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Attempts to immortalize effector T cells by
fusion of normal T cells with T cell lym-
phomas have been extensively made after
the successful establishment of the B cell
hybridoma that made it possible to infin-
itely produce monoclonal antibodies (1, 2).
However, T cell hybridomas, which were
mostly produced by using the T cell lym-
phoma line, BW5147, have contributed to
T cell biology with limited success, because
immortalizing effector T cells by cell fusion
dose not necessarily result in immortal-
izing the bona fide effector functions of
parental T cells. Meanwhile, T cells have
been becoming recognized as consisting
of more diverse populations than previ-
ously anticipated (3–6). Furthermore, a
new class of lymphocytes termed innate
lymphoid cells has been identified; they
lack rearranged antigen receptors and are
involved not only in immunity but also
in inflammation and in tissue remodeling
and repair (6–9). Thus, in order to gain a
better understanding of the functions of
various lymphocytes and their roles in tis-
sue microenvironment, it is desirable to
produce functional hybridomas that pre-
serve the effector functions of the parental
lymphocytes faithfully. We briefly review
phenotypic changes in T cell hybrids from
the point of view of somatic cell genetics
and describe the concepts and principles
behind devising an improved method for
immortalizing various lymphocyte func-
tions.

GENETICS OF SOMATIC CELL FUSION
Somatic cell hybridization has been used
over several decades to study the genetic
basis of cellular differentiation (10, 11).

Those studies revealed that intertypic cell
hybrids of equal ploidity fail to express the
tissue-specific differentiated traits of either
parent, a phenomenon termed extinction
(12), that activation of previously silent
genes occurs in hybrids with biased gene
dosages, and that re-expression of previ-
ously extinguished phenotypes can occur
in the hybrid segregants that have elimi-
nated chromosomes of one parental cell.
The differentiated state of somatic cells is
therefore thought to be regulated via trans-
acting regulatory factors and maintained
by continuous regulatory circuits (13).

It has recently been shown that fusion
of pluripotent embryonic stem cells (ESCs)
with differentiated somatic cells yields
pluripotent hybrid cells, indicating that
ESCs have the ability to reset or repro-
gram the epigenomes of somatic cell nuclei
toward pluripotency, albeit at low fre-
quencies, but not to completely iden-
tical levels with original ESCs (14–18).
Accordingly, extinction and/or activation
of tissue-specific genes in somatic cell
hybrids may be elucidated by partial
reprograming of somatic cell epigenomes
(19). In fact, in heterokaryons formed
by fusion between somatic cells and
non-dividing myotubes, trans-acting fac-
tors have been shown to partially repro-
gram one parental cell epigenome toward
another parental cell epigenome in a bi-
directional manner depending on biased
gene dosages (20–22). However, because
previously extinguished phenotypes in
growing hybrids can be re-expressed in
hybrid segregants (10, 23), the epigenetic
state of each differentiated cell genome
is considered to be stably maintained in

proliferating hybrids. In continuously pro-
liferating hybrids, therefore, reprogram-
ing of one parental epigenome toward
another parental epigenome appears to
be less likely to occur than in non-
dividing heterokaryons. The mechanisms
of epigenetic inheritance during the cell
cycle (24) and the cell cycle stage
of hybrid parental cells (25, 26) may
inevitably affect reprograming of somatic
nuclei.

In contrast to intertypic cell hybrids,
hybrids between the same cell types
(intratypic hybrids) continue to express the
tissue-specific products of both parental
cells (10, 27). When intratypic fusions are
conducted between cells whose maturation
stages are different, resultant hybrids usu-
ally express a variety of phenotypes (10).
This phenotypic diversity, as suggested by
the epigenetic study on CD4+ T cell differ-
entiation (28), may reflect intricate epige-
netic changes that occur during the matu-
ration processes in the same cell lineage.
The T cell hybridomas that were hith-
erto produced by fusion of immature lym-
phomas, like BW5147, with differentiated
T cells are considered to be such intratypic
hybrids.

However, T cell hybridomas were in
most cases isolated by selecting proliferat-
ing cells based on a particular trait from
effector T cell phenotypes, e.g., antigenic
responsiveness, production of a lym-
phokine or cytolytic activity, without thor-
ough cytogenetic analyses. Thus, the prop-
erties expressed in some of the hybridomas
so far reported might represent the traits of
hybrids with unequal ploidity or the traits
of the segregants that have eliminated or
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duplicated chromosomes of one parental
cell.

PROPERTIES OF T CELL HYBRIDOMAS
PRODUCED BY CELL FUSION BETWEEN
BW5147 LYMPHOMA AND NORMAL T
LYMPHOCYTES
The BW5147/helper T cell hybridomas that
expressed the T cell receptor (TCR) of
both parental origins produced IL-2 upon
engagement of the TCR with its cognate lig-
ands (29, 30). On the other hand, BW5147
cells produced IL-2 by themselves when
stimulated with calcium ionophore and
phorbol ester mimicking the activation sig-
nals delivered when TCRs are engaged with
cognate antigen (31). Furthermore, even
cytolytic BW5147 hybridomas produced
by fusion with cytotoxic T cells (CTLs)
secreted IL-2 (32, 33) although CTLs usu-
ally had no ability to produce IL-2. Thus,
the ability of hybridomas to produce IL-2
is most likely attributed to a property of
the parental BW5147 lymphoma. Never-
theless, because of this ability, BW5147/T
cell hybridomas – especially through the
use of TCR-deficient BW5147 variants (34–
36) – have made significant contributions
to dissecting the structure and specificity
of the TCR and also to analyzing antigen
presentation by multiple types of antigen-
presenting cells (37–41).

BW5147/T cell hybridomas have also
contributed to the characterization of lym-
phokines, particularly the T cell replac-
ing factor or eosinophil differentiation
factor, now called IL-5 (42–45). How-
ever, because BW5147 lymphoma itself
expresses a variety of lymphokines, includ-
ing suppressor factors (31, 46, 47), it is nec-
essary to be cautious when interpreting the
results obtained with these lymphokine-
producing hybridomas.

Fusion of BW5147 with CTLs usu-
ally yielded non-cytolytic hybridomas in
which CD8α gene expression was sup-
pressed by a trans-acting regulator derived
from BW5147. Despite this, BW5147/T cell
hybridomas with cytolytic activity were
produced (32, 48), and their cytolytic
activity was subsequently ascribed to the
Fas/FasL cytolytic pathway (49). Because
the Fas/FasL cytolytic activity may be
weekly expressed by the BW5147 lym-
phoma itself (50), BW5147/T cell hybrido-
mas might be permissive for the expression
of the Fas/FasL cytolytic pathway, but not

the perforin-mediated cytolytic pathway of
parental CTLs (51).

Cytolytic BW5147/T cell hybrids, which
grow in an IL-2-dependent manner
were also produced (52), but when
autonomously growing hybridomas were
derived from them, they lost not only their
dependence on IL-2, but also all other
attributes of the CTL phenotypes (53) due
to epigenetic mechanisms, not chromo-
somal segregation (54). In proliferating
hybrids, all the gene expression programs
of one parental cell genome that governs
proliferation of the hybrid may conspire to
determine the phenotype of the hybrid for
unknown mechanisms. The above report
is also reminiscent of the phenomenon
termed “phenotypic exclusion” shown in
melanoma/hepatoma hybrids (23).

In summary, BW5147/T cell hybrido-
mas have considerably helped analyze cer-
tain aspects of T cell biology. However,
since BW5147 genome simultaneously
imposes, albeit not completely, its own
programing on the hybridomas, BW5147
dose not faithfully immortalize effector
functions of T cells.

PRODUCTION OF GROWTH-ARRESTED
HYBRIDS THROUGH FUSION OF
LYMPHOMAS AND TERMINALLY
DIFFERENTIATED T CELLS
The quiescent state of non-dividing dif-
ferentiated cells is actively controlled by
regulatory mechanisms (55, 56). When ter-
minally differentiated cells are fused with
tumor cells in the same cell lineage, the
regulatory mechanisms may operate dom-
inantly over tumor transformation mecha-
nisms (57). This notion has been substanti-
ated by a study showing that fusion of lym-
phomas such as EL4, S1A, and YACUT, with
antigen-responsive T cell line G4 yielded
hybrid cells that ceased to proliferate (58–
60). These growth-arrested hybrids pro-
liferate by antigenic stimulation and thus
have a phenotype similar to that of the G4
parental cells, which divide several times by
antigenic stimulation and then enter into
the quiescent phase of the cell cycle.

Upon antigenic stimulation, T lympho-
cytes proliferate, differentiate, and mature
into effector cells. This is followed by either
cessation of proliferation to become mem-
ory cells or initiation of apoptotic cell death
to avoid over-immune-responses, which
are harmful for the body. Thus, we can infer

from the above experiments that when
lymphomas are fused with normal acti-
vated lymphocytes, resultant hybrids will
cease to proliferate or undergo cell death,
though not necessarily always. This sce-
nario explains why attempts to produce
hybridomas between normal T cells and a
variety of lymphomas were in many cases
unsuccessful (47).

UNIQUE PROPERTIES OF THE HYBRIDS
BETWEEN YACUT LYMPHOMA AND
DIFFERENTIATED LYMPHOCYTES
YACUT lymphoma derives from a Moloney
leukemia virus (MoLV)-induced lym-
phoma originating from a T cell in an
immature stage of development (61, 62).
In growth-arrested YACUT/G4 hybrids,
the G4 cell genome introduced into
the YACUT lymphoma suppressed the
immature phenotypes as well as the
transformed phenotype of YACUT and
imposed its own programing of termi-
nally differentiated traits on the hybrids
(62). Unlike growth-arrested EL4/G4
and S1A/G4 hybrids, prolonged growth
of growth-arrested YACUT/G4 hybrids
resulted in the appearance of continu-
ously proliferating cells with the differ-
entiated phenotype due to an increase in
the number of the tumor-derived chro-
mosome 15 carrying the MoLV-inserted
pvt-1 gene (62). Furthermore, no seg-
regants expressing immature phenotypes
appeared after prolonged propagation of
the re-transformed hybrids. From these
observations, we can hypothesize that
the epigenome of immature lymphoma
nuclei differentiates into the mature epi-
genetic state of the G4 cell nuclei in
the growth-arrested hybrids. This concept
of association of cell growth-arrest with
the induced differentiation of the imma-
ture lymphoma in lymphoma/lymphocyte
hybrids (62) is parallel to the notion
that tumor/normal cell hybrids in which
tumor malignancy is suppressed are exe-
cuting the differentiation program of a
normal parental cell under the microenvi-
ronment in vivo (63, 64). This hypothesis
predicts that fusion of the YACUT lym-
phoma with T lymphocytes followed by
re-transformation will generate functional
T cell hybridomas.

On the basis of this prediction, we have
produced several functional hybridomas
as summarized in Table 1. From rapidly

Frontiers in Immunology | T Cell Biology May 2014 | Volume 5 | Article 229 | 2

http://www.frontiersin.org/T_Cell_Biology
http://www.frontiersin.org/T_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kubota and Iwabuchi Functional T cell hybridomas

Table 1 | Summaries of functional hybridomas produced from growth-arrestedYACUT/lymphocyte hybrids.

Fusion Growth-arrest

after fusion

Growth stimulatory

antigen or cytokine

Transformed cell

(designation)

Characteristics of

hybridoma (reference)

Parental cell

YACUT×G4 Yes Splenocytes with Mlsa,

H-2b, or H-2d antigen

G6g1, E4e1 T cell helper activity (60, 62) Mlsa-responsive T cell

line G4

YACUT×20MLC Yes (rapid cell death

without stimulation)

DBA/2 splenocytes 3A2, 7D4 Non-MHC-restricted cytotoxicity (65).

Activation and inhibitory receptors+

(66, 67)

CTL

YACUT×20MLC Yes DBA/2 splenocytes B6HO3 IFN-γ production in response to IL-18

produced by dying bacteria-infected

macrophages (68, 69)

Innate-like αβ T cell

YACUT×20MLC Yes Irradiated splenocytes CB1 Requirement of TNF-α for the growth in

the presence of irradiated splenocytes

CD3−, TCR−

Innate lymphoid cell?

YACUT× iNKT Yes IL-7+ IL-15 F3a Growth in longitudinal cell clusters;

CD244.1 and 2+
iNKT cell

20MLC: secondary C3H anti-DBA/2 mixed-lymphocyte culture.

dying growth-arrested hybrids produced
by fusion of YACUT with a secondary
mixed-lymphocyte culture cell, cytolytic
hybridomas expressing the natural killer
(NK) cell activation and inhibitory recep-
tors were produced (65–67). From long-
lived growth-arrested hybrids of the same
fusion, we obtained another hybridoma
termed B6HO3, which formed cell conju-
gates with bacteria-infected macrophages
and produced IFN-γ in response to IL-18
secreted from dying macrophages caused
by bacterial infection (68, 69). The parental
αβ T cell of this hybridoma was a cell that
belongs to minor innate-like αβ T cells.
This B6HO3 hybridoma has helped reveal
that subsets of innate lymphocytes respond
to macrophage cell death caused by bacter-
ial infection with the production of innate
IFN-γ, which plays an important defensive
role at an early stage of bacterial infections
(70, 71).

Another hybridoma termed CB1 was
also produced; its membrane pheno-
type was CD3−, TCR−, B220−, CD19−,
CD244+, and FcRII/III+, suggesting that
the parental cell was a NK-like cell or a cell
belonging to innate lymphoid cells; CB1
was of interest, because the proliferation
of the cells was suppressed in the pres-
ence of irradiated spleen cells and TNF-α
was intimately involved in this growth. Fur-
ther, by fusing YACUT with invariant nat-
ural killer T (iNKT) cells and culturing the

resultant growth-arrested hybrids in the
presence of IL-7 and IL-15, we obtained
hybridoma F3a, which was unique in
that it proliferated in longitudinal cell
clusters. The functions of CB1 and F3a
and their parental lymphocyte functions
remain to be determined by further stud-
ies, but insofar as our prediction is valid,
previously unknown functions of lym-
phocytes will be unveiled through these
hybridomas.

CONCLUDING REMARKS
Fusion of lymphomas with normal lym-
phocytes yields mostly growth-arrested
hybrids in which epigenomes of imma-
ture lymphomas are thought to be induced
to differentiate toward the mature epige-
netic state of normal lymphocyte nuclei.
Thus, if we devise some methods of
making the growth-arrested hybrids re-
proliferate indefinitely, it will make it pos-
sible to immortalize effector functions
of normal lymphocytes. In this respect,
the growth-arrested YACUT/normal T cell
hybrids are of importance. After pro-
longed growth by repeated stimulation,
they resume indefinite proliferation pre-
sumably because of chromosomal instabil-
ity of the YACUT genome, thereby becom-
ing functional hybridomas that exhibit the
phenotypes of their parental lymphocytes.
This YACUT hybridization system and fur-
ther research based on our hypothesis will

shed light on hitherto unknown functions
of lymphocytes and contribute to a better
understanding of lymphocyte biology.
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