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Abstract: Background: Macrophage scavenger receptor 1 (MSR1) has mostly been described in
macrophages, but we previously found a significant gene expression increase in peripheral blood
mononuclear cells (PBMCs) of asthmatic patients. Objective: To confirm those results and to define
its cellular origin in PBMCs. Methods: Four groups of subjects were studied: healthy controls (C),
nonallergic asthmatic (NA), allergic asthmatic (AA), and chronic obstructive pulmonary disease
(COPD) patients. RNA was extracted from PBMCs. MSR1 gene expression was analyzed by RT-qPCR.
The presence of MSR1 on the cellular surface of PBMC cellular subtypes was analyzed by confocal
microscopy and flow cytometry. Results: MSR1 gene expression was significantly increased in the
three clinical conditions compared to the healthy control group, with substantial variations according
to disease type and severity. MSR1 expression on T cells (CD4+ and CD8+), B cells, and monocytes
was confirmed by confocal microscopy and flow cytometry. In all clinical groups, the four immune
cell subtypes studied expressed MSR1, with a greater expression on B lymphocytes and monocytes,
exhibiting differences according to disease and severity. Conclusions: This is the first description of
MSR1’s presence on lymphocytes’ surfaces and reinforces the potential role of MSR1 as a player in
asthma and COPD.

Keywords: asthma; biomarker; COPD; cytometry; gene expression; macrophage scavenger recep-
tor; MSR1

1. Introduction

Macrophage scavenger receptor 1 (MSR1), also known as SR-A or cluster of differen-
tiation 204 (CD204), is a gene that encodes the class A macrophage scavenger receptors.
There are three isoforms: SR-AI and SR-AII are homotrimeric transmembrane proteins,
generated by alternative splicing. SR-AIII is translated but not integrated into the mem-
brane. Scavenger receptors were discovered when studying how macrophages take up
cholesterol from low-density lipoprotein (LDL) in atherosclerotic plaques from patients
with familial hypercholesterolemia [1]. Though MSR1 was considered a receptor specific to
macrophages in their first descriptions [2–4], more recent publications have described its
presence in other types of cells (especially tissue cells) such as vascular smooth muscle cells,
endothelial cells, human lung epithelial cells, microglia, astrocytes, and murine embryonic
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fibroblasts. Few studies using peripheral blood mononuclear cell (PBMC) samples have
reported the MSR1 gene [5,6] or protein [7,8] expression.

MSR1 is implicated in many physiological and pathological processes associated with
macrophages, including atherosclerosis and other diseases of the heart, endotoxemia, sepsis,
viral infections, host defenses, Alzheimer’s disease, lung injury, and bone metabolism [9].
MSR1 is considered a subclass of pattern-recognition receptors (PRRs) [10,11], an indica-
tion of its importance in innate immunity. The MSR1 ligand repertoire includes modified
self molecules (considered danger-associated molecular patterns or DAMPs) and non-self
molecules or pathogen-associated patterns (PAMPs). Additionally, MSR1 has the ability to
partner with co-receptors, which endows them with versatility in functional responsiveness
in homeostasis and also enables them to fight infection. This versatility can explain the
controversial association between scavenger receptors and macrophage polarization, de-
fined mostly in M2 macrophages (anti-inflammatory effects), although, in certain contexts,
they can also appear in M1 macrophages (pro-inflammatory responses). Thus, MSR1 can
join other receptors, forming complexes, and induce inflammatory or anti-inflammatory
responses depending on the context [12]. It was demonstrated that MSR1 can associate
with MER receptor tyrosine kinase (MERTK) in murine macrophages and form a complex
that promotes the clearance of apoptotic cells [13]. However, MSR1 can also partner with
the Toll-like receptor 4 (TLR4) in macrophages in the presence of bacterial lipopolysaccha-
rides (LPS), thus activating the nuclear factor-κB (NF-κB) pathway [14]. This has created
controversy concerning the dual role played by MSR1 in different diseases [15–27]. The
mechanisms underlying this variable behavior remain unclear. Kelley et al. [9] concluded
that depending on the type of activator ligand, MSR1 might trigger the shift from cell
survival to death, highlighting the conflicting role that MSR1 plays in health and disease.

With regard to the respiratory system, several studies have found an association
between polymorphisms [28,29] and overexpression [30] of MSR1 in human macrophages
from chronic obstructive pulmonary disease (COPD). In hyperoxia-induced and ovalbumin-
induced asthma in murine models, the presence of SR-A in lung tissue was found to exert
a protective effect [31,32]. In this respect, our group demonstrated the relevance of gene
and protein MSR1 expression in asthmatic disease in PBMC samples. MSR1 was the most
overexpressed gene in severe nonallergic asthma (NA) compared to healthy controls; its
presence at the protein level was confirmed, and interesting differences between NA and
allergic asthmatic (AA) subjects were discovered [33–36].

Given the scarcity of studies about MSR1 expression in PBMCs and its potential
association with different pathologies, including respiratory diseases, the present study
aimed to corroborate the expression of MSR1 in PBMCs, determine its association with
asthma and COPD, and characterize the PBMCs’ cellular subpopulations that express
this receptor.

2. Materials and Methods
2.1. Study Design: Subjects

The study population comprised 46 unrelated subjects: 11 healthy control (C) subjects,
11 patients with nonallergic asthma (NA), 13 patients with allergic asthma (AA) (allergic to
airborne allergens), and 11 patients with chronic obstructive pulmonary disease (COPD).

Inclusion criteria were:
Male or female aged 18–70 years;
Asthma or EPOC confirmed diagnosis by allergist or pneumologist.
The control group has to be healthy subjects with no history of respiratory diseases or

allergic symptoms.
Willingness and ability to provide written informed consent.
Exclusion criteria were:
Do not have the right range of age;
Current malignancy or immunological treatments.
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The subjects were diagnosed in the Allergy and Pulmonology Departments of the
Fundación Jiménez Díaz (FJD) Hospital (Madrid, Spain), and all samples were processed in
the Immunology Department of the Health Research Institute-FJD-UAM (IIS-FJD-UAM).
Patients were diagnosed as having severe, moderate, or mild asthma according to the
Spanish Guidelines for the Management of Asthma (GEMA) [37], and COPD severity was
classified according to the GOLD (Global Strategy for the Diagnosis, Management, and
Prevention of COPD) classification system [38]. Tests of pulmonary function were carried
out by determining the predicted percentage of forced vital capacity (% FVC) and the forced
expiratory volume in 1s (% FEV1). All the Cs and patients were tested by skin prick tests
against a panel of standardized common allergens (ALK-Abelló, Madrid, Spain), including
mites (Dermatophagoides pteronyssinus, Dermatophagoides farinae, and Lepidoglyphus destructor),
epithelia (cat and dog), cockroaches (Blatella orientalis and Blatella germanica), pollens
(Cypress, banana shadow, olive, a mixture of grasses, Artemisia, Parietaria, and Salsola), and
fungi (Alternaria, Cladosporium, Aspergillus, and Penicillium). The C group was composed
of healthy subjects with no history of respiratory diseases or allergic symptoms. The NA
patients were diagnosed with asthma disease but had a negative skin prick test, while
the AA patients were asthmatic and allergic to at least one airborne allergen. The COPD
subjects did not present asthma or allergic diseases. Written informed consent was obtained
from each subject in accordance with the Declaration of Helsinki, and ethical approval for
the study was obtained from the research ethics committee of the IIS-FJD-UAM.

2.2. Isolation of PBMCs and RNA Extraction

PBMCs were isolated from heparin-containing peripheral blood samples by gradi-
ent centrifugation using Lymphoprep (Comercial Rafer, Zaragoza, Spain) following the
manufacturer’s instructions. Cells isolation was performed under sterile conditions using
endotoxin-free reagents. RNA was isolated from 1 to 5 × 106 PBMCs using the TRIzol
reagent (Invitrogen, Carlsbad, CA, USA). RNA quantification and purity was checked using
a spectrophotometer (Nanodrop ND-1000, Bonsái Technologies Group, Madrid, Spain).

2.3. Differential Gene Expression Analysis

Gene expression analyses were performed by quantitative real-time PCR (RT-qPCR).
Briefly, reverse transcription of 800 ng of RNA from each subject was performed using
the High-Capacity RNA-to-cDNA kit (Applied Biosystems, Foster City, CA, USA). Then,
qPCR was performed using the TaqMan Gene Expression kit and the 7500 Real-Time PCR
System (Applied Biosystems) with 40 amplification cycles, to study in triplicate the gene
expression of MSR1 and 18S as the reference gene, using the predesigned TaqMan Gene
expression assays MSR1-Hs00234007_m1 and 18S-Hs99999901_s1, respectively. Relative
Quantification (RQ) values were calculated according to the cycle threshold (Ct) method,
with the gene expression represented as 2−∆∆Ct, where ∆∆Ct = (∆Ct (clinical group)) −
(∆Ct (control group)) and ∆Ct = (Ct (MSR1)) − (Ct (18S)).

2.4. MSR1 Expression in Peripheral Samples by Confocal Microscopy and Flow Cytometry

MSR1 expression in different cell populations of PBMCs was analyzed by confocal
microscopy and by flow cytometry. For both techniques, 100 µL (106 cells) of PBMCs in BSA
1%-PBS1x were first incubated with the primary antibody for MSR1 (rabbit anti-human
polyclonal IgG CD204 antibody (PA522956), 1:100 dilution), manufactured by Thermo
Fisher Scientific, Rockford, IL, USA, and then with a goat anti-rabbit IgG secondary an-
tibody tagged with FITC (dilution, 1.5:100) (Santa Cruz Biotechnology, Dallas, TX, USA).
A control of the secondary antibody was performed, by incubating the cells only with
the secondary antibody. Additionally, simultaneous staining was performed for four cell
populations with their corresponding antibodies (BD Bioscience, Franklin Lakes, NK, USA):
a mouse anti-human monoclonal IgG1, κ antibody specific for human CD4 labeled with
PE (dilution, 1:50) to detect T CD4+ lymphocytes; a mouse anti-human monoclonal IgG1
antibody specific for human CD8 labeled with PE (dilution, 1:10) for T CD8+ lymphocytes;
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a mouse anti-human monoclonal IgG1, κ antibody specific for human CD19 labeled with
PE (dilution, 1:10) for B lymphocytes; and a mouse anti-human monoclonal IgG2 antibody
specific for human CD14 labeled with PC7 (dilution, 1:20) to characterize monocytes. Spe-
cific isotype controls from BD were used according to the manufacturer’s protocols (BD
Bioscience) for each fluorescent antibody. For confocal microscopy, 400 µL of resuspended
cells labeled with the specific antibodies in PBS1x were visualized in suspension in an
8-well microscope plate (Ibidi, Martinsried, Germany) using a Leica SP5 confocal micro-
scope (Leica Microsystems, Wetzlar, Germany). Images were taken with an oil immersion
objective (40×) using the LAS AF Leica Microsystems program. Fluorescence measurement
for cytometry analysis was performed with cells labeled with the specific antibodies and
resuspended in 100 µL of PBS1x and 200 µL of FACS Flow (Fluorescence-Activated Cell
Sorting Flow) buffer (BD Bioscience) and captured with a FACS Canto II flow cytometer
(BD Bioscience). The results, expressed as the percentage of cells expressing MSR1 normal-
ized to the total percentage of cells within each subpopulation (i.e., MSR1+cells in CD4+

T-Lymphocytes: % cells double MSR1+CD4+/% total CD4+ cells), were determined using
the BD FACS Diva program (BD Bioscience).

2.5. Statistical Analysis

Differences in gene expression, using the ∆Ct values, and the percentages of cells
expressing MSR1 among groups were compared, using GraphPad InStat 3. First, a one-way
analysis of variance (ANOVA) was carried out and, when this test showed statistically
significant differences, two-by-two comparisons were performed with the unpaired t-test.
Statistical significance was established as a two-tailed p value < 0.05. Additionally, a stricter
threshold was established for gene expression at an RQ < −2 or >2.

3. Results
3.1. Subjects

The demographic and clinical characteristics of the study population are summarized
in Table 1. There were statistically significant differences in age between the patients with
COPD and with asthma, with the COPD patients being the oldest and the AA patients being
the youngest. In all groups, more than 80% were women, except the COPD subjects, all of
whom were men. Future research including female COPD patients and a more balanced
age population should be performed in order to analyze the possible confounding aspects
of gender and sex.

Nearly all subjects were non-smokers or ex-smokers. Patients were selected according
to disease severity: half had a severe diagnosis (of asthma or COPD), and the other half were
moderate-to-mild cases. Of the patients with NA, 36.36% also presented nasal polyposis,
27.27% nonallergic rhinitis, 9.09% sinusitis, 9.09% heart disease, and 9.09% hypothyroidism.
The concomitant diseases of AA patients were: 30.77% rhinitis; 15.39% esophageal reflux;
7.69% nasal polyposis; 7.69% eosinophilic esophagitis; 7.69% thyroid goiter; and 7.69%
ulcerative colitis. Among the COPD patients, 9.90% presented rhinitis. The two groups
with asthma had a significantly higher percentage of forced expiratory volume in 1 s
(FEV1) when compared to the COPD group. In terms of severity, there were statistically
significant differences in lung function in the AA group (%FEV1 in severe: 60.03 ± 19.70%
vs. moderate–mild: 94.32 ± 13.73%, p = 0.0044; predicted percentage of forced vital
capacity (%FVC) in severe: 73.39 ± 18.43% vs. moderate–mild: 112.32 ± 9.51, p = 0.0007).
In the COPD subjects, relevant differences were also found in the percentage of FEV1
(severe: 34.75 ± 11.41% vs. moderate–mild: 65.80 ± 18.54%, p = 0.0225). No statistically
significant differences were observed in the patients with NA, but the moderate–mild NA
patients tended to have higher values for lung function parameters (%FEV1 severe NA:
75.50 ± 24.58%, moderate-mild NA: 94.07 ± 20.65%; %FVC severe NA: 93.25 ± 15.84%,
moderate-mild NA: 101.28 ± 13.90%).
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Table 1. Demographic and clinical characteristics of the study population.

N

Gender
Age

Smoking Habit Clinical Diagnosis

%FVC %FEV1
F (%) M (%) NS (%) S

(%)
ES
(%) Asthma/COPD Allergy

Control (C)
subjects

11 81.8 18.2 49.1 ± 14.5 * 91 9.0 0 100% healthy - -

Nonallergic
asthmatic
(NA)
subjects

11 81.8 18.2 56.2 ± 16.8 * 63.6 9.1 27.3

45.5% SA No-allergic symptoms

98.1 ± 14.4 86.6 ± 23 *
54.5% MMA Negative-skin prick

test

53.8% SA 92.3%pollen allergyAsthmatic
allergic (AA)
subjects

13 92.3 7.7 41.2 ± 13.5 #,† 76.9 15.4 7.7
46.2% MMA 7.7% no pollen allergy 91.3 ± 24.8 75.85 ± 24.27 *

COPD
subjects 11 0 100 70.4 ± 7.9 9.1 9.1 81.8

54.5% SC 9.1% pollen allergy 76.2 ± 31.8 52 ± 22.1
45.5% MMC 90.9% no allergies

F: females. M: males. NS: non-smokers. S: smokers. ES: ex-smokers. SA: severe asthma. MMA: moderate-mild
asthma. SC: severe COPD. MMC: moderate-mild COPD. Pollen allergy: allergic to pollen. No pollen allergy:
nonallergic to pollen but allergic to other airborne allergens. No allergies: nonallergic to airborne allergens.
%FVC: percentage of forced vital capacity; %FEV1: percentage of forced expiratory volume in 1 s. * Statistically
significant comparison (p < 0.05) between the COPD group and the indicated group. † Statistically significant
comparison (p < 0.05) between the NA group and the indicated group. # Statistically significant comparison
(p < 0.0001) between the COPD group and the indicated group.

3.2. Gene expression Analysis

MSR1 gene expression was analyzed in all subjects of the study. First, the ANOVA
test showed variation among at least two of the clinical groups (p = 0.0067) and severity
groups (p = 0.0034); thus, a deeper study was performed. The clinical groups showed a
gene overexpression of MSR1 compared to the C group (Figure 1A): NA vs. C (RQ = 3.34,
p = 0.0007), AA vs. C (RQ = 3.13, p = 0.0036), and COPD vs. C (RQ = 2.50, p = 0.0120), but
without statistically significant differences between groups of disease. The gene expression
analysis according to severity (Figure 1B) showed that all the patient groups had higher
MSR1 gene expression than the C. Severe NA (RQ = 3.05, p = 0.0162), moderate–mild NA
(RQ = 3.65, p = 0.0005), moderate–mild AA (RQ = 5.47, p = 0.0008), and severe COPD
(RQ = 3.64, p = 0.0022) followed our statistical criteria (RQ > 2, p < 0.05) and the difference
between the C and severe AA groups was statistically significant (p = 0.0378), but with a
lower RQ value (RQ = 1.94).

3.3. Expression of MSR1 on Different Subpopulations of PBMCs

The presence of MSR1 on peripheral cells was analyzed by confocal microscopy and
flow cytometry to both characterize its origin in distinct cellular populations in PBMC
samples and to determine differences according to clinical phenotypes.

3.3.1. MSR1 Expression in PBMCs by Confocal Microscopy

MSR1 was expressed on cell membranes of the four subpopulations of PBMCs an-
alyzed (CD4+ and CD8+ T lymphocytes, B lymphocytes (CD19+ cells), and monocytes
(CD14+ cells)) as shown by the colocalization of the MSR1 and the specific CD markers.
Figure 2 shows a representative example of the images obtained, in which the combined
labeling of the CD of each population in red and of MSR1 in green is verified in some of
the cells. These results corroborate the presence of MSR1 in the membranes of the PBMC
subpopulations studied.

3.3.2. MSR1 Expression in PBMCs by Flow Cytometry

The MSR1 expression in the total PBMCs and in four cellular subpopulations was
determined by flow cytometry. A representative example of isotype controls and cytometry
results is described in the Supplementary Results (Figure S1). First, the percentages of
positive cells for MSR1 in the total fraction of PBMCs were studied for each of the four clin-
ical groups (Figure 3A) and according to disease severity (Figure 3B), showing statistically
significant differences in both cases.
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an RQ value equal to 2. Statistically significant differences between C and the indicated disease 
group are shown as: C* (p < 0.05), C** (p < 0.005) and C## (p < 0.001). (B) Gene expression results 
according to the severity of disease. Statistically significant differences between C and the indicated 
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Figure 1. MSR1 gene expression according to clinical group, and severity of disease. C: Control
(n = 11), NA: Nonallergic Asthma (n = 11), AA: Allergic Asthma (n = 13), COPD (n = 11), S: severe
diagnosis; MM: moderate–mild diagnosis. (A) Gene expression results according to clinical group.
The graphs represent the gene expression of MSR1, with relative quantification (RQ) for the clinical
groups compared to the C group. Error bars represent the standard error. The dotted line indicates an
RQ value equal to 2. Statistically significant differences between C and the indicated disease group
are shown as: C* (p < 0.05), C** (p < 0.005) and C## (p < 0.001). (B) Gene expression results according
to the severity of disease. Statistically significant differences between C and the indicated disease
group are shown as: C* (p < 0.05), C** (p < 0.005), C## (p < 0.001) and C*** (p = 0.0005).
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Figure 2. Representative example of PBMCs marked with fluorescence for the subpopulations:
(A) CD4+, (B) CD8+, (C) CD19+, and (D) CD14+ and the MSR1 protein. Confocal microscopy
visualization (n = 3). Images on the left were obtained with a 40× objective, and those on the right,
with 2× zoom. MSR1+ cells are labeled in green, each labeled cellular subpopulation is indicated
in red, and the colocalization of the corresponding cellular subpopulation and MSR1+ is marked in
yellow. The yellow arrows indicate cells with double labeling.
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Figure 3. Expression of MSR1 on PBMCs. C: Control (n = 11), NA: Nonallergic Asthma (n = 11),
AA: Allergic Asthma (n = 13), COPD (n = 11), S: severe diagnosis; MM: moderate–mild diagnosis.
Mean percentages of total MSR1+ expressing cells in the whole PBMCs fraction (A) by clinical group
and (B) according to disease severity. Statistically significant differences among groups are shown as:
* (p < 0.05) and ## (p < 0.001).

The mean total percentages of MSR1+ positive cells were higher in the COPD group
than the others (COPD group: 48.97 ± 12.31% vs. C group: 34.36 ± 9.30%, p = 0.0051,
vs. NA group: 38.05 ± 9.22%, p = 0.0288, and vs. AA group: 33.81 ± 9.42%, p = 0.0025)
(Figure 3A).

According to the severity of asthma and COPD, the severe NA group (44.98 ± 7.14%)
had higher amounts of MSR1+ cells than the C (34.36 ± 9.30%, p = 0.0408) and moderate–
mild NA groups (32.27 ± 6.42%, p= 0.0125). This expression was also significantly
higher in the severe COPD (48.37 ± 9.27%, p = 0.0095) and moderate–mild COPD groups
(49.70 ± 16.44%, p = 0.0302) than the C group (Figure 3B). Statistically significant differ-
ences were also found between distinct phenotypes and severities, such as the COPD
group with moderate–mild diagnoses vs. the patients with moderate–mild NA (p = 0.0394)
and moderate–mild AA (29.62 ± 9.57%, p = 0.0319), and severe COPD vs. severe AA
(37.40 ± 8.27%, p = 0.0454) (Figure 3B).

Next, to determine the specific immune cells that express MSR1, PBMCs were analyzed
in terms of their expression on four cellular subpopulations: CD4+ and CD8+ T lymphocytes,
B lymphocytes (CD19+ cells), and monocytes (CD14+ cells). A representative example of
double positive (specific CD and MSR1+) is shown in Figure 4A. The distribution of the cell
subpopulations in isolated PBMC samples by groups is described in the Supplementary Re-
sults (Table S1). The analysis of CD4+ T cells showed that there were statistically significant
differences in the percentages of MSR1+CD4+ cells when the clinical groups were com-
pared. The COPD group showed a higher percentage of expression (51.17 ± 12.70%) than
the groups with asthma (NA group: 40.27 ± 7.64%, p = 0.0262; AA group: 37.03 ± 8.77%,
p = 0.0047) (Figure 4B(i)). In the other cellular subtypes (Figure 4B(ii)–B(iv)), no differences
were found between diseases, even though the higher percentages of MSR1 positive cells
were found in B-lymphocytes (CD19+) and monocytes (CD14+). Interestingly, we observed
a remarkable percentage of cells expressing MSR1 that did not correspond to any of the
cellular subpopulations analyzed in this study, especially in the NA and COPD groups, but
we only found significant differences (p = 0.0268) between the NA (12.64 ± 16.32%) and
AA (1.57± 3.96%) groups (Figure S2A).
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According to severity, significant differences were found for MSR1 expression by
CD4+ T lymphocytes (Figure 4C(i)) and B lymphocytes (Figure 4C(iii)). MSR1+CD4+ cells
were higher in patients with severe COPD (53.70 ± 7.50%) than the severe AA group
(39.87 ± 9.43%, p = 0.0185). On the other hand, MSR1+CD19+ cells were found to be lower
in patients with moderate–mild NA (79.32 ± 7.78%) than in the C group (88.88 ± 6.95%)
and NA patients with severe diagnoses (91.40 ± 3.25%) (p = 0.0200 and 0.0105, respectively).
Again, we found a small percentage of cells expressing MSR1 that did not correspond to
any of the cellular populations analyzed in this study, especially in severe COPD and in
both NA severities, but with no significant differences among groups (Figure S2B).

4. Discussion

The heterogeneity of asthma has caused management of the disease to be insufficient
in certain patients, especially those with severe diagnoses. As such, the identification
of reliable biomarkers is essential for the development of treatments based on precision
medicine [39–42].
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The aim of this study was to validate previous results from our group relating MSR1
with asthma and, due to its description mainly as a receptor expressed on macrophages or
tissue cells, to characterize their cellular origin in peripheral samples. MSR1 was one of
the most overexpressed genes in the PBMCs of a population of AA subjects [43], despite
the fact that it had never been associated with asthma. Later, the expression of this gene
was described as one of the most differential in asthma, and was mainly associated with
the severity of patients with NA [33]. Surprisingly, several studies have suggested MSR1
as a candidate gene for another complex respiratory disease, COPD [28,29], and previous
research has pointed out that the mechanisms that cause accumulation in the lung of
MSR1-expressing macrophages could contribute to severe emphysema and COPD [30].
Given our findings regarding its expression in asthma and in light of data from COPD
patients, the design of this study included samples of subjects that presented NA, AA, and
COPD. Gene analyses of MSR1 were carried out to gather information on its expression
in PBMCs. Again, the two groups with asthma showed higher MSR1 gene expression
than healthy controls (Figure 1A) in all the clinical phenotypes, although this seemed to be
higher in the group with moderate–mild AA diagnosis. Interestingly, the COPD patients
also showed a significant increase compared to the C group, with higher MSR1 expression
in the severe patients (Figure 1A). Differences between clinical groups evidenced only
tendencies, without statistically significance, most likely due to the small size of patients in
the severity-based group for each disease.

MSR1 is a hypoxia-induced gene reported to be involved in the clearance of pathogens
and apoptotic cells. In another respiratory disease, acute respiratory distress syndrome
(ARDS) caused by SARS-CoV infection, whose course is also characterized by lung fibrosis,
MSR1 overexpression in lung-tissue samples was associated with late-stage disease, with
more severity and where lung fibrosis was consolidated [44]. This increase was interpreted
as playing a role in adapting the cells to oxidative stress and a hypoxic environment, a
common occurrence in SARS-CoV-infected patients.

Few published studies have analyzed the expression of MSR1 on the surface of PBMCs,
and those that have evidenced expression have done so in subsets of monocytes in diseases
such as acute coronary syndromes [6] and in systemic sclerosis [7]. Moreover, a novel
subpopulation of PBMCs was found that expresses MSR1 and markers of fibrocytes and
M2 macrophages, which seem to be the origin of dermal fibrosis-creating scars in patients
presenting severe burns [8]. This study tries to define subpopulations of PBMCs that could
be responsible for the MSR1 gene expression differences detected in asthma and COPD. For
this purpose, MSR1 expression was analyzed in the total PBMC fraction, as well as in the
four main cellular subpopulations in PBMCs: CD4+ and CD8+ T lymphocytes, B lympho-
cytes, and monocytes. First, the MSR1 expression on the surface of cellular subpopulations
was demonstrated by confocal microscopy (Figure 2). Next, to quantify the MSR1 expres-
sion, flow cytometry was used. The percentages of cells expressing MSR1 in the total PBMC
fraction were considerable in all clinical study groups (Figure 3), with several statistically
significant differences between groups. Patients with COPD had the highest percentage of
MSR1-positive cells (Figure 3A), thus confirming in peripheral samples what was described
in tissue samples by other authors [28–30]. Further characterizing disease severity, the
results in Figure 3B seem to corroborate the importance of this biomarker in patients with
COPD, though this role also resembles that of MSR1 in NA disease and severity.

Regarding the cell subpopulations, all the cell types studied expressed MSR1, with B
lymphocytes (CD19+) and monocytes (CD14+) displaying the highest percentage (Figure 4).
Statistically significant differences between clinical phenotypes were observed in CD4+ T
lymphocytes (Figure 4B(i),C(i)) and B lymphocytes (Figure 4C(iii)). Differences observed
in the percentages of CD4+ T lymphocytes according to MSR1 expression were relevant
in the comparison of the clinical groups, while differences in B lymphocytes seemed to be
associated with severity subgroups. Notably, we found two separated MSR1+CD4+ cell
subpopulations (Figure 4A(i)), which could indicate that there is a second subpopulation
of CD4+ cells expressing MSR1 in PBMCs, beyond T-lymphocytes. This subpopulation,



J. Clin. Med. 2022, 11, 1439 10 of 13

with a lower CD4 and higher MSR1 expression, probably corresponds to monocytes, a cell
subtype in which MSR1 expression has been previously described [7,8], a fact that could
overestimate the percentage of MSR1+CD4+ T cells. Further studies of MSR1 expression in
isolated T-lymphocytes would enrich these results.

Despite this limitation and the derived mainly from the size of the sample, we have
demonstrated that MSR1 is expressed by four main subpopulations of PBMCs, with several
differences between clinical groups. However, in AA patients, the percentage of MSR1
expression in the four cellular subpopulations studied was similar to the total MSR1
expression on total PBMCs (Figure S3), meaning that MSR1 expression is justified by the
cells studied. Meanwhile, in patients with NA and COPD, there was a percentage of
MSR1+ cells that could correspond to other cell types not analyzed here. The expression
of MSR1 has been described in fibrocytes [45], controversial cells located in peripheral
blood samples; the definition of these cells has been challenging to characterize, and it
has recently been associated with uncontrolled asthma, asthma exacerbations, and chronic
obstructive asthma [46–48]. Furthermore, differences in the number of circulating fibrocytes
among patients with severe asthma and patients presenting nonsevere asthma have been
demonstrated [49]. Therefore, it would be interesting to demonstrate the expression of
MSR1 in the fibrocytes of patients with NA using peripheral blood samples.

Overall, these results provide new evidence of the potential role of MSR1 in patients
with asthma and COPD. Additionally, their expression on PBMC subpopulations opens up
new study fields of the functional implications of MSR1 in cells other than macrophages and
their correlation with disease. The high presence of MSR1 on monocytes, as macrophage
precursors, was unsurprising, though the presence of MSR1 on B and T cells, as far as we
know, has never been described before. Having in mind the relevance of these receptors
in many pathological conditions and their functional versatility, this aspect could be very
relevant and should be researched deeper to explain its function in these cells.

5. Conclusions

In summary, this study presents promising results, though these should be tested in
larger populations. Here, we describe the presence of MSR1 (macrophage scavenger recep-
tor 1), classically associated with macrophage and tissue cells, in several cell populations
of PBMCs, specifically in T and B lymphocytes, as well as monocytes. MSR1 gene and
protein expression differed according to asthma and COPD clinical phenotype, reinforcing
the possible role of MSR1 in these diseases.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/jcm11051439/s1, Figure S1. Representative example of flow cytometry
results of an AA patient in isolated PBMCs; Figure S2: Expression of MSR1 on PBMCs. Table S1:
Mean values of the cell subpopulations studied in PBMCs.
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