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Abstract: This work concentrated on the interlaminar mechanical properties and toughening mecha-
nism of carbon fiber-reinforced bismaleimide resin (CF/BMI) composites modified by polyacryloni-
trile (PAN) nanofiber films. The PAN nanofiber films were prepared by electrospinning. End-notched
flexure (ENF) and short-beam strength tests were conducted to assess the mode II fracture toughness
(GIIc) and interlaminar shear strength (ILSS). The results showed that the GIIc and ILSS of PAN-
modified specimens are 1900.4 J/m2 and 93.1 MPa, which was 21.4% and 5.4% higher than that of
the virgin specimens (1565.5 J/m2 and 88.3 MPa), respectively. The scanning electron microscopy
(SEM) images of the fracture surface revealed that the PAN nanofiber films toughen the composite on
two scales. On the mesoscopic scale, the composite laminates modified by PAN formed a resin-rich
layer with high strength and toughness, which made the crack propagate across the layers. At the
microscopic scale, the crack propagation between two-dimensional nanofiber films led to constant
pull-out and breakage of the nanofibers. As a result, the interlaminar fracture toughness of the
composite laminates improved.

Keywords: composites; electrospinning; interlaminar strength; nanofiber film; toughening mechanism

1. Introduction

Carbon fiber (CF)-based composites have been widely used in the aerospace field
because of their outstanding advantages, such as high specific strength, high specific
stiffness, excellent fatigue strength, and environmental stability [1,2]. However, their
interlaminar shear strength (ILSS) and fracture toughness were insufficient, which hinder
their application in aircraft for weight reduction. Therefore, it is necessary to improve
the ILSS and fracture toughness properties of CF-based composites. According to the
literature review, there are three methods to improve the toughness of CF-based composites,
including matrix toughening (chemical [3] and physical [4,5] modification methods), Z-
direction toughening (Z-pin [6], stitching [7–9], 2.5D or 3D weaving [10]), and interlaminate
toughening (particle toughening [11], fiber toughening [12], and film toughening [13]).
Matrix toughening could improve the in-plane and interlaminar toughness of composites
simultaneously, but it also brings changes to the viscosity, glass transition temperature (Tg),
and thermal properties of the resin, which would affect the manufacturing process of CF-
based composites [14]. Z-direction toughening, such as Z-pin and stitching, forms bridging
structures in the interlaminar region of the composites to achieve an obvious toughening
effect, but the in-plane properties would reduce to a certain extent [15]. In particular, the
in-plane performance of composites using the 3D weaving method decreases significantly
compared with that of typical laminates [16]. Although such a method provides an obvious
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toughening effect, the long experimental process cycle, complex operation procedures, and
relatively high manufacturing cost limit their usage in practical applications.

Interlaminar toughening refers to the method that inserts a special discrete layer
material into the interlaminar region of the composites. This special discrete layer could
hinder the generation of cracks and prohibit crack propagation. By applying this method,
the interlaminar fracture toughness of the composites can be greatly improved without
significantly adjusting the original manufacturing process. Nanofiber films are widely
used in interlaminar toughening of composites because of their excellent properties, such
as high specific surface area, high porosity, and thin thickness. In recent years, thermo-
plastic nanofiber films prepared by electrospinning technology have attracted extensive
attention for the improvement of interlaminar toughness [17–19]. Different properties
of nanofiber films can be obtained by adjusting the electrospinning parameters, such as
spinning solution, spinning speed, spinning distance, and voltage, etc.

Zheng et al. [20] found that PA66/PCL composite nanofiber films increased the mode
I and mode II interlaminar fracture toughness of CF/epoxy composites by 98% and 101%,
respectively. Subagia et al. [21] found that the flexural strength and modulus of the compos-
ites were significantly improved by inserting polyurethane nanofiber films. Cai et al. [22]
prepared blended polysulfone (PSF)/cellulose nanocrystal (CNC) nanofiber films by elec-
trospinning and then inserted them into CF/epoxy composites. The results showed that the
mode I and mode II interlaminar fracture toughness were improved. Saeedifar et al. [23]
studied the toughening effect of electrospun PA66 nanofiber films on CF/epoxy composite
laminates under mode II high-temperature loading. It was found that the mode II inter-
laminar fracture toughness (GIIC) of nanofiber film-modified composites was quadrupled
over the unmodified counterparts at room temperature. However, although GIIC did not
change from room temperature to 100 ◦C, it decreased by 34% and 43%, respectively, by
further heating to 125 ◦C and 160 ◦C. Taheri et al. [24] prepared electrospun nanofiber films
containing polyvinyl butyral (PVB) and pyrolytic carbon (PyC), which were interleaved
between the layers of the laminates. The toughening behavior of the modified laminates
was studied by a mode II fracture test. The results showed that the incorporation of the
pure PVB nanofiber films was insufficient in greatly improving the fracture toughness of
laminates (~7%). In contrast, the fracture toughness was improved by ~24% by adding
(4.76 wt%) PyC particles into the PVB nanofiber films. Polyacrylonitrile (PAN) is a low-cost
homopolymer with good toughness and ductility. The strong polarity of cyano (-CN)
groups endows it with good adhesion and interfacial compatibility with resin and provides
excellent weather, light, and solvent resistance [25–27]. Electrospun PAN nanofiber films are
ideal materials for interlaminar toughening due to their excellent strength, modulus, and
toughness [28,29]. Although many studies have been carried out on the interlaminar tough-
ening of electrospun nanofiber films, the current research mainly focused on PA66, PCL,
PSF, PVB, etc., [17–24,30]. There are few reports on the interlaminar mechanical properties
of PAN nanofiber film-toughened composites. Herein, PAN nanofiber films were prepared
by electrospinning, and the PAN nanofiber films were incorporated into CF prepregs. The
CF/bismaleimide resin (CF/BMI) composites were fabricated by a vacuum bagging process.
The mode II fracture toughness and ILSS of the composites before and after modification
were tested, and the toughening mechanism was also analyzed accordingly.

2. Experiments
2.1. Materials

Polyacrylonitrile (PAN, MW = 51,000) and N, N-dimethylformamide (DMF) solu-
tions were supplied by RHAWN Chemical Technology Co., Ltd., Shanghai, China. The
CCF800H/AC631 unidirectional prepreg was provided by AVIC Composite Co., Ltd.,
which was composed of CF (CCF800H, Weihai Tuozhan Fiber Co., Ltd., Weihai, China) and
bismaleimide resin (AC631, AVIC Composite Co., Ltd., Beijing, China). The properties of
CF, BMI resin, and prepreg are given in Table 1. The average tensile modulus and strength
of CCF800H CF are 293 GPa and 5641 MPa, respectively. The glass transition temperature
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and decomposition temperature of AC631 resin are 240 ◦C and 466 ◦C, respectively. The
densities of CCF800H and AC631 are 1.78 g/cm3 and 1.2 g/cm3, respectively. The area
density of the CF is 133 ± 2 g/m2, and the resin content of the prepreg is 33 ± 5 wt%.
Additionally, the nominal ply thickness of the prepreg is 0.125 mm.

Table 1. Properties of CF, BMI resin, and prepreg.

CCF800H * AC631 ** CCF800H/AC631 **

Tensile modulus 293 GPa Glass transition
temperature 240 ◦C Ply thickness 0.125 mm

Tensile strength 5641 MPa 5% decomposition
temperature 464 ◦C Resin content 33 ± 5 wt%

Density 1.78 g/cm3 Density 1.2 g/cm3 Area density of CF 133 ± 2 g/m2

* provided by Weihai Tuozhan Fiber Co., Ltd., Weihai, China. ** provided by AVIC Composite Co., Ltd.,
Beijing, China.

2.2. Preparation of PAN Nanofiber Films

PAN was dissolved in DMF to prepare a mixed solution with a mass fraction of 10%.
The solution was stirred on a magnetic stirrer at a speed of 1000 rpm for 8 h at 55 ◦C to
obtain a yellow transparent precursor. Afterward, the PAN nanofibers were electrospun
from the precursor using an in-house developed single-nozzle electrospinning machine.
The electrospinning process (e.g., the concentration of spinning solution, spinning voltage,
feed rate, tip-to-collector distance, speed of rotating collection, etc.,) has a great effect on
the properties of nanofiber films. On the one hand, when the concentration of polymer
solution is too low, the degree of molecular chain entanglement is weak, and thus, it is
easy to form beads on the fiber surface. In contrast, when the concentration is too high,
the diameter of the spun nanofibers is too large, resulting in a decrease in the specific
surface area, thereby weakening its binding with the matrix [31,32]. On the other hand,
when the spinning voltage is too low, the polymer solution cannot form jets. When the
voltage is too high, the charge density on the surface of the jet is too large, which easily
causes current disorder and jet instability [33]. Moreover, only within a certain range of
feed rates can the stability of the Taylor cone be ensured, as well as the solvent evaporation,
molecular chain stretching, and crystallization of the polymer solution jet [34,35]. Finally,
with an appropriate spinning distance and spinning voltage, the fiber diameter can be
reduced, and the fiber can be fully stretched in the electric field to improve the crystallinity
of nanofibers, which is beneficial to enhancing the mechanical properties of nanofibers [36].
Therefore, the optimized spinning process used in this work was as follows: the feed rate
was 0.4 mL/h, and the voltage was 15 kV. The tip-to-collector distance was 15 cm, and
the speed of rotating collection was 400 rpm (see Figure 1a). First, the PAN solution was
electrospun directly onto silicone release paper for 6 h in a conditioned room at 20 ± 2 ◦C
and 40 ± 5% RH. Second, the PAN nanofiber film was removed from the silicone release
paper. Finally, the PAN nanofiber film was fully dried in an oven at 60 ◦C for 12 h.

2.3. Preparation of CF/BMI Composites

The preparation process of the laminates interleaved by PAN nanofiber films is shown
in Figure 1. Two types of laminates, namely, GIIC-laminate and ILSS-laminate, were
prepared by a vacuum bagging process. For the GIIC-laminate, a 15 µm Teflon film (to create
the initial crack) and a PAN nanofiber film (named F) were interleaved between the 14th and
15th layers synchronously (see Figure 1b). For the ILSS-laminate, the PAN nanofiber films
were cross-stacked between two layers of prepreg (named P) (see Figure 1c). Therefore, the
GIIC-laminate was composed of 28-ply CCF800H/AC631 prepregs and 1-ply PAN nanofiber
film (i.e., [P]14 + [F] + [P]14) with a total thickness of 3.5 mm. The ILSS-laminate was composed
of 16 ply CCF800H/AC631 prepregs and 15 ply PAN nanofiber films (i.e., the layup sequence
is [P/F/P/F/P/F/P/F/P/F/P/F/P/F/P/F/P/F/P/F/P/F/P/F/P/F/P/F/P/F/P]) with
a total thickness of 2.2 mm. The interactions between the layers were realized by resin
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bonding. First, the CCF800H/AC631 prepregs and PAN nanofiber films were draped on
a plane mold according to the layup scheme mentioned above. The PAN nanofiber films
were placed on the prepreg surface, and then the silicone paper was carefully peeled off.
Since the fully dried films did not adhere to the silicone paper, the PAN nanofiber films
can be easily transferred to the prepreg surface. The advantage of this method compared
to electrospinning prepreg directly is that there is no interaction between the solvent and
the resin. Second, the GIIC-preform and ILSS-preform were encapsulated in a vacuum bag.
Finally, the preforms were heated to 125 ◦C at a rate of 5 ◦C/min and held for 1 h with a
vacuum pressure of 0.098 MPa in an oven. After that, the temperature was subsequently
heated to 180 ◦C and 200 ◦C at the same rate and held for 2 h and 6 h, respectively. The mold
was then cooled to room temperature, and consolidation was completed (see Figure 1d–f).
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2.4. Mechanical Testing Procedure

The end-notched flexure (ENF) and short-beam strength (SBS) were tested under
quasi-static loading with a constant displacement rate of 1 mm/min using a universal
testing machine (ETM 105D, Wance Testing Machine Co., Ltd., Shenzhen, China) according
to ASTM D7905 and ASTM D2344, respectively. All fracture tests were conducted at room
temperature and in an atmospheric environment with at least five specimens. According to
ASTM D7905, the specimen dimensions of GIIC are 160 mm × 25 mm × 3.5 mm (length ×
width × thickness). The span length is 50 mm, and the effective crack length is 30 mm (see
Figure 2a). The mode II fracture toughness can be calculated as follows [37]:

GIIC = 9a2Pδ
2w(3a3+2L3)

× 103 (1)

where GIIC is the mode II fracture toughness (J/m2). P and δ are the load (N) and deflection
(mm) at the beginning of crack propagation, respectively. W is the width of the specimen
(mm). a is the effective length of the crack (mm). L is the half span length (mm). According
to ASTM D2344, the specimen dimensions of the ILSS are 20 mm × 6 mm × 2 mm (length
× width × thickness). The span length is 8 mm (see Figure 2b). The ILSS can be calculated
as follows:

τs =
3Pmax
4wh (2)

where τs is the interlaminar shear strength (MPa). Pmax is the peak load recorded in the
test (N). w is the width of the specimen (mm). h is the thickness of the specimen (mm).
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2.5. Characteristics

The morphologies of the PAN nanofiber films and the fractographs of the corre-
sponding composites were observed by scanning electron microscopy (SEM, SU−4800,
Hitachi Ltd., Tokyo, Japan). X-ray diffraction (XRD, Empyrean, Malvern Panalytical Ltd.,
Overijssel, The Netherlands) analysis was performed on the PAN nanofiber films using
Cu Kα source radiation. The density of the CF/BMI composite was tested by a density
meter with 0.0001 g/cm3 accuracy (MAY−ME104, METTLER TOLEDO Ltd., Greifensee,
Switzerland) according to ASTM D 792. The void content of the CF/BMI composite was
measured according to ASTM D 2734. Thermogravimetric analysis (TGA) of virgin laminate
and PAN-modified laminate was conducted by a thermogravimetric analyzer (TGA−400,
PerkinElmer, Waltham, MA, USA).

3. Results and Discussion

Figure 3 shows representative SEM micrographs of PAN nanofiber films. The PAN
nanofibers are randomly distributed with an average diameter of 120 ± 18 nm. Figure 4
shows that the XRD pattern of the PAN nanofiber film includes the (100) and (110) crys-
talline planes, representing the crystalline and amorphous peaks of PAN, respectively [38].
This indicates that PAN is a semicrystalline polymer with amorphous regions that can
transform into crystalline regions under appropriate conditions [39].
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The void contents of GIIC-laminate and ILSS-laminate are approximately 3.12% and
4.31%, respectively. The densities of GIIC-laminate and ILSS-laminate are 1.511 g/cm3 and
1.507 g/cm3, respectively. The TGA results shown in Figure 5 indicate that PAN slightly
reduces the heat resistance of the CF/BMI composites. This is because PAN is less heat
resistant than BMI resin.
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Figure 6a–c shows the load–displacement (P-δ) curves of GIIC testing for the virgin
laminates and PAN-modified laminates. The results showed that the slope of the P-δ curve
of PAN-modified laminates was higher, which means that the bending stiffness increased
after modification by PAN nanofiber films. This can be ascribed to the fact that the modulus
of the PAN nanofiber films was much larger than that of the resin. Therefore, after the PAN
nanofiber film was inserted, the modulus of the original resin rich layer increased so that the
bending modulus of the laminates increases. These results were consistent with previously
reported results [40]. Moreover, both the maximum displacement and peak load were
higher than those of unmodified laminates. The stiffness consistency of the unmodified
sample is good. In contrast, the stiffness of the modified sample was slightly different with
increasing load. This may be due to the uneven thickness of the electrospun film, resulting
in the differences in the P-δ curves for the modified laminates. Additionally, for unmodified
laminates, the load dropped sharply when the crack initiated. In contrast, the P-δ curve of
the modified composite was slightly bent when the load reached approximately 1000 N,
which might be caused by the deformation and fracture of interlaminar nanofibers when
the crack propagated in the PAN-modified layer. The GIIC value of the PAN-modified
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laminates increased by 21.4% (see Figure 6d). This result was consistent with the trend of
other toughened materials reported in the literature [30].
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Figure 7 shows the cross-sectional facture morphologies of the two samples after the
GIIC test. As shown in Figure 7a, the interlaminar facture morphology of the unmodified
laminates was relatively flat, and the cracks did not penetrate the interlaminar resin-rich
layer. The failure mode was mainly manifested in the debonding of the fiber and the
shear failure of the resin. In contrast, the morphology of the PAN-modified laminates
was relatively rough (see Figure 7b). The crack propagation was observed to cross the
interlaminar PAN nanofiber films up and down, which could be attributed to the strong
adhesion between PAN films and resin. Moreover, it can be found at higher magnification
that the resin and PAN nanofiber films were completely fused at the interlaminar crack of
the modified laminates, and the diameter of PAN nanofibers decreased, forming a molten
layer at the interface. When the crack propagated in the PAN nanofiber films, it had to
overcome the pulling out and fracture of nanofibers as well as the shear slip of resin. The
presence of the molten layer caused plastic deformation and consumed more energy; as
a result, slight bending on the P-δ curve was observed. In conclusion, the increase in the
crack propagation path and the increased energy consumption of crack propagation led to
the improvement of the mode II fracture toughness of the modified composite laminates.
This toughening mechanism was similar to other types of interleaving nanofiber films [17].
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Figure 8a–d shows the P-δ curves of unmodified and PAN-modified laminates in
the ILSS test. It can be observed that the ILSS P-δ curve of unmodified laminates had
high discreteness. In contrast, the ILSS P-δ curve of PAN-modified laminates was better.
This was because the unmodified sample would have a variety of failure modes, such as
interlaminar shear cracking, compression cracking, tensile failure, inelastic deformation,
etc., in the short beam shear test, leading to the large nonlinearity of the P-δ curve before
the failure of the sample. The modified samples mainly showed interlaminar shear failure.
In addition, the average failure load of the PAN-modified laminates increased, but the
modulus did not change. The ILSS value increased by 5.4%, an increase from 88.3 to
93.1 MPa (see Figure 8c,d), which was quite different from the observations reported in
the literature [41] that PAN nanofiber films would reduce the interlaminar shear strength
of the composite. Compared with the GIIC test, the improvement in the ILSS value was
insignificant. The reason might be that interleaved PAN nanofiber films absorbed a large
amount of resin, resulting in the weakening of CF and resin.
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Figure 9 shows the typical failure morphologies of the two samples after the ILSS test.
The overall plastic deformation of the PAN-modified laminates weakened (see Figure 9a,b).
It can be observed under low magnification that delamination occurred in the interlaminar
resin-rich layer, and debonded fibers and resin in the intralaminar region were present for
unmodified samples. Various failure modes were probably related to the large deformation
of composite laminates. The PAN-modified laminates not only possessed higher toughness
but also displayed smaller deformation. The failure mode became interlaminar cracking
alone. The crack propagation alternately crossed in the interlaminar resin-rich layer, and its
path ran through the whole resin-rich layer, which is beneficial to the improvement of ILSS.
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According to the above analysis, the toughening mechanism of PAN nanofiber films
can be summarized as follows (see Figure 10). PAN nanofiber films consist of polymer
chains with -CN polar functional groups, which provide strong adhesion with resin, and
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their fracture toughness is better than that of unmodified resin [25–27]. Under the shear
load, the PAN nanofiber films were subjected to shear stress in the resin-rich layer, leading
to the occurrence of plastic deformation and fracture when the critical stress was exceeded
(see Figure 10c). Furthermore, the PAN nanofibers become carriers of stress bridging and
transfer more stress to the nearby resin owing to the two-dimensional continuous structure.
The bridging effect changes the failure mode from adhesive failure to cohesive failure. This
is one of the main reasons why the addition of PAN fiber films improves the interlaminar
mechanical properties of the composite. Although these changes were not enough to
initiate the crack in the brittle resin, a huge amount of energy was absorbed, resulting in a
slight change in the slope of the P-δ curve (see Figure 10a red dotted circle area). When
the displacement continued to increase, the stress at the crack tip increased. When the
internal shear stress exceeded the bonding strength between the fiber and resin, debonding
of the fiber occurred (see Figure 10e). The precrack of virgin composite laminates expanded
instantaneously and propagated along the interface between the fiber and resin but did
not pass through the interlaminar resin-rich layer (see Figure 10d). During the debonding
of CF, a portion of the resins underwent plastic deformation due to stress concentration,
causing the occurrence of cracks. As a result, the energy was absorbed gradually, leading to
a slower decline of the P-δ curve (red circle on the blue curve in Figure 10a). The resin-rich
layer in the PAN-modified samples had higher toughness. Before debonding between the
carbon fiber and resin, the resin slid under the shear force and produced microcracks. The
microcracks propagated along the two-dimensional nanofiber films in the interlaminar
resin-rich layer, causing the pull-out and breakage of the PAN nanofibers, and thus, a large
amount of energy was absorbed. This is reflected in the gradual flattening of the yellow
curve in the red circle in Figure 10a. When the load reached the peak value, the microcracks
instantly expanded to macrocracks and propagated along the interlaminar crossing path
through the whole resin-rich layer. The failure modes mainly included the debonding of
PAN films, debonding of CF, plastic deformation of resin, fracture and pull-out of PAN
films. These failure modes caused the absorption of energy, resulting in a sudden drop in
load. In conclusion, the composite modified by PAN nanofiber films formed a resin-rich
layer with high strength and toughness. The presence of PAN nanofiber films made the
cracks cross between layers. Moreover, the crack propagation between two-dimensional
nanofiber films caused the constant pull-out and breakage of nanofibers. As a result, the
interlaminar strength of the composite laminates improved.

Polymers 2021, 13, x FOR PEER REVIEW 11 of 14 
 

 

When the internal shear stress exceeded the bonding strength between the fiber and resin, 
debonding of the fiber occurred (see Figure 10e). The precrack of virgin composite lami-
nates expanded instantaneously and propagated along the interface between the fiber and 
resin but did not pass through the interlaminar resin-rich layer (see Figure 10d). During 
the debonding of CF, a portion of the resins underwent plastic deformation due to stress 
concentration, causing the occurrence of cracks. As a result, the energy was absorbed 
gradually, leading to a slower decline of the P-δ curve (red circle on the blue curve in 
Figure 10a). The resin-rich layer in the PAN-modified samples had higher toughness. Be-
fore debonding between the carbon fiber and resin, the resin slid under the shear force 
and produced microcracks. The microcracks propagated along the two-dimensional nan-
ofiber films in the interlaminar resin-rich layer, causing the pull-out and breakage of the 
PAN nanofibers, and thus, a large amount of energy was absorbed. This is reflected in the 
gradual flattening of the yellow curve in the red circle in Figure 10a. When the load 
reached the peak value, the microcracks instantly expanded to macrocracks and propa-
gated along the interlaminar crossing path through the whole resin-rich layer. The failure 
modes mainly included the debonding of PAN films, debonding of CF, plastic defor-
mation of resin, fracture and pull-out of PAN films. These failure modes caused the ab-
sorption of energy, resulting in a sudden drop in load. In conclusion, the composite mod-
ified by PAN nanofiber films formed a resin-rich layer with high strength and toughness. 
The presence of PAN nanofiber films made the cracks cross between layers. Moreover, the 
crack propagation between two-dimensional nanofiber films caused the constant pull-out 
and breakage of nanofibers. As a result, the interlaminar strength of the composite lami-
nates improved. 

In summary, the PAN nanofiber films improve the interlaminar fracture toughness 
by extending the crack path and increasing the strength and toughness of the resin-rich 
layer. This toughening method can greatly improve the interlaminar strength without re-
ducing the in-plane performance of the composites, which is extraordinarily important to 
the aerospace field. In particular, the failure of the triangular zone in composite structures 
(such as various types of joints) is mainly due to the insufficiency of interlaminar strength 
[1,42]. Therefore, the application of PAN nanofiber films in the triangular zone of compo-
site joints can effectively improve the damage resistance performance. 

 
Figure 10. Toughening mechanism of PAN nanofiber films: (a) P-δ curves of virgin and PAN-mod-
ified composite; cracks propagation path for: (b) PAN-modified composite and (d) virgin composite; 
failure mechanism for (b) PAN-modified composite and (d) virgin composite. 

4. Conclusions 
This paper focused on the toughening mechanism of PAN nanofiber film-modified 

CF/BMI composites. The results showed that the GIIC increased by 21.4% compared with 

Figure 10. Toughening mechanism of PAN nanofiber films: (a) P-δ curves of virgin and PAN-modified
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In summary, the PAN nanofiber films improve the interlaminar fracture toughness by
extending the crack path and increasing the strength and toughness of the resin-rich layer.
This toughening method can greatly improve the interlaminar strength without reducing
the in-plane performance of the composites, which is extraordinarily important to the
aerospace field. In particular, the failure of the triangular zone in composite structures (such
as various types of joints) is mainly due to the insufficiency of interlaminar strength [1,42].
Therefore, the application of PAN nanofiber films in the triangular zone of composite joints
can effectively improve the damage resistance performance.

4. Conclusions

This paper focused on the toughening mechanism of PAN nanofiber film-modified
CF/BMI composites. The results showed that the GIIC increased by 21.4% compared
with that of the virgin composite when the PAN nanofiber films were inserted. The ILSS
increased by only 5.4% compared with that of the virgin composite, which might be
attributed to the excessive absorption of resin by PAN films. When the PAN nanofiber
film-modified composite laminates were damaged in the interlaminar region, the two-
dimensional nanofiber films hindered the propagation of microcracks, causing the pull-out
and breakage of nanofibers. The propagation of cracks along the interlaminar path changed
the failure mode, resulting in the absorption of more energy, which in turn improved the
interlaminar strength of the PAN-modified laminate.
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