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Abstract: One-dimensional (1D) nanowires have attracted great interest, while air-stable n-type 1D
nanowires still remain scarce. Herein, we present solvent-vapor annealing (SVA) made nanowires
based on perylene tetracarboxylic diimide (PDI) derivative. It was found that the spin-coated thin
films reorganized into nanowires distributed all over the substrate, as a result of the following
solvent-vapor annealing effect. Cooperating with the atomic force microscopy and fluorescence
microscopy characterization, the PDI8-CN2 molecules were supposed to conduct a long-range and
entire transport to form the 1D nanowires through the SVA process, which may guarantee its potential
morphology tailoring ability. In addition, the nanowire-based transistors displayed air stable electron
mobility reaching to 0.15 cm2 V−1 s−1, attributing to effective in situ reassembly. Owing to the
broader application of organic small-molecule nanowires, this work opens up an attractive approach
for exploring new high-performance micro- and nanoelectronics.

Keywords: solvent-vapor annealing; PDI derivative; long-range and entire transport; 1D nanowires;
morphology tailoring; electron transport

1. Introduction

One-dimensional (1D) nanowires have attracted extensive attention owing to their potential
application in constructing optoelectronic devices [1–3], for instance, organic field-effect transistors [4],
sensors [5–7], nanogenerator [8,9], thin-film solar cells [10] and photowaveguide materials [11].
Inorganic nanowire thin films, such as Ag [12] and TiO2 nanowire network [13] via solution-processed
method have been introduced to act as transparent electrodes to reproduce the performance of common
electrodes on various substrates. In contrast to the inorganic electronic materials, organic conjugated
nanowires or nanowire networks presented improved mechanical properties of flexible and stretchable
ability, especially for organic conjugated polymers [14–16] including conducting and semiconducting
materials. The superior electrical performance [17] and low-cost direct printing technique [18–20] even
enable their further use in next generation devices for wearable electronics and implantable biomedical
applications. Different from polymer, small molecules are easy to synthesize and purify, readily
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accessible in large quantities, can be deposited by solution and evaporation techniques, and have
produced the highest mobilities reported to date [21]. But for the majority of organic small molecules,
low molecule weight, low viscosity and relative smaller solubility restricted the one-dimensional
nanowire preparation method. Their high structural tunability, reaction activity and processability
provide great opportunities to miniaturized optoelectronic chips based on organic 1D nanostructures,
since they are usually assembled from molecular units with weak intermolecular interactions, such as
hydrogen bonds, π-π stacking and van der Waals force. These weak interactions allow for more facile
and mild conditions in the fabrication of high quality organic 1D nanostructures rather than those
in the construction of their inorganic counterparts [11]. At first, solution-processed small-molecule
nanowires (NWs) are grown in situ on the substrates through drop-casting approach [22], as the
self-assemble [23,24] process occurs with solvent evaporation and molecules align to the preferred
direction, or dip-coating method [25,26] by vertically pulling the substrate out of an organic solution,
then other essential components will be applied to the target active nanowires to form functioning
electronic devices. For example, Frederick and his co-workers doped F4-TCNQ (p-dopant) into P3HT
in the solution phase, which showed higher aggregation rate of 1D P3HT nanowires with smoother
edges and less protruding segments [15]. Through researchers’ attempt to obtain the nanowires of
organic small semiconductors to develop the new generation strategy, such as hierarchy patterning on
solid substrates [27], using polymer as a soluble crystal modifier [28], there has been some progresses
in tailoring nanocrystalline morphologies of organic semiconductors (OSCs).

However, the progress achieved with p-type nanowires OSCs outperforms that realized with
n-type materials. This is mainly due to the lower stability of the radical anions formed upon injection
of electrons into the OSC [29]. Oxygen or water molecules penetrating into the OSC layer can
easily oxidize the radical anions. Perylene tetracarboxylic diimides derivatives (PDI derivatives)
as typical n-type OSCs have been widely investigated since first reported by Horowitz et al. [30],
followed by N-substituted alkyl chain substituted ones [31]. Fluorinated [32] and 1,7-Dicyano [33]
derivatives of PDIs usually exhibits excellent air stability and good performance owing to the
reduced the lowest unoccupied molecular orbitals (LUMO) energy level. Among these materials,
N,N’-bis(n-octyl)-(1,7&1,6)-dicyanoperylene-3,4:9,10-bis (dicarboximide) (PDI8-CN2) is one of the
most widely used solution processible PDI derivatives OSCs [34,35]. Salleo and co-workers prepared
the aligned PDI8-CN2 film by solution-cast method to reveal the effects of grain-boundary type and
trapping barriers, which showed strong charge-transport anisotropy with mobilities for parallel devices
reach 10−2 cm2 V−1 s−1 [36].

In this work, we report use of solvent-vapor annealing (SVA), for fabrication of nanowires
of PDI8-CN2 (as shown in Figure 1) on various substrate surfaces, to fabricate air stable n-type
transistors. Solvent-vapor annealing was performed on a dielectric surface, with solvent vapor
to dissolve the organic materials which then reorganize into a higher degree of order to form
functional nanostructures [37,38]. The nanowires exhibits a moderately electron transport up to
0.15 cm2 V−1 s−1, superior air stability and on/off ratio, which can be comparable to the single-crystal
devices (0.183 cm2 V−1 s−1). These findings suggest solvent-vapor annealing can be an efficient
strategy to form high-performance n-type nanowires.
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2. Results and Discussion

Poly(methyl methacrylate) (PMMA) usually acted as a passivation layer in electronic devices,
leading to the optimized organic active semiconductor/inorganic insulator interface. Herein,
we conducted a self-organized phase separation. Two components mixed in solution automatically
separated during spin-coating and form a bilayer-structured film. PDI8-CN2 and PMMA were mixed
in 1,2-dichlorobenzene with different mass ratios, then spin-coated the mixture onto Si/SiO2 substrates
to form the active semiconductor layer on top of an amorphous layer. Optical microscope images
of micro/nanostructures of different mass ratios of PDI8-CN2/PMMA at a total concentration of
5 mg/mL before and after solvent-vapor annealing treatment (SVA) were then investigated. A flat
thin film without obvious large grains was observed from the 1:1 ratio as shown in Figure 2a. After
the SVA process, the former structures aggregated into small sized clusters (Figure 2b), indicating no
sufficient reaction to the annealing of this 1:1 mixed preparing condition.
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Figure 2. Optical microscope images of spin-coated nanostructures with 1:1 mass ratios of PDI8-CN2/
PMMA at a total concentration of 5mg/mL on a Si/SiO2 substrate (a) before and (b) after SVA.

When the PDI8-CN2 concentration was narrowed to be 0.3–0.5 mg/mL (the mass ratio was 1:10
or 1:20), it came to the similar result, so we take the 1:20 as the example. As shown in Figure 3a, the
as-prepared thin film seemed to be flat and no obvious clusters existed. According to the atomic force
microscopy (AFM) image (Figure 3c), the thin fil m was comprised of discontinuous nanoflakes, with
almost the same height and size of 300–500 nm. The flake height was about 3.0 nm, while the length
of PDI8-CN2 molecule is ~3.1 nm based on density function theory (DFT) calculation, which implied
that the mono-layer molecules stood on the substrate with a tilt angle, and the average roughness
(Rq) of the nanostructure was calculated to be ~0.59 nm. Compared with the blend films, the AFM
images of pure PDI8-CN2 clusters spin-coated from 1,2-dichlorobenzene solution of 5 mg/mL showed
a larger average height of about 10.2 nm and an average roughness of ~3.28 nm (Figure S1). Obviously,
after the introduction of PMMA, the PDI8-CN2 was then well-distributed, the aggregation was greatly
reduced, and the roughness was substantially decreased, which was conducive to the long-distance
mass transfer of PDI8-CN2 molecules during the following SVA process. In addition, PMMA improved
the interface quality because of its hydrophilicity, lower interface energy and polarity. Self-assembled
nanowires were obtained all over the substrate after SVA process (Figure 3b), with the length up to
hundreds of micrometers, the width of hundreds of nanometers to several micrometers (Figure 3d).
Besides, the height of the nanowire varied from one hundred nanometers to several micrometers,
1–2 orders of magnitude larger than the clusters in original blend films (Figure S2). From the above
results, we believed that the concentration of PDI8-CN2 component is one of the essential factors to
determine the semiconductor topography during and after the SVA approach. When the concentration
of PDI8-CN2 was lower (such as 1:50 w/w ratio), less nanostructures emerged as we supposed, the
length was reduced to no more than 100 µm and width was increased to several to ten micrometers,
compared to the 1:20 situation, meanwhile multiple nanostructures bunched together (Figure S3).
This phenomenon may be due to the fact that the low concentration of PDI8-CN2 induced a larger neat
surface and faster dissolution, obstructing well-distribution and long-size self-assembly of PDI8-CN2
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molecules spread on the PMMA surface. The above results revealed that the self-assembly can be
controlled by tailoring the concentration of PDI8-CN2, so as to adjust the nanowires morphology after
annealing which including length, cross-section and thickness.Materials 2019, 12, x FOR PEER REVIEW  4 of 10 
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1:20 mass ratios of PDI8-CN2/ PMMA at a total concentration of 5mg/mL on Si/SiO2 substrate (a,c)
before and (b,d) after the SVA process.

The XRD pattern of the PDI8-CN2 nanowires from 1:20 PDI8-CN2/PMMA mixed solution
showed a clear peak in 4.4◦ with a d-spacing of 20.1 Å (Figure S4), corresponding to the c-axis of the
PDI8-CN2 unit cell, and therefore attributed to (001) reflections of the predicted crystal structure [39,40].
The self-assembly driven by π-π interactions enabled the growth direction along the b direction
between neighboring PDI cores [41].

Solvent-vapor annealing method [42,43] employs saturated solvent vapor to dissolve functional
materials, then the active molecules reorganize into a higher degree of order [44]. This
method is a useful strategy for the researchers to reach desired micro/nanostructures for organic
nanoelectronics [45]. For the dissolution and molecule transport process, the solvent is another main
factor. The choice of solvent is not limited to that used for the deposition from solution and the
possibility to modulate the solvent vapor pressure, temperature, exposure time allows a high control
over the adsorbate reorganization and the surface properties of the substrate. The surface-assisted
solvent-vapor annealing was performed in a closed chamber saturated with appropriate solvent
vapor. Factors that influence solvent choice include: (1) solubility in order to allow free molecules
to be transported with the solvent on the surface; (2) minimum affinity to the surface, thus allowing
high mobility on the surface. By mastering the solubility properties of the different materials in
a chosen solvent, it is possible to modulate the degree of interaction between molecule-molecule,
molecule-substrate, molecule-solvent and solvent-substrate. As a good solvent for PDI8-CN2,
1,2-dichlorobenzene with high boiling point was chosen as the typical solvent to carry out the vapor
annealing of the sample cast on the surface of the substrate. The hydrophobic characteristic should
enable effective molecular dynamics (and thus the packing) on the PMMA surface. According to the
comparison between Figure S1 and Figure 3c, it is obvious that PMMA helped the spreading and
homogenization of PDI8-CN2. PDI8-CN2 molecules tend to be well spreading due to the organic
(PMMA) surface. Meanwhile, the mesoscopic phase separation distinctly occurred in the blend
films and manifests itself in the protruded structure coexisting with another surrounding matrix.
It is a direct consequence of the interplay between liquid-liquid mix and stratification during the
spin-coating process [46–48]. In particular, the 1:20 blend film composes of domains (0.1–0.3 µm in
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diameter) randomly interspersed in the matrix [48–51]. When the bilayer architecture was exposed
to 1,2-dichloroethane vapor, solvent vapors interacted with the substrate and, with the resolubilized
adsorbate, promoted molecule transport mobility and rearrangement on the surface both at the
molecular and the mesoscopic scale [52]. Therefore, PDI8-CN2 molecules started to crystallize at
the air-film interface and after sufficient time (ca. 10 h) they reassembled into large-size nanowires.
Such a solvent-vapor annealing process takes advantages of both the slow crystallization process
(taking place in the minimal amount of solvent condensed on the surface) and the flat substrate
(which confines the random walk of molecules from 3D in solutions to 2D on a surface), and thus
facilitates the spatial organization of the molecules. Therefore, we believed that by mastering weak
intermolecular interactions among PDI8-CN2 molecules through vapor annealing, it was possible to
grow self-assembled nanowires with hundreds of micrometers long. Other common solvents failed to
this SVA treat of this system, which proved our theory.

The absorption spectrum of PDI8-CN2 in 1,2-dichlorobenzene solution showed well-structured
vibrational bands at λ = 463, 492, and 529 nm (Figure S5). Compared with that of solution, the
absorption spectra of nanowire demonstrated obvious red shift with peaks at 475, 510, and 554 nm,
indicating strong π-π interaction in the solid state. The confocal fluorescence microscope images of
spin-coated thin film nanostructures from PDI8-CN2/PMMA (1:20 w/w ratio) 1,2-dichlorobenzene
solution on Si/SiO2 substrate before and after SVA were then analyzed. The analysis revealed that even
the ultrathin nanoflake made film was observed to display strong and uniform fluorescence before
the following treatment (Figure 4a). However, after the SVA process, only the as-prepared nanowires
had strong fluorescence emission, no signs of fluorescence were found on other uncovered surface
area, as shown in Figure 4b, indicating that the functional molecule had reached entirely long-distance
transport. In contrast, PDI8-CN2 thin film by spin-coating 0.3 mg/mL 1,2-dichlorobenzene solution on
the substrate resulted in irregular and scattered distribution of fluorescence due to the lack of PMMA
modified layer (Figure S6). It could be concluded that PDI8-CN2 molecules were well-distributed
on the surface for the addition of PMMA. This observation may be due to the high polarity of bare
SiO2 surface, and then resulted in the aggregation of organic molecules which further influence the
distribution of the reassembly on Si/SiO2 substrate.
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Figure 4. Confocal fluorescence microscope images of spin-coated thin film from PDI8-CN2/PMMA
(1:20 w/w ratio) 1,2-dichlorobenzene solution on Si/SiO2 substrate before (a) and after (b) SVA process.
Excitation wavelength was ~559 nm, all peaks of their fluorescence spectra ranged from ~655 nm to
~755 nm, with red emission.

In addition, PDI8-CN2 system without any polymer addition operated on Si/SiO2 substrate
was also investigated (Figure S7). When the concentration of PDI8-CN2 component was 0.3 mg/mL,
which was considered as the optimum concentration for nanowires growth, large-size nanowires
were observed after the SVA process. As the concentration of PDI8-CN2 increased to 1 mg/mL,
a small number of micro/nanowires appeared, with lots of aggregating grains. Additionally, when it
came to 2 mg/mL, the size of the nanostructures drastically decreased, with the obvious increase in
thickness, and almost all needle-like aggregates gathered in confined areas, which may be accounting
to the large concentration. Enough molecules meet nearby and tend to cluster by the strong π-π
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interaction, making PDI8-CN2 molecules much shorter mass transport distance. This suggested that
when the concentration of the original solution was ~0.3 mg/mL, the synthesized nanowires were
of large-size length (several hundreds of micrometers) and ideal quantities. All the above results
indicated adjusting the surface, choosing suitable solvent and tuning PDI8-CN2 concentration were
the determining procedures to the nanowire growth of further nanoeletronic device fabrication.

In order to investigate the electrical properties of PDI8-CN2 nanowires, we constructed
the nanowire-based n-type transistors with the bottom-gate top-contact geometry (Figure 5a).
Au source/drain electrodes were then thermally evaporated onto the nanowires via a copper grid as
the mask. Figure 5b shows the illustration of a single nanowire transistor. All the characterizations
were conducted in air condition. Typical transfer and output characteristics are shown in Figure 5c,d,
which showed well-saturated performance. Over 20 individual devices were measured and they
exhibited an average µe (Electron Mobility) of 0.08 cm2 V−1 s−1 and Vth (Threshold Voltage) of 9 V.
The highest electron transport mobility could reach to 0.15 cm2 V−1 s−1, with a relatively high on/off
ratio of 105. This result was comparable to the single-crystal devices, and better performance than the
thin-film transistors [29,34,40]. Generally, the π-conjugated semiconducting materials tend to arranged
along the π-π direction. The strong π-π interactions promote the PDI derivative movement during the
SVA process, and facilitate the electron transport along the 1D direction. Besides, the devices showed
nearly no degradation when measured after a month in air. We believed that the good air stability was
attributed to the presence of the electron-withdrawing cyan (CN) moieties which were demonstrated
to significantly lower the lowest unoccupied molecular orbital (LUMO). As is well known, lower
LUMO lead the n-type semiconductors less susceptible to ambient atmosphere.
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3. Experimental Section

3.1. Materials

N,N’-bis(n-ctyl)-x:y-dicyanoperylene-3,4:9,10-bis-(dicarboximide) (PDI8-CN2) was purchased
from Polyera Corporation (Skokie, IL, USA), poly(methyl methacrylate) (PMMA) was obtained from
TCI (Tokyo, Japan) and 1,2-dichlorobenzene was acquired from J&K Scientific (San Jose, CA, USA).
All materials were used directly without further purification.

3.2. Nanowire Preparation

PDI8-CN2 and PMMA with a total concentration of 5 mg/mL were dissolved in 1,2-
dichlorobenzene at a mass ratio of 1:1,1:10, 1:20, and 1:50, respectively. In addition, solutions of
pure PDI8-CN2 dissolved in 1,2-dichlorobenzene at concentrations of 0.4, 1, 2 and 5 mg/mL were
also prepared. All solutions were sonicated for 1 h and then heated at 120 ◦C until all components
were dissolved completely. The solutions were spin-coated onto the substrates at a speed of 2000 rpm
for 1 min in a nitrogen-filled glovebox. Then about 200 µL 1,2-dichlorobenzene was dropped in the
covered glass dish, with the substrate inside, to anneal spin-coated films. Ultimately, sub-millimetric
nanowires were observed on the substrate that followed. It is worth noting that 1,2-dichlorobenzene
volatilizes slowly at room temperature, which may affect the self-assembly process, so the glass dish
was heated until hot 1,2-dichlorobenzene vapor formed during the SVA process.

3.3. Device Fabrication

Nanowire-based n-type organic field-effect transistors (OFETs) with a bottom-gate top-contact
(BGTC) configuration were fabricated via thermally evaporating gold electrodes (0.3 Å/s, 7 × 10−4 Pa)
through a copper grid, with a channel length (L) of ~20 µm.

3.4. Characterization

The as-prepared nanowires were characterized by Laser confocal fluorescence microscope (LCFM,
Olympus FV1000MPE, Olympus Corporation, Tokyo, Japan), atomic force microscopy (AFM, Bruker
Dimension Icon, Karlsruhe, Germany), Optical microscope (OM, Olympus BX3M-KMA-S, Olympus
Corporation, Tokyo, Japan) and Powder X-ray diffraction (XRD, Rigaku D/Max2500/PC, Rigaku
Corporation, Akishima, Japan). The electrical characteristics of the devices were measured with a
Keithley 4200 SCS semiconductor parameter analyzer (Tektronix, Johnston, OH, USA) under ambient
conditions. The mobility was evaluated in the saturated region.

4. Conclusions

In summary, sub-millimeter sized reorganized nanowires of an organic PDI derivatives (PDI8-CN2)
compound was synthesized from in situ solvent-vapor annealing treatment. Upon exposure to
solvent vapors, organic mono-layer was supposed to self-assembly into one-dimensional nanowires
on the surface. Such 1D nanostructure growth was found to be a long-range and complete mass
transport process (molecule movement) through the further investigation. They exhibit an attractive
air stable n-type performance with a moderate electron mobility of 0.15 cm2 V−1 s−1, a superior
contrast of optimized traditional thin films, induced by highly ordered reassembly. Considering the
structural diversity and the rearrangement ability, this solvent annealing process affords abundant
room for exploring new functional organic small molecules nanowires. To further explore the
potential application of SVA nanowires, fabricating n-type organic field-effect transistors (OFETs)
arrays based on nanowire alignment or even the complementary circuit applications are still in
progress. It is believed that such in situ reorganized processes will provide the potential to construct
new small-molecule nanoelectronics.
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Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/3/438/s1,
Figure S1: AFM images of spin-coated morphology of PDI8-CN2 at a concentration of 5 mg/mL on Si/SiO2
substrate, Figure S2: Profile image across the white line in AFM images of PDI8-CN2 nanowires from 1:20 w/w
solution on Si/SiO2, Figure S3: Optical microscope image of PDI8-CN2 nanostrutures from 1:50 w/w solution on
Si/SiO2 substrate after the SVA process, Figure S4: XRD pattern of the prepared nanowires from the SVA treating
PDI8-CN2/PMMA nanostructure, Figure S5: UV-vis absorption and photoluminescence spectra of PDI8-CN2
solution (black), nanowire (red), Figure S6: Confocal fluorescence microscope images of spin-coated PDI8-CN2
nanostructures of 0.3 mg/mL 1,2-dichlorobenzene solution on Si/SiO2 substrate, Figure S7: Optical microscope
images of spin-coated pure PDI8-CN2 system with different concentrations in 1,2-dichlorobenzene on Si/SiO2
substrate before and after SVA: (a–c) as-cast; (d–f) after SVA; (a,d) 0.3 mg/mL; (b,e) 1 mg/mL; (c,f) 2 mg/mL.
Different scale bars are used for comparison.
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