
Citation: Zhang, G.; Liu, W.; Zhang,

P.; Xiong, H.; Gao, J.; Yu, H.; Yuan, H.

Chemical Composition,

Microstructure, Tensile and Creep

Behavior of Ti60 Alloy Fabricated via

Electron Beam Directed Energy

Deposition. Materials 2022, 15, 3109.

https://doi.org/10.3390/ma15093109

Academic Editor: Giulio Marchese

Received: 30 March 2022

Accepted: 23 April 2022

Published: 25 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Chemical Composition, Microstructure, Tensile and Creep
Behavior of Ti60 Alloy Fabricated via Electron Beam Directed
Energy Deposition
Guodong Zhang, Wei Liu, Peng Zhang, Huaping Xiong *, Jianshi Gao, Huai Yu and Hong Yuan

3D Printing Research & Engineering Technology Center, Beijing Institute of Aeronautical Materials,
Beijing 100095, China; zzggdd2010@163.com (G.Z.); liuwei2011621@163.com (W.L.); zpzpup@163.com (P.Z.);
gaojianshiuow@163.com (J.G.); yumugui@163.com (H.Y.); hong.yuan@biam.ac.cn (H.Y.)
* Correspondence: xionghp69@163.com or xionghuaping69@sina.cn

Abstract: Electron beam directed energy deposition (EB-DED) is a promising manufacturing process
for the fabrication of large-scale, fully dense and near net shape metallic components. However,
limited knowledge is available on the EB-DED process of titanium alloys. In this study, a near-α
high-temperature titanium alloy Ti60 (Ti-5.8Al-4Sn-4Zr-0.7Nb-1.5Ta-0.4Si) was fabricated via EB-DED.
The chemical composition, microstructure, tensile property (at room temperature and 600 ◦C), and
creep behavior of the fabricated alloy were investigated and compared with those of the conventional
wrought lamellar and bimodal counterparts. Results indicated that the average evaporation loss of Al
and Sn was 10.28% and 5.01%, respectively. The microstructure of the as-built alloy was characterized
by coarse columnar grains, lamellar α, and the precipitated elliptical silicides at the α/β interfaces.
In terms of tensile properties, the vertical specimens exhibited lower strength but higher ductility
than the horizontal specimens at both room temperature and 600 ◦C. Furthermore, the tensile creep
strain of the EB-DED Ti60 alloy measured at 600 ◦C and 150 MPa for 100 h under as-built and
post-deposition STA conditions was less than 0.15%, which meets the standard requirements for the
wrought Ti60 alloy. The creep resistance of the EB-DED Ti60 alloy was superior to that of its wrought
bimodal counterpart.

Keywords: near-α titanium alloy; electron beam; directed energy deposition; microstructure; tensile
property; creep

1. Introduction

Owing to their high strength-to-weight ratio and the ability to withstand elevated
temperatures, titanium alloys are widely used in the aerospace industry, particularly in
structural and engine applications [1]. Recently, high-temperature titanium alloys, such
as IMI834 [2], Ti-1100 alloy [3] and BT36 alloy [4], have garnered attention in the field of
aircraft engines as promising materials for the fabrication of compressor disks and blades
undergoing long-term stress at 600 ◦C. The Ti60 alloy is another new near-α titanium alloy
developed in China for service in aero-engine up to 600 ◦C [5,6].

Additive manufacturing (AM) allows structure fabrication in a layer-by-layer deposi-
tion process and revolutionizes the manufacturing industry [7–9]. Extensive studies have
been carried out on the AM process numerical simulation (heat transfer, melt pool and
solidification, et al.), microstructure characterization and mechanical properties [10–13].

The relationship between the microstructure and mechanical properties of Ti60 alloy
manufactured using laser-directed energy deposition (L-DED) has been studied [6,14,15].
Chen et al. [14] investigated the relationship between the L-DED laser power input, mi-
crostructure, and stress rupture properties of the Ti60 alloy. The formation of a Widmanstät-
ten microstructure was observed when using a high power input, whereas a basket-weave
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microstructure was observed at a low power input. The Widmanstätten structure exhib-
ited significantly lower stress rupture properties compared to the basket-weave structure,
with the former showing distinct intergranular fractures, whereas dimple ruptures were
observed in the latter. Zhang et al. [15] compared the microstructure, tensile properties,
and stress rupture life of an L-DED-fabricated Ti60 alloy under different post-processing
heat treatment conditions. Compared with the as-built alloy, the room temperature tensile
ductility of the L-DED-fabricated alloy was improved by 40%, with a 24.3% longer stress
rupture life for specimens annealed at Tβ-10 ◦C. This could be explained by an increase in
the β phase content and a discontinuous α colony boundary [15]. Near-equiaxed β grains
were successfully generated in an L-DED-fabricated Ti60 alloy with reduced anisotropic
tensile strengths without the use of any additives or auxiliary methods [6]. However, so
far, electron beam directed energy deposition (EB-DED) of near-α high-temperature (up to
600 ◦C) titanium alloys (including the IMI834, Ti-1100 and BT36) has not been reported.

EB-DED process offers several advantages, such as high deposition rates of up to
2500 cm3/h, approximately 100% feedstock consumption efficiency, and a power-usage
efficiency of ~95% [16,17]. It is particularly attractive for the fabrication of large-scale, fully
dense and near net shape metallic components [18,19]. However, compared to powder bed
fusion and other directed energy deposition processes, EB-DED produces subpar results.

Research on titanium alloys fabricated by AM has been mainly focused on the process-
ing parameters, microstructure, and mechanical properties, such as tensile strength [20],
fracture toughness [21], and fatigue [22,23]. Recently, high-temperature creep behavior
has gained significant attention as an important property of alloys formed via AM. For
example, Kim et al. [24] investigated the effects of heat treatment on the high-temperature
compressive creep behavior of the selective laser melting (SLM) fabricated Ti-6Al-4V alloy.
Compared to the fully martensite structure of the as-built alloy, the specimens treated at
1040 ◦C for 1 h followed by furnace cooling (with a Widmanstätten structure) had a low
creep strain in all stress ranges (i.e., superior creep resistance). Viespoli et al. [25] reported
that the creep performance of the as-built Ti-6Al-4V alloy formed via SLM was equivalent
to (or better than) that of its counterparts produced using hot-forging. The creep response
of a Ti-6Al-4V alloy produced via SLM was also investigated after annealing at 740 ◦C for
2 h [26]. Compared to the Ti-6Al-4V alloy produced via conventional technologies, the
Ti-6Al-4V alloy formed via SLM exhibited lower creep rates at a given stress at 500 ◦C in
the high-stress regime. For longer-testing durations at temperatures of 500 ◦C or higher, the
material response was equivalent to that of similar alloys produced by conventional tech-
nologies. However, the high-temperature mechanical properties of alloys produced via AM
have not been extensively researched thus far. In particular, research on high-temperature
creep properties remains insufficient despite its significance in high-temperature struc-
tural material applications [24]. High-temperature creep is one of the essential primary
characteristics of near-α high-temperature titanium alloys as they are intended for use
in temperatures up to ~600 ◦C [27]. To the authors’ best knowledge, there have been no
reports thus far on the creep behavior of near-α high-temperature titanium alloy fabricated
by AM. Therefore, it is imperative to investigate the high-temperature properties, especially
creep, of Ti60 manufactured via AM.

In this study, a near-α high-temperature titanium alloy Ti60 was fabricated using EB-
DED. The chemical compositions, microstructures, tensile properties (at room temperature
and 600 ◦C), and high-temperature tensile creep characteristics were investigated in both
the vertical (V) and horizontal (H) directions. The results were compared with their
conventional wrought lamellar and bimodal counterparts. Furthermore, the influence of
chemical composition and microstructure on the mechanical properties was also evaluated.

2. Materials and Methods

The Ti60 alloy with the nominal composition of Ti-5.8Al-4Sn-4Zr-0.7Nb-1.5Ta-0.4Si
(wt.%) was received in bar form with a diameter of 300mm, which was manufactured
by Western Superconducting Technologies Co., Ltd., Xi’an, China. The β transformation
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temperature of the wrought bar was metallographically measured to be 1049 ◦C. The
as-received Ti60 alloy bar was subjected to numerous forging passes in the α + β phase
field. To obtain the lamellar (Figure 1a) and bimodal (Figure 1b) microstructures, the
wrought Ti60 alloy was solution heat-treated at β (1060 ◦C) and α + β (1030 ◦C) phase
fields, respectively, followed by aging at 750 ◦C for 2 h. A wire feedstock with a diameter
of 1.6 mm was obtained from the wrought bar via forging, rolling, and drawing processes.
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Figure 1. Wrought Ti60 alloy with lamellar (a) and bimodal (b) microstructure.

A Ti60 alloy block with dimensions of 150 mm (X) × 100 mm (Y) × 80 mm (Z) was
fabricated using a KL-106 EB-DED system made by E.O. Paton Electric Welding Institute,
Ukraine. The used EBAM system consists of a 2500 mm × 2500 mm × 2500 mm vacuum
chamber, movable electron beam gun, wire feeding system, and 5-axis computer numerical
control (CNC) table. The wrought Ti60 alloy was used as the deposition substrate. The
detailed deposition strategy is described in a previous study [28]. The optimized EB-DED
parameters used to obtain a fully dense sample are summarized in Table 1.

Table 1. EB-DED parameters.

Acceleration
Voltage, kV

Beam
Current, mA

Travelling
Speed, mm/min

Wire Feed
Rate, g/min

Hatch
Distance, mm

Layer
Thickness, mm

Vacuum
Pressure, Pa

60 40–50 600–800 30–40 3.5 2.0 4.5 × 10−2

The chemical compositions of the wire feedstock and as-built Ti60 alloys were analyzed
according to the American Society for Testing and Materials (ASTM) standards. The Al,
Sn, Zr, Nb, Ta, Fe, and Si contents in the wire feedstock were analyzed using inductively-
coupled plasma atomic emission spectrometry (ICP-AES) and direct current plasma atomic
emission spectrometry (DCP-AES) in accordance with ASTM E2371. The C content was
determined using the combustion analysis method in accordance with ASTM E 1941. The
N and O contents were analyzed using an inert gas fusion (IGF) method following ASTM E
1409. The H content was analyzed using an IGF thermal conductivity/infrared detection
method per ASTM E 1447. Twenty specimens were extracted from the as-built samples
along the build direction.

The β-transus temperature of the as-built Ti60 alloy was metallographically deter-
mined to be approximately 1045 ◦C, per the BS EN 3684:2007 specification. The round-bar
specimens (Φ 13 mm × 73 mm) were subjected to post-deposition solution treatment at
1030 ◦C for 2 h, followed by air-cooling and aging at 750 ◦C for 2 h. The solution and aging
treatments were conducted in the air in an electrical resistance furnace. The post-deposition
heat treatment schedule is consistent with the wrought counterpart [29]. The schematic
of the analyzed microstructure and mechanical property specimens is described in the
previous study [28].

Metallographic specimens were prepared using standard methods. The microstruc-
tures of the specimens formed under as-built and solution treatment with aging (STA)
conditions were characterized via optical microscopy (OM; ZEISS Axio Observer 7 optical
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microscope, Tokyo, Japan) and scanning transmission electron microscopy (STEM) with a
high-angular annular dark field (HAADF, FEI Talos F200X G2, Tokyo, Japan) in conjunction
with energy dispersive spectroscopy (super X energy dispersive spectrometer system).
Image-Pro Plus (version 6.0, Media Cybernetics, Inc., Rockville, MD, USA) was used to
measure the thicknesses of the α-phases and precipitates based on pixel counting.

Standard cylindrical tensile and creep specimens (Figure 2b,c, respectively) were
mechanically machined from the as-built and the STA treated specimens (with surface con-
tamination removed via CNC turning) in both the vertical (V) and horizontal (H) directions.
Room-temperature tensile tests were performed according to the ISO 6892-1 specification
using an Instron 5887 universal tensile-testing machine. The tensile tests at 600 ◦C were
performed according to the ISO 6892-2 specification using an Instron 5982 machine. The
data reported are averaged from triplicate measurements under each condition.
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Figure 2. (a) EB-DED-formed sample, (b) tensile specimen, and (c) creep specimen.

The tensile creep tests were performed at 600 ◦C with a stress of 150 MPa for 100 h
according to the ISO 204 specification using an RWS 100 machine in air. The creep strain
was continuously measured for 100 h using a linear variable differential transducer (LVDT)
connected to an extensometer mounted to the ridges of the creep sample. During the creep
testing, the temperature was controlled to ±0.5 ◦C in a three-zone furnace using a set of
three chronel-alumel thermocouples and proportional–integral–derivative (PID) controllers.
Creep tests under each condition were triplicated. STEM was also employed to observe the
microstructures of the specimens after creep testing. The samples for the microstructural
examination were cut from the plastic deformation area.
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3. Results and Discussion
3.1. Chemical Compositions

Element distribution within the EB-DED Ti60 alloy along the build direction and
the elemental composition of the wire feedstock are shown in Figure 3. The selective
evaporation of the elements was apparent (Figure 3a), with an average evaporation loss of
Al and Sn of 10.28% and 5.01% (Table 2), respectively. The substantial selective evaporation
of Al and Sn resulted from (i) the high surface-temperature of the melt pool induced by
the high-power density of the electron beam [30,31]; (ii) the vacuum environment [32–34];
(iii) the large difference between the respective saturated vapor pressures of different
elements [35] (Figure 4). The evaporation loss of Al in the Ti60 alloy was significantly lower
than that in Ti-6Al-4V generated using EB-DED by Pixner et al. (~14%) [36] and Xu et al. (up
to 39%) [37]. High melting-point elements, such as Ta, Zr, and Nb, were stable. Although Si
has a high vapor pressure at elevated temperatures (Figure 4), it did not evaporate because
of its low weight percentage in the alloy. Owing to the protective working environment, the
N and O contents were consistent with those of the wire feedstock. A significant decrease
in the H content (from 0.0044 to 0.0008%; ~82% decrease) was observed. This significant
decrease in the H content can be advantageous in preventing pore formation during EB-
DED processing. The same line energy (the key parameter affecting vaporization [38]) was
used for all of the layers, and a small elemental fluctuation along the build direction was
observed (Figure 3).
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Table 2. Chemical composition of the wire and EB-DED Ti60 alloy (wt.%).

Materials Ti Al Sn Zr Ta Nb Si Fe C N H O

Wire Bal. 6.03 3.99 4.02 1.5 0.69 0.37 0.02 0.071 0.003 0.0044 0.073
As-built Bal. 5.41 3.79 4.07 1.48 0.70 0.37 0.02 0.068 0.003 0.0008 0.073
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3.2. Macro- and Microstructure Evolution

The macro and microstructures of the as-built Ti60 alloy are shown in Figure 5. The
macrostructure is characterized by coarse columnar grains with an average width of 426 µm.
As shown in Figure 5a, columnar grains grew epitaxially through multiple layers. The
growth direction of the columnar prior-β grains is inclined ~14◦ to the build direction
(Z-axis) and not fully parallel to the deposition direction [28]. In the build direction, the
steep thermal gradient of the melt pool provides a perfect selection environment for grain
growth. The columnar grains with their preferred grain growth direction aligned with the
thermal gradient direction, have a growth advantage, and they are able to kill the adjacent
grains during the competitive grain growth process [40]. This type of columnar morphology
of prior-β grains has been previously reported in EB-DED Ti-5Al-2Sn-2Zr-4Mo-4Cr [41] and
Ti-6Al-2Zr-1Mo-1V alloys [28]. However, compared with the previous study [21,30], a clear
variation in the β grain size was observed, which is dependent on the chemical composition
and processing parameters, such as power, traveling speed, feed speed, layer thickness,
and cooling rate. The epitaxial growth of columnar β grains in the as-built Ti60 alloy can be
explained using the thermal gradient generated by the conductive heat flowing downward
through the pre-deposited part [42] and the partially melted crystal as the substrate for
nucleation to start [40].
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STEM images of the as-built Ti60 alloy are shown in Figure 6. Within the prior β grains,
a lamellar α microstructure and numerous elliptical silicides precipitated from the α/β
interface (Figure 6a). These silicides preferentially nucleate at the boundary of the α-plates
as the β phase (enriched in silicon) is retained between adjacent alpha plates [43,44]. The
long axes of the elliptical silicide are nearly parallel to the α/β interfaces, as shown in
Figure 6b. The long axis of the silicides had a length of 40~350 nm. No silicide precipitation
was observed within the α plates (Figure 6b), suggesting low levels of silicon in the α

phase [42]. The average thickness of the lamellar α was 1.19 µm.
Selected-area diffraction patterns (SADPs) of the lamellar α phase (Figure 6c) of the

as-built Ti60 alloy exhibited only α reflections, indicating an absence of ordering (α2) within
the α plates. This observation is inconsistent with the analysis result of the L-DED Ti60
alloy [45]. The SADPs (Figure 6d) and EDS maps (Figure 7) indicated that the precipitates
were (Ti, Zr)6Si3 silicides (S2 type) with the lattice parameters of a = 0.72 nm and c = 0.38 nm,
which is congruent with previously reported data for a similar near-α high-temperature
titanium alloy [46]. Figure 6e shows a high-resolution TEM (HR-TEM) image derived from
the marked zone (red frame) in Figure 6b. The orientation relationship between the silicide
and the α-Ti phase was established as (0110)S2//(0112)α-Ti (Figure 6e).

The microstructures of the specimens treated via post-deposition STA are shown in
Figure 8. Because of the sub-transus solution temperature, the columnar morphology of
the prior-β grains remained unchanged. Compared to the as-built specimen, the lamellar α
phase for the STA specimen coarsened significantly (1.19 µm vs. 2.05 µm); this observation
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is consistent with that of our previous study [28]. In addition, a substantial amount of
silicides precipitated at the α/β interface for the specimen treated via post-deposition STA
(Figure 9). The size of the silicide precipitates was similar to that of the as-built alloy.
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3.3. Mechanical Properties
3.3.1. Tensile Properties at Room Temperature and 600 ◦C

Tensile properties for the EB-DED and wrought Ti60 alloys at room temperature and
600 ◦C are presented in Tables 3 and 4, respectively. The representative tensile engineering
stress-strain curves are presented in Figure 10.

As expected, the wrought-lamellar (W-lamellar) specimens showed inferior ductil-
ity and superior strength compared with the wrought-bimodal (W-bimodal) specimens.
Notably, the strength of the specimens produced under as-built and post-deposition STA
conditions was lower than that of the wrought alloy. This can be attributed to the larger
prior-β grains of the as-built specimens and the post-deposition STA specimens per the
Hall-Petch relationship [9] and the significant loss of solid solution-strengthening elements,
Al and Sn [47].

Table 3. Tensile properties for the EB-DED and wrought Ti60 alloy at room temperature.

Materials Direction YS/MPa UTS/MPa EL/% RA/%

As-built
H 863 932 7.1 10.3
V 850 924 8.2 16.8

STA
H 832 911 11.0 20.0
V 823 897 11.4 22.1

W-lamellar T 870 992 9.4 17.2

W-bimodal T 862 975 11.6 19.7

Table 4. Tensile properties for the EB-DED and wrought Ti60 alloy at 600 ◦C.

Materials Direction YS/MPa UTS/MPa EL/% RA/%

As-built
H 452 569 11.4 25.9
V 441 558 12.7 32.2

STA
H 433 554 15.1 30.9
V 422 543 16.0 36.1

W-lamellar T 516 617 11.6 26.9

W-bimodal T 502 602 13.5 39.6
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600 ◦C (b).

Compared to the as-built specimens, the post-deposition STA specimens exhibited
inferior strength and superior ductility owing to their coarser lamellar α [41]. The H direc-
tion specimens exhibited slightly higher strength but lower ductility than the Z direction
specimens at room temperature as well as at 600 ◦C. This anisotropic behavior is also
consistent with reported data for titanium alloys fabricated by EB-DED [28], electron beam
melting (EBM) [48], SLM [49], L-DED [50], and wire-fed plasma arc directed energy deposi-
tion [51]. The anisotropic prior β grain morphology and the presence of the continuous
grain boundary α layers are the main causes of the anisotropic tensile properties [52].

Figure 11 gives a comparison of the ultimate tensile strength and elongation at room
temperature of the wrought and AMed 600 ◦C high-temperature titanium alloys. It can
be seen from the comparison that the strength of EB-DED Ti60 alloy is lower than that of
the wrought IMI 834 [53], wrought Ti1100 [54], and Laser melting deposition (LDM) Ti-
5.54Al-3.38Sn-3.34Zr-0.37Mo-0.46Si alloy [15], but its ductility is comparable to that of the
wrought Ti1100 alloy with bimodal microstructure and the LDM Ti-5.54Al-3.38Sn-3.34Zr-
0.37Mo-0.46Si alloy. The higher strength of the laser additive manufactured titanium alloy
can be related to the martensite α’ phase formed under the high cooling rate in comparison
with that of the electron beam additive manufactured titanium alloy [55].
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3.3.2. Tensile Creep Properties at 600 ◦C

The representative creep curves of the EB-DED and wrought Ti60 alloys at 600 ◦C/
150 MPa/100 h are shown in Figure 12, and the creep data are listed in Table 5. The creep
curves show the first two stages of the creep process, namely, the primary stage and the
steady-state stage. Two distinct behaviors are concurrently observed during the creep
process: strain hardening owing to long-range dislocation interaction, and strain recovery
because of the thermal activation of short-range dislocation movement. In the primary
stage, a gradual increase in the strain recovery with creep deformation is observed, with
the creep strain rate gradually decreasing until the steady-state stage is attained [53,56].
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Table 5. Creep strain and steady state creep rate of the EB-DED and wrought Ti60 alloys.

Condition Direction Initial Strain (%) Total Strain (%) Creep Strain (%) Steady State
Creep Rate (s−1)

As-built
H 0.159 0.298 0.139 1.63 × 10−7

V 0.169 0.252 0.086 1.32 × 10−7

STA
H 0.242 0.391 0.149 2.05 × 10−7

V 0.138 0.235 0.097 1.68 × 10−7

W-bimodal T 0.131 0.356 0.225 2.41 × 10−7

W-lamellar T 0.166 0.240 0.074 1.09 × 10−7

As expected, the W-bimodal specimen was less creep-resistant compared to the W-
lamellar specimen [57]. Similar observations have been previously reported for near-α-Ti
alloys [27,56]. The higher creep resistance of the W-lamellar specimen can be attributed
to the α/β interfaces acting as barriers for dislocation movements and the larger grains.
This reduces the grain boundary sliding and the number of dislocation sources [58]. The
partitioning of alloying elements in the lamellar α phase of the bimodal microstructure
results in not only lower lamellar matrix strength, compared to the fully lamellar structure,
but also a thin layer of the β-phase around the equiaxed α-phase, which provides a high-
diffusivity path [27].
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The tensile creep strain of the EB-DED Ti60 alloy measured at 600 ◦C and 150 MPa
for 100 h under as-built and post-deposition STA conditions was less than 0.15%, which
is comparable to that of its wrought counterpart (≤0.2%). The EB-DED Ti60 alloys (as-
built and post-deposition STA) exhibited superior creep resistance compared with the
W-bimodal specimen but slightly inferior creep resistance than the W-lamellar. The inferior
creep resistance of the as-built and post-deposition STA specimens can be attributed to the
loss of solid solution-strengthening elements Al and Sn during EB-DED. This hinders the
dislocation motion in the lamellar α phase.

The creep resistance of the post-deposition STA specimens was slightly lower than that
of the as-built specimens, which is consistent with the tensile strength results (Tables 3 and 4).
This can be attributed to the substantial precipitation of silicide particles at the lamellar α
boundaries during the solution and aging treatments. Si concurrently exists in the solid-
solution and precipitate states in titanium alloys [59,60]. However, silicon in the precipitate
state has limited activity in pinning dislocations in the case of inhomogeneous distributions.
Comparatively, solid solution-state silicon has higher strengthening effects [61]. As shown
in Figure 9, a large number of silicide particles is precipitated at the lamellar α boundaries,
reducing the Si content in the α matrix and resulting in the deterioration of the creep
resistance of the post-deposition STA specimens [62]. The coarsened lamellar α phase in
the post-deposition STA specimens also explains the decreased creep resistance [57].

Significantly, the creep resistance of the vertical direction specimenswas slightly higher
than that of the horizontal direction specimens.This observation is consistent with previ-
ouslyreported results from studies investigating SLM-fabricated stainless steel [63] and
Ni-base superalloy [64]. The anisotropic creep property can be attributed tothe directional
columnar prior-β grains and grain boundary α phase, as illustrated in Figure 13.
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Figure 13. Schematic illustrations of the creep tensile load and grain boundaries for the vertical and
horizontal specimens.

Figure 14 shows a STEM image of the as-built Ti60 alloy after the creep test. A high
density of dislocation segments pinned at the α/β interfaces and silicide particles was
observed (Figure 14a,b). During the creep process, the formation of a dislocation network
at the α lath boundary was also observed (Figure 14b). SADP obtained from the lamellar
α phase of the as-built Ti60 alloy (Figure 14c) shows the presence of weak super-lattice
spots, indicating that the ordered α2 (Ti3Al) phase has precipitated from the α matrix. This
is in good accordance with reported data from studies exploring a thermal-exposed laser
melting deposited Ti60 alloy [45] and several other high-temperature titanium alloys [46,65].
The dark-field STEM image (Figure 14d) shows the fine and homogeneous dispersion of
the α2 phase with a diameter of approximately 8 nm.
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4. Conclusions

In this study, a near-α high-temperature titanium alloy Ti60 (Ti-5.8Al-4Sn-4Zr-0.7Nb-
1.5Ta-0.4Si) was fabricated using EB-DED. The chemical compositions, microstructures,
tensile properties (at room temperature and 600 ◦C), and tensile creep characteristics were
investigated and compared with those of conventional wrought lamellar and bimodal Ti60
alloys. The influence of chemical composition and microstructure on mechanical properties
has been discussed. The main conclusions are as follows:

1. The selective evaporation of elements occurred during EB-DED. The average evapora-
tion losses of Al and Sn were 10.28% and 5.01%, respectively. Compared with the wire
feedstock, the H content of the as-built sample significantly decreased from 0.0044 to
0.0008% owing to the high-vacuum environment.

2. The as-built macrostructure was characterized by coarse columnar grains. Within
the prior-β grains, a lamellar α microstructure and elliptical (Ti, Zr)6Si3 silicides
precipitated from the α/β interface. The long axis of the silicides had a length of
40~350 nm. The orientation relationship between the silicide and the α-Ti phase was
determined as (0110)S2//(0112)α-Ti. After the post-deposition solution and aging
treatment (STA), the α-laths coarsened from 1.19 µm to 2.05 µm. Compared with the
as-built specimens, a larger amount of silicides precipitated at the α/β interface of
the post-deposition STA specimens.

3. The tensile strength of the as-built and post-deposition STA specimens was lower
than that of their wrought counterparts (both lamellar and bimodal microstructures).
This is attributed to the larger prior-β grain size and the evaporation loss of elements
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in the former. Compared to the as-built specimens, the post-deposition STA spec-
imens exhibited inferior strength but superior ductility. The horizontal specimens
exhibited slightly higher strength but lower ductility than the vertical specimens at
both temperatures (room temperature and 600 ◦C).

4. The tensile creep strain of the EB-DED Ti60 alloy measured at 600 ◦C and 150 MPa for
100 h under as-built and post-deposition STA conditions was less than 0.15%, which
meets the standard requirements of the wrought counterpart (≤0.2%). The lower Si
content in the α matrix and the coarser lamellar α phase in the post-deposition STA
specimen explain its inferior creep resistance compared to the as-built specimen. The
creep resistance of the EB-DED Ti60 alloy was superior to that of its wrought bimodal
counterpart, whereas it was inferior to that of the wrought lamellar specimen.

5. After the creep test, the ordered α2 (Ti3Al) phases precipitated from the lamellar
α matrix, with a high density of dislocations pinned at the α/β interfaces and
silicide precipitates.
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