.98, resulting in a total of 379,885 

genotyped SNPs. Next, this data was imputed based on the Genome of the Netherlands 

(GoNL) reference panel [9–11]. The merged genotypes were pre-phased using SHAPEIT2 

[12] and aligned to the GoNL reference panel using Genotype Harmonizer [13] (http://

www.molgenis.org/systemsgenetics/) in order to resolve strand issues. Imputation was 
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performed using IMPUTE2 [14] version 2.3.0 against the GoNL reference panel. We used 

the MOLGENIS compute imputation pipeline to generate our scripts and monitor the 

imputation [15].

2.4. RNA isolation and library preparation

RNA from PBMCs was extracted using the PAXgene Blood miRNA Kit (Qiagen) according 

to the manufacturer's instructions. RNA quantity and quality were determined using the 

Nanodrop 1000 spectrometer (Thermo Fisher Scientific, Landsmeer, the Netherlands) and 

the Expirion High-sensitivity RNA analysis kit (Bio-Rad, Waltham, MA, USA), 

respectively. Total RNA from whole blood was deprived of globin using Ambion's 

GLOBINclear kit. RNAseq libraries were prepared from 1 μg RNA of each cell population 

using the TruSeq RNA sample preparation kit v2 (Illumina) according to the manufacturer's 

instructions, and these libraries were subsequently sequenced on a HiSeq 2000 sequencer 

(Illumina) using paired-end sequencing of 2 × 50 bp, upon pooling of 10 samples per lane. 

Finally, read sets per sample were generated using CASAVA, retaining only reads passing 

Illumina's Chastity Filter for further processing.

2.5. Analysis of RNAseq reads

The sequencing reads from the LifeLines Deep data were mapped to human reference 

genome NCBI build 37 using STAR v2.3.1 [16], allowing for eight mismatches and five 

mapping positions. To reduce reference mapping bias, GoNL SNPs with MAF >1% were 

masked by “N”. On average, 92% of the reads were mapped, and 88% of all reads were 

mapped uniquely. In total, 88% of all aligned reads were mapping to exons.

Gene expression was estimated using HTSeq count [17] using Ensembl GRCh37.71 gene 

annotation. Only uniquely mapping reads were used for estimating expression. Before eQTL 

mapping, gene expression data was TMM (trimmed mean of M values), normalized [18] and 

log2-transformed. The expression of each gene was centred and scaled. To reduce the effect 

of non-genetic sources of variability, we applied principal component analysis on the sample 

correlation matrix and the first five components were used as covariates [19].

2.6. Cis- and trans-eQTL mapping

As a discovery set, 629 peripheral blood samples from the LifeLines Deep cohort were 

investigated to map cis-eQTLs. For trans-eQTL analysis, we performed a meta-analysis with 

456 haematological samples downloaded from public databases (https://www.ebi.ac.uk/

arrayexpress/) [20]. The eQTL mapping strategy data has been described in detail previously 

[19,21]. Briefly, cis-eQTL analysis was performed on transcript-SNP combinations for 

which the distance from the centre of the transcript to the genomic location of the SNP was 

≤250 kb, whereas eQTLs with a distance greater than 5 Mb were defined as trans-eQTLs. 

Associations were tested by non-parametric Spearman's rank correlation test and the FDR 

significance thresholds (P < 0.05; Supplemental Table 1) were defined based on the number 

of SNPs associated to each disease.

We categorized the SNPs as follows: (1) SNPs showing primary effect where the index SNP 

is same as the SNP showing the strongest eQTL effect, or is a different SNP but in perfect 
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LD (D′ = 1) or in high LD (r2 ≥ 0.8). (2) SNPs showing secondary effect where the index 

SNP and SNP showing the strongest eQTL effect show differences in allele frequency 

resulting in low D′ values and r2 values <0.8, but after conditioning on the eQTL SNP, the 

eQTL effect of index SNP is still significant. We excluded SNPs where the index SNP and 

SNP showing the strongest eQTL affect show differences in allele frequency resulting in low 

D′ values and r2 values <0.8 and where, after conditioning on the eQTL SNP, the eQTL 

effect is gone (n = 237).

An additional cis-eQTL mapping was performed to include all the SNPs, extending the 

mapping distance to 1 Mb up- and downstream.

2.7. Replication cohort

The cis-eQTL results were replicated in the Rotterdam cohort, comprising 651 PBMCs 

samples. RNA-seq data was obtained in the same way as LifeLines Deep samples. The 

adaptors identified by FastQC (v0.10.1) were clipped using cutadapt (v1.1) applying default 

settings. Sickle (v1.200) was used to trim low quality ends of the reads (minimum length 25, 

minimum quality 20). The sequencing reads were mapped to human reference genome 

NCBI build 37 using STAR v2.3.1 [16], allowing for eight mismatches and five mapping 

positions. To reduce reference mapping bias, GoNL SNPs with MAF >1% in the reference 

genome were masked by “N”. Ensembl GRCh37.71 was used for gene annotation. The 

overlapping exons were merged into meta-exons and gene expression was calculated as the 

sum of expression values of all meta-exons of each gene. To do this, custom scripts were 

developed which use coverage per base from coverageBed, and intersectBed from the 

Bedtools suite (v2.17.0) [22] and R (v2.15.1). Before the eQTL analysis, the data was 

normalized as for LifeLines Deep and corrected for the first 25 principal components. In the 

replication set, P values <0.05 were considered to indicate significant eQTLs, but only if the 

direction of the effect was the same as in the LifeLines Deep data.

2.8. Expression data from seven cell types

We used the expression data generated from immune cell subsets from two individuals. 

These immune cell subsets were granulocytes, monocytes, NK cells, B cells, memory T-cells 

(both CD4+ and CD8+), naive CD4+ (T-helper cells) and naive CD8+ (cytotoxic T-cells). 

These datasets has been described previously [23].

2.9. Analysis of autophagy genes expression data in coeliac disease biopsies

Intestinal biopsies from 31 coeliac disease (CeD) patients and 12 healthy controls were 

investigated according to the United European Gastroenterology (UEG) criteria. Biopsy 

sampling, RNA isolation, details of microarray hybridization and data analyses have been 

described previously [24,25]. DNA from the 31 patients was genotyped using the 

Immunochip platform [26] and the genotype data at ULK3 SNP was extracted. A list of 222 

autophagy genes was extracted from Human Autophagy Database (HADb; http://

autophagy.lu/clustering/index.html) and, for 217 of these genes, we could extract their 

expression data from biopsies. In total, we found 1155 out of 28,000 genes showing 

significant differential expression between the CeD biopsies and controls (P < 0.05). Among 

these, nearly 50% of autophagy genes (107 genes out of 217) showed differential expression. 
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A Fisher exact test indicated that autophagy genes are more enriched in differentially 

expressed genes (P < 2.2 × 10−16) than non-autophagy genes. In addition, a 1000 times 

random sampling of genes from the same dataset produced a similar result (Kolmogorov–

Smirnov test; P = 0.002), suggesting enrichment of autophagy genes within the differentially 

expressed genes in the CeD biopsies. To correlate the expression data with genotypes, the 

normalized expression values were stratified according to the genotypes. The significant 

differences were tested using the t-test and P values <0.05 were considered significant.

2.10. Cytokine analysis

Cytokines from Candida albicans and LPS stimulation in human PBMCs were measured 

using an enzyme-linked immunosorbent assay (R&D Systems, Minneapolis, MN, USA), as 

previously described [27,28]. The cytokine levels were log-transformed and the correlation 

between cytokine production and genotypes was tested by a linear regression model, which 

included age and gender as co-variables. P values <0.05 were considered significant.

2.11. Size of the linkage disequilibrium blocks, transcription factor-and super enhancer 
enrichment analyses

The enrichment analysis was done to test whether there is any significant difference in the 

sizes of the LD block, type of transcription factor (TF) binding, or number of super 

enhancers encompassed in single-gene SNP and multi-gene SNP regions. Initial cis-eQTL 

mapping within a 500 kb cis-window identified 112 single-gene SNP and 71 multi-gene 

SNP regions. The size of the LD blocks for these regions was defined based on the location 

of their proxy SNPs (r2 ≥ 0.8; extracted using the CEU population in 1000 Genomes data). 

The difference in the size of the LD blocks between these two groups was calculated using 

the Wilcoxon Rank test and P values < 0.05 were considered significant.

Upon cis-eQTL mapping in a 2 Mb extended window, we obtained 90 single-gene SNP 

regions and 92 multi-gene SNP regions. The super enhancers within 86 cell lines were 

extracted from a published source [29]. (See Supplemental Table 3 for more detailed 

information about the cell lines.) The 90 single-gene SNP regions and 92 multi-gene SNP 

regions were intersected with the chromosomal coordinates of these super enhancers. The 

significant difference was tested by the Fisher Exact test and a P value of <0.05 was 

considered significant.

We extracted transcription factor (TF) binding data from ChIPseq experiments using 

RegulomeDB (http://regulomedb.org/). These regions were intersected with gSNPs and their 

proxies (r2 ≥ 0.8). We calculated the number of binding events per TF in each loci. The 

difference in the number of binding events per TF between multi-gene SNP and single-gene 

SNP regions was calculated using the Fisher Exact test and P values <0.05 were considered 

significant.

2.12. Intersecting DNase I hypersensitivity sites

The DNase I hypersensitive sites from different cell lines were extracted from the BluePrint 

epigenome project (http://www.blueprint-epigenome.eu/index.cfm?

p=B5E93EE0-09E2-5736-A708817C27EF2DB7) and the ENCODE data from the UCSC 
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browser (http://ucscbrowser.genap.ca/cgi-bin/hgTrackUi?g=wgEncodeAwgDnaseUniform). 

These regions were intersected with gSNPs and their proxies (r2 ≥ 0.8). See Supplemental 

Table 4 for more information about the cell lines.

2.13. RNA network for gene function and pathway prediction

The RNA network is an extension of the gene network [6,30] and was built to generate 

functional predictions for non-coding RNA genes. The gene network database contains data 

extracted from approximately 80,000 microarray experiments that are publically available 

from the Gene Expression Omnibus. It contains data on 54,736 human, 17,081 mouse and 

6023 rat Affymetrix array experiments. Principal component analysis was performed on 

probe-set correlation matrices of each of four platforms (two human platforms, one mouse 

and one rat platform), resulting in 777, 377, 677 and 375 robust principal components, 

respectively. Jointly these components explain between 79% and 90% of the variance in the 

data, depending on the species or platform. Many of these components are well conserved 

across species and enriched for known biological phenomena. This meant we were able to 

combine the results into a multi-species gene network with 19,997 unique human genes, 

allowing us to utilize the principal components to accurately predict gene function by using 

a ‘guilt-by-association’ procedure. Pathway prediction for each gene was performed as 

described by Fehrmann et al [7]. Prediction was based on the 5000 RNA-seq samples, using 

the Gene Ontology Biological Processes gene set for pathway definition. The resulting 

gene–pathway association Z-scores was compared between selected genes and all the other 

genes in the genome using Mann–Whitney U tests. The resulting P values therefore describe 

the predicted enrichment of each Gene Ontology term for the selected genes (manuscript in 

preparation). The most significant top-five terms are reported in the figures.

2.14. CHIA-PET analysis

The RNAPII mediated interactions were identified by ChIA-PET in GM12878 cells with 

stringent quality filtering. The ChIA-PET experimental and informatics protocols used to 

elucidate these chromatin interactions have been previously described [31,32]. The full 

dataset is published elsewhere [33].

3. Results

3.1. RNAseq based eQTL-mapping identifies 233 causal AID genes including 53 non-
coding RNA genes

To systematically examine the effect of AID-SNPs on the expression of both protein-coding 

and ncRNA genes, we used RNA-sequencing data from PBMCs from 629 healthy 

individuals. We performed conditional cis-eQTL mapping on a final set of 460 unique SNPs 

encompassing 268 loci (defined as 1 Mb region around the index SNPs), which have been 

associated to 14 different AIDs (Supplemental Fig. 1, Supplemental Table 2). By mapping 

the cis-eQTLs at 460 AID SNPs, we identified 183 SNPs as cis-eQTLs (40%) that were 

correlated with the expression of 233 different transcripts (resulting in 326 SNP-gene pairs). 

Replication (P < 0.05) in the same direction was achieved for 84% of the SNP-gene pairs in 

independent RNA-sequencing data (651 PBMCs) (Supplemental Fig. 2). Our cis-eQTL 

mapping implicated 63 SNPs that affect the expression of 53 ncRNAs, and 157 SNPs that 

Ricaño-Ponce et al. Page 7

J Autoimmun. Author manuscript; available in PMC 2017 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ucscbrowser.genap.ca/cgi-bin/hgTrackUi?g=wgEncodeAwgDnaseUniform


affect the expression of 180 protein-coding genes (Supplemental Table 5). Of these, 112 

were associated to the expression levels of single genes (i.e. 87 AID-SNPs were associated 

to 68 protein-coding genes, and 25 AID-SNPs to 22 ncRNAs), while the other 71 AID cis-

eQTL SNPs affect the expression levels of two to seven different genes in a 500 Kb region 

(Fig. 1A). The percentage of cis-eQTLs observed for each AID varied from 25% for juvenile 

idiopathic arthritis to almost 70% for primary sclerosing cholangitis (Fig. 1B). To reveal the 

regulatory consequences of the eQTL SNPs on downstream pathways and cellular 

phenotypes, we investigated the expression-specificity of the eQTL-affected genes across 

seven different immune cell types (Supplemental Fig. 1) and predicted the gene function 

using co-expression analysis [30]. This was particularly necessary for the ncRNA genes 

since their molecular functions are largely unknown.

3.2. Integrative genomic analyses implicate novel genes for AIDs and implicate autophagy 
in celiac disease

Our cis-eQTL mapping revealed novel candidate genes in several loci, of which GPR25 (G 

protein-coupled receptor 25; associated with ankylosing spondylitis (AS), coeliac disease 

(CeD), inflammatory bowel disease (IBD), multiple sclerosis (MS) locus on 1q32.1) and 

ULK3 (unc-51-like kinase 3; CeD locus on 15q24.1) are examples (Fig. 2A, B). Previously, 

C1orf106 was implicated as a causal gene for IBD at 1q32.1 [34]. While the expression level 

of C1orf106 was moderately correlated with four disease-associated SNPs, our analysis 

unequivocally identified GPR25 as the most significantly affected gene in this locus (Fig. 

2A). We found GPR25 to be strongly expressed in memory T-cells and NK-cells, and 

predicted to be involved in the positive regulation of B-cell proliferation (P = 1.21 × 10−6). 

Nonetheless, C1orf106 is suggested to be involved in epithelial cell–cell adhesion [35], an 

essential process in keeping the intestinal epithelial-barrier intact in the context of IBD and 

CeD. Therefore, it is possible that both genes in this locus contribute to disease through 

different cell types. A similar observation was made for the CeD locus on 15q24 (Fig. 2B). 

The expression level of ULK3 is much more strongly affected by rs1378938 (P = 1.21 × 

10−46) than CSK (P = 7.08 × 10−6). CSK is involved in B-cell activation [36] and ULK3 
encodes a kinase involved in autophagy [37]. However, the autophagy pathway has never 

been implicated in CeD, which highlights the possibility of identifying novel pathways 

underlying CeD.

3.3. Studying patient biomaterials validated the functional role of ULK3 locus in autophagy 
in celiac disease

To investigate the functional impact of ULK3 locus on autophagy pathway in CeD, we 

tested whether known autophagy genes were differentially regulated in intestinal biopsies of 

CeD patients [35]. We indeed observed an enrichment of autophagy genes being 

differentially expressed (Fig. 3A) compared to a random set of genes in CeD biopsies (P = 

2.2 × 10−16). We further confirmed that the ULK3 affecting SNP genotype is correlated with 

the expression levels of autophagy genes in CeD biopsies (Supplemental Fig. 3). Autophagy 

is also involved in regulating inflammatory process in response to human pathogens by 

influencing cytokine production and secretion. We therefore tested whether ULK3 SNP 

influences the production of cytokines in PBMCs in response to lipopolysaccharide (LPS), a 

cell-wall component of Gram negative bacteria. We found a significant difference (P = 
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0.019) in the levels of IL-6 between rs1378938 CC and TT genotypes, where the risk allele 

T is associated with lower levels of IL-6 in response to LPS (Fig. 3B). This finding indicated 

that ULK3 dependent autophagy might be involved in regulation of inflammation and 

emphasizes the importance of studying non-gluten antigens (e.g. host–microbiome 

interaction) in the context of CeD pathogenesis.

3.4. AID-associated lncRNAs are involved in immune cell activation and cytokine 
regulation

Our study identified 27 ncRNAs at 25 AID-loci as candidate causal genes as these were the 

only affected transcripts in PBMCs (Table 1). Although previous microarray-based eQTL 

studies suggested UBE2E3 as the causal gene at 2q31.3, a locus associated with CeD and 

AS [35], our analysis indicates that the AS (rs12615545)-and CeD (rs1018326)-associated 

SNPs are not in LD with the eQTL SNP that affects UBE2E3 expression (r2 = 0.16). Instead, 

both the AD and CeD index SNPs (r2 = 0.94) affect the expression of long non-coding RNA 

(lncRNA) AC104820.2 (P = 9.22 × 10−8). AC104820.2 is strongly expressed in CD8+ T-

cells (Fig. 4A) and is suggested to function in alpha-beta T-cell proliferation (P = 4.1 × 

10−6), which is a crucial process in autoimmunity [38]. AC104820.2 was also found to be 

up-regulated in intestinal biopsies of patients with active CeD [39]. Another example is 

lncRNA AP002954.4 at 11q23.3, whose expression was significantly affected by three 

unrelated SNPs associated to three different AIDs (MS, RA and CeD). AP002954.4 is 

expressed specifically in monocytes and may function in regulating cytokine responses (P = 

5.95 × 10−6) and defence against fungal infection (P = 3.79 × 10−5) (Fig. 4B). Indeed, the 

cytokine levels produced by fungus-stimulated, human PBMCs [27,28] were dependent on 

SNP rs533646, with the risk allele G causing higher IL-6 and TNF-alpha levels 

(Supplemental Fig. 3). Both examples highlight the potential functional role of lncRNAs in 

AID.

3.5. Different AID-SNPs in shared disease loci may affect different genes

Although we found cis-eQTLs for 183 SNPs, they define only 120 loci (based on the 1 Mb 

region around the index SNPs). Among these 120 loci, 54 loci were found shared between 

two or more AID Supplemental Table 6). In nine of the shared loci (16.7%), we found 

different AID-SNPs affecting different genes. The MS and IBD associated locus at 11q13.1 

provides an illustrative example. MS SNP rs694739 affects two protein-coding genes and a 

lncRNA gene, while the IBD SNP rs559928 affects a different lncRNA (Fig. 5). The MS 

SNP rs694739 and its close proxies overlap with DNAse I hypersensitivity sites (DHSs) of 

many immune cells, whereas one of the two proxies of the IBD SNP rs559928 specifically 

overlaps with DHSs in Caco-2 cells (intestinal epithelial cells), suggesting that different 

usage of cell-type-specific enhancers could be one mechanism by which different genes 

could be affected by different AID-SNPs in a shared disease locus.

3.6. Nearly 40% of AID-SNPs modulate the expression of multiple genes in cis due to 
extended linkage disequilibrium

About 39% of AID-SNPs (71/183 SNPs) affect the expression levels of two or more genes 

(multi-gene SNPs) compared to 61% (112/183 SNPs) that affect only a single gene (single-

gene SNPs) (Fig. 1A). We found no difference in the average number of genes present in 
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these loci, the allele frequencies of the SNPs, or local patterns of co-expression of genes 

(Supplemental Figs. 4, 5 & 6) that could explain the differences. However, we observed 

significant differences in the size of the LD blocks (P = 0.0002), with multi-gene SNPs 

located within larger LD blocks (average LD block size 175 kb) than single-gene SNPs 

(average LD block size 100 kb) (Fig. 6A). This suggests that multi-gene SNPs may regulate 

gene expression in a larger cis-window. To test this, we extended the cis-window to 2 Mb 

and repeated the cis-eQTL mapping. We observed that 42% of multi-gene SNPs (30/71) 

affect genes that are located in the extended 2 Mb cis-window compared to only 19% of 

single-gene SNPs (21/112, P = 0.0001; Supplemental Fig. 7), suggesting that some AID-

SNPs are located within regulatory regions that can control the expression of multiple genes 

spread over long distances in cis. In support of this we found that multi-gene SNPs regions 

are enriched for super-enhancers [29] (P = 0.0018) and CTCF binding sites (Supplemental 

Figs. 8 and 9), which are known to mediate chromatin looping [40,41].

3.7. Expression regulation of multiple genes in cis is partly via chromatin looping 
interactions

Recent studies by others suggest that lncRNAs play a role in regulating transcription of 

genes over longer distances, by mediating chromatin looping that brings enhancers and 

promoters together [42,43]. We therefore tested whether AID-SNPs affecting lncRNAs are 

involved in regulating multiple genes in cis more often than AID-SNPs affecting only 

protein-coding genes. We found that 69% of AID-SNPs that impact lncRNAs are also multi-

gene SNPs (based on the 2 Mb cis-window) compared to 40% of AID-SNPs that impact 

only protein-coding genes (P = 0.0002; Fig. 6B), suggesting that lncRNAs could be one of 

the factors in regulating the expression of multiple cis genes. To confirm the observation that 

AID-SNPs and lncRNAs are potentially involved in looping interactions to regulate gene 

expression, we manually cross-referenced our lncRNA-eQTLs with genome-wide RNA 

polymerase II (RNAPII) interactions, mapped by ChIA-PET assay [31,32] in GM12878 (B-

lymphoblastoid) [33]. We found that multi-gene SNPs are more often (64 SNPs out of 92; 

70%) involved in looping interactions in B cells (P = 0.048) than single-gene SNPs (55%; 

Supplementary Tables 7 and 8). Many of these loci show very strong interaction where more 

than 50 independent interactions between AID SNPs and regulatory regions of eQTL genes 

are found (Supplementary Fig. 10a–s). We found that for some lncRNA-eQTLs, the affected 

lncRNAs and the promoters of the protein-coding genes are organized in the same 

transcription topological unit mediated by RNA Polymerase II (RNAPII). For example, SNP 

rs6667605 at 1q32.1 associated with UC affects the levels of transcription of four genes 

(MMEL1, TNFRSF14, RP3-395M20.7 and RP3-395M20.8). According to the RNAPII 

ChIA-PET interaction data, we observed that SNP rs6667605 and the lncRNAs 

RP3-395M20.7 and RP3-395M20.8 were interacting with the promoter region of the 

protein-coding gene TNFRSF14 (Fig. 6C). All three genes are expressed in lymphoblast 

cells and predicted to be involved in B- and T-cell activation (Supplemental Figs. 11 and 12), 

supporting the idea that co-regulation of TNFRSF14 and the two lncRNAs may occur 

through looping interactions.
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3.8. Rheumatoid arthritis lncRNA as an example of trans-regulator of genes enriched for B 
cell proliferation

Some AID-SNPs can affect the expression of multiple genes in trans [4]. We tested whether 

lncRNA cis-eQTLs can also be trans-eQTLs. We observed that the RA-associated SNP 

rs13330176 at 16q24.1 affects levels of expression of lncRNA RP11-542M13.2 in cis, which 

is predicted to be involved in B-cell proliferation (Supplemental Fig. 13). The same SNP is 

also moderately associated (P < 0.0009) with the expression level of more than ten genes in 

trans (Supplemental Table 9), which are also involved in B-cell related processes. Although 

our sample size is a limiting factor in trans-eQTL mapping, this example illustrates the 

possibility of identifying downstream consequences of AID-associated lncRNAs.

4. Discussion

Identification of the correct causal genes within GWAS loci is critical not only for the proper 

interpretation of associated loci but also to pinpoint potential therapeutic targets. RNA-

sequencing will identify causal genes in an unbiased manner as it provides quantification of 

the global transcriptome at high resolution to efficiently capture all transcripts including 

lowly abundant transcripts such as lncRNA genes, [23]. Our study indeed shows that eQTL 

analysis based on RNA-sequencing data is a first and important step in delineating the 

complex genetic architecture of AIDs. We made use of the currently largest available cohort 

of PMBC-based RNA-sequencing data and report, for the first time, an extensive list of 53 

ncRNAs as candidate causal genes for AIDs, which highlight the added value of RNA-

sequencing over conventional microarrays. Since lncRNA genes have shown to be more cell-

type specific than protein-coding genes [44], further eQTL analysis in disease specific cell-

types may identify additional lncRNA genes as potential causal genes for AID.

In addition to lncRNAs, we also identified 157 cis-eQTLs on protein coding genes, which 

helped us to implicate novel candidate causal genes and pathways in several loci. We found 

that a SNP associated to CeD was affecting ULK3 that encodes a kinase involved in 

autophagy. By analysing intestinal biopsies of CeD patients, we observed that ULK3 is co-

regulated with genes involved in autophagy thereby implicating a possible role of the 

autophagy pathway in CeD pathogenesis that was not considered before [35]. Another 

example is a shared AID locus for MS, IBD, AS and CeD at 1q32.1 region, where our 

analysis identified GPR25 as a primary causal gene. G protein-coupled receptors (GPCRs) 

are one of the best-studied classes of cell surface receptors and the most amenable group of 

proteins for novel small molecule drug discovery. GPR35 is one such example where it 

emerged as a potential therapeutic target through its association with IBD, type 2 diabetes 

and coronary heart disease [45]. The newly identified GPR25 gene could be another 

attractive target to exploit therapeutically since it is associated with four different AIDs. 

Interestingly, both ULK3 and GPR25 did not turn out to be the genes nearest to the index 

SNPs which is rather frequently the case since only in 50% of cases the nearest gene is 

suggested to be the candidate causal gene (Supplemental Table 5). This finding again 

highlights the importance of a more careful follow up analysis of disease associated SNPs 

for the correct interpretation of associated loci.
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Another important observation from this study is that in 40% of AID-loci multiple genes 

may predispose to disease. In addition, by comparing the genetics of different diseases, we 

show that the associated loci for many different diseases can be physically the same but yet 

different genes in these loci may affect different AIDs. The latter may be caused by cell type 

specificity, as suggested by our analysis of DNAse I hypersensitive sites. Integrating eQTL 

analysis with regulatory information may mark the cell-types critical to disease and 

techniques like ChIA-PET will be critical to eventually unmask the cell-type specific 

regulatory networks for different diseases. The ability to perform trans-eQTL mapping will 

facilitate the identification of the downstream effects of disease SNPs. In particular the 

further understanding of lncRNAs will benefit from such investigations. In this study we 

focused on the identification of cis-eQTLs because our sample size had limited power for 

trans-eQTL mapping. Since the majority of the GWAS SNPs regulate gene-expression, our 

systematic approach of conditional eQTL mapping and cell-type specific expression 

characterization of candidate causal genes for autoimmune diseases could be efficient 

strategy to identify novel causal genes for other complex diseases. We anticipate that our 

study will facilitate the understanding of lncRNA-mediated cis gene expression regulation in 

AID loci and encourage further studies with bigger sample size to identify the downstream 

consequences of AID-SNPs on lncRNAs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Break down of cis-eQTLs into coding and non-coding genes. (A) The pie-chart summarizes 

the cis-eQTLs we identified in which, 112 out of 183 cis-eQTL AID-SNPs were associated 

to single genes (i.e. 87 AID-SNPs to 68 protein-coding genes and 25 AID-SNPs to 22 

ncRNAs), while the other 71 AID cis-eQTL SNPs affected the expression levels of two to 

seven different genes within the 500 kb region (see Supplemental Table 2). (B) The cis-

eQTL mapping results per disease are shown to indicate the number of SNPs remaining for 

eQTL mapping (shown on top of the purple bars) as well as the number of SNPs that showed 

significant cis-eQTLs (shown on top of the orange bars). Because of the wide range in the 

number of SNPs associated to each of the AIDs, we defined false discovery rate (FDR) 

significance thresholds for each disease separately to assist in the eQTL analysis (see 

Methods). *These loci are shared between ulcerative colitis (UC) and Crohn's disease (CD). 

The non-shared loci are listed separately. Alopecia areata (AA), atopic dermatitis (AD), 

ankylosing spondylitis (AS), autoimmune thyroid disease (ATD), coeliac disease (CeD), 

inflammatory bowel disease (IBD), juvenile idiopathic arthritis (JIA), multiple sclerosis 

(MS), primary biliary cirrhosis (PBC), psoriasis (PS), rheumatoid arthritis (RA), primary 

sclerosing cholangitis (PSCh), and systemic sclerosis (SS).
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Fig. 2. 
Cis-eQTL identifies novel candidate causal genes for AID. The top panel is a locus plot to 

show the location of all the genes tested in a 500 kb cis-window (hg19). The plot centred 

below indicates the correlation between the expression of eQTL-genes with genotypes of 

AID-SNPs. The risk genotypes are in red. The expression pattern for eQTL-genes across 

seven different immune cell types were obtained from two individuals and the average 

expression levels are shown as a heatmap in the lowest panel. (A) An example of different 

AID-SNPs affecting the same genes and thus representing a truly shared locus. Four 

different SNPs at 1q32.1 show association to four different diseases (MS, IBD, AS and 

CeD). All four SNPs are in absolute LD (r2 = 1, D = 1) and affect two protein-coding genes. 

The MS-associated risk allele rs55838263*T is associated with lower expression of both 

GPR25 (P = 3.02 × 10−16) and C1ORF106 (P = 0.0012) genes. The risk alleles for the other 

three SNPs show similar results. (B) Example of a cis-eQTL identifying novel candidate 

genes and novel pathways. The CeD-associated risk allele, rs1378938*T is associated with a 

higher expression of both CSK (P = 7.08 × 10−6) and ULK3 (P = 1.21 × 10−46). ULK3 
encodes a kinase involved in autophagy. This pathway has not been implicated in CeD so far. 

We found an enrichment of autophagy genes being differentially expressed compared to a 

random set of genes in CeD biopsies (P = 2.2 × 10−16). We further showed that the SNP 
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affecting ULK3 is also correlated with the expression levels of autophagy genes in CeD 

biopsies (Supplemental Fig. 3).

Ricaño-Ponce et al. Page 18

J Autoimmun. Author manuscript; available in PMC 2017 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Validation of the functional role of ULK3 locus in autophagy in celiac disease. (A) 

Genotype-dependent expression levels of autophagy genes in coeliac disease biopsies. There 

were 3 AA, 15 AG and 13 GG genotypes. The expression for 217 autophagy genes could be 

extracted from the microarray data of coeliac disease biopsies and the genotype data at the 

ULK3 SNP were extracted using Immunochip for 31 CeD patients. The heatmap shows the 

normalized expression values stratified according to the genotypes. The difference in gene 

expression between AA and GG was tested by t-test and P < 0.05 was considered significant. 

(B) Association of rs1378938 with interleukin 6 levels in response to lipopolysaccharide. 

The CeD-associated risk allele rs1378938*T (in red) results in lowered interleukin 6 (P = 

0.019) cytokine levels upon LPS stimulation of primary mononuclear cells. The x-axis 

displays the three different genotypes and the number of individuals in each group. The y-

axis presents the age and gender corrected cytokine levels.
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Fig. 4. 
Examples of long non-coding RNAs as candidate causal genes for AIDs. (A) The locus on 

chromosome 2q32.3 is associated to AD (rs12615545) and CeD (rs1018326), and both SNPs 

are in strong LD (r2 = 0.96, D′ = 1). The CeD-associated risk allele, rs1018326*C is 

associated with higher levels of expression of the AC104820.2 lncRNA (similar results were 

observed for AD risk allele at rs12615545). The function prediction based on co-expression 

(GO biological processes) suggested this lncRNA is involved in alpha-beta T-cell 

proliferation. The right-hand panel shows the expression pattern for AC1048202 lncRNA 

across seven different immune cell types (obtained from two individuals and the average 

expression levels are shown), which indicates its strong expression in CD8+ T-cells. (B) The 

locus on chromosome 11q23.3 is associated to CeD (rs10892258), MS (rs533646) and RA 

(rs10790268). The MS-associated risk allele rs533646*G is associated with lower levels of 

expression of the AP002954.4 lncRNA (eQTL P = 6.41 × 10−80; similar results were also 

observed for the CeD and RA risk alleles). The expression patterns across seven cell types 

were obtained from two individuals and the average expression levels are shown as a 

heatmap, which confirms the strong expression of AP002954.4 in monocytes. The function 

prediction based on co-expression (GO biological processes) was obtained from the RNA 

network (http://genenetwork.nl/)7.
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Fig. 5. 
Shared disease loci may harbour different candidate causal genes for different AIDs. (A) 

The upper panel shows the regional plot of MS- (rs694739) and IBD- (rs559928) associated 

SNPs at 11q13.1 that affect expression of independent genes. The DNAse H1 sites (DHSs) 

from different cell lines were intersected with both gSNPs and their proxies. The gSNPs are 

highlighted with an oval shape around the line. DHSs of immune cells (alpha-beta T-cells, 

Jurkat T-cells, monocytes, naive B cells, T helper cells (Th0, Th1, Th2) and regulatory T-

cells (Treg) and Caco-2 cells (intestinal epithelial cells) were extracted from the databases of 

ENCODE and the Blueprint epigenome project (B) The MS SNP rs694739 affects the 

expression levels of lncRNA AP003774.1 (P = 2.65 × 10−130), followed by CCDC88B (P = 

7.89 × 10−14) and PPP1R14B (P = 7.08 × 10−6), while IBD SNP rs559928 only weakly 

affects the expression level of lncRNA AP003774.6 (P = 3.21 × 10−4). The function 

prediction based on co-expression (GO biological processes) was obtained from the RNA 

network [30]. Consistent with the DHSs pattern, the MS SNP affected genes are predicted to 

be involved in immune cell activation and the lncRNA affected by the IBD SNP is involved 

in innate immune function. (C) The expression pattern for eQTL genes across seven 

different immune cell types were obtained from two individuals and the average expression 

levels are shown as a heatmap.
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Fig. 6. 
The size of the LD block and lncRNAs facilitate looping interactions to regulate multiple 

genes in cis. (A) The size of the LD blocks between SNPs that affect single genes (single-

gene SNPs) and SNPs that affect multiple genes (multi-gene SNPs) was compared. The 

average size of the LD block for single-gene SNPs (100 kb) was significantly different from 

the 175 kb for multi-gene SNPs (P = 0.0002). The significant difference was tested using the 

Wilcoxon Rank test. (B) Mapping eQTLs for SNPs affecting lncRNA and using a 2 Mb cis-

window found 69% of the AID-SNPs that impact lncRNAs are SNPs affecting multiple 

genes compared to 40% of AID-SNPs that impact only protein-coding genes. (C) Ulcerative 

colitis-associated SNP rs6667605 at 1q36.32 affects three genes (TNFRSF14 is a protein-

coding gene, RP3-395M20.8 and RP3-395M20.7 are lncRNAs). Pink loops depict the 

looping interactions mediated by RNAPII that lie between the UC-associated eQTL locus 

and the corresponding target genes in GM12878 (B-lymphoblastoid) cells. The peaks in the 

middle panel depict the RNAPII occupancy along this locus in GM12878 cells. The bottom 

panel shows the expression levels of genes in this locus. Expression signals from the + and – 

strands are separated into green and blue, respectively.
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