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Abstract

Background

Melanoma causes the vast majority of deaths attributable to skin cancer, largely due to its

propensity for metastasis. To date, few studies have examined molecular changes between

primary cutaneous melanoma and adjacent putatively normal skin. To broaden temporal

inferences related to initiation of disease, we performed a metabolomics investigation of pri-

mary melanoma and matched extratumoral microenvironment (EM) tissues; and, to make

inferences about progressive disease, we also compared unmatched metastatic melanoma

tissues to EM tissues.

Methods

Ultra-high performance liquid chromatography—mass spectrometry-based metabolic profil-

ing was performed on frozen human tissues.

Results

We observed 824 metabolites as differentially abundant among 33 matched tissue samples,

and 1,118 metabolites as differentially abundant between metastatic melanoma (n = 46)

and EM (n = 34) after false discovery rate (FDR) adjustment (p<0.01). No significant differ-

ences in metabolite abundances were noted comparing primary and metastatic melanoma

tissues.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0240849 October 27, 2020 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Taylor NJ, Gaynanova I, Eschrich SA,

Welsh EA, Garrett TJ, Beecher C, et al. (2020)

Metabolomics of primary cutaneous melanoma

and matched adjacent extratumoral

microenvironment. PLoS ONE 15(10): e0240849.

https://doi.org/10.1371/journal.pone.0240849

Editor: Ch Ratnasekhar, Queen’s University Belfast,

UNITED KINGDOM

Received: April 6, 2020

Accepted: October 4, 2020

Published: October 27, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0240849

Copyright: © 2020 Taylor et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Due to Institutional

policies related to privacy, the datasets generated

and/or analyzed during the current study are not

publicly available. Data access requests may be

https://orcid.org/0000-0003-4811-8529
https://orcid.org/0000-0002-0332-0224
https://orcid.org/0000-0002-5567-9618
https://doi.org/10.1371/journal.pone.0240849
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240849&domain=pdf&date_stamp=2020-10-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240849&domain=pdf&date_stamp=2020-10-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240849&domain=pdf&date_stamp=2020-10-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240849&domain=pdf&date_stamp=2020-10-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240849&domain=pdf&date_stamp=2020-10-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240849&domain=pdf&date_stamp=2020-10-27
https://doi.org/10.1371/journal.pone.0240849
https://doi.org/10.1371/journal.pone.0240849
http://creativecommons.org/licenses/by/4.0/


Conclusions

Overall, pathway-based results significantly distinguished melanoma tissues from EM in the

metabolism of: ascorbate and aldarate, propanoate, tryptophan, histidine, and pyrimidine.

Within pathways, the majority of individual metabolite abundances observed in comparisons

of primary melanoma vs. EM and metastatic melanoma vs. EM were directionally consis-

tent. This observed concordance suggests most identified compounds are implicated in the

initiation or maintenance of melanoma.

Background

Melanoma is a neoplasm that evolves through discrete stages distinguished by clinical and

pathological features [1, 2]; however, the underlying molecular biology of disease initiation

and progression is not well understood. The development and progression of melanoma are

influenced by endogenous compounds—metabolites—which combined represent distinct

metabolic phenotypes with respect to glucose uptake, glycolytic, and mitochondrial activity

[3]. Collectively, metabolites and their interactions constitute the metabolome, a de facto
representation of cellular physiology that is not subject to epigenetic regulation or post-tran-

scriptional/-translational modification, as might be expected when examining genes and pro-

teins, respectively. The metabolome describes metabolic patterns that are most proximal to

disease or a phenotype of interest, and may better distinguish key biological mechanisms influ-

encing disease etiology and progression compared to other molecular approaches [4].

To date, most molecular studies of cancer have focused on malignant tissue and have given

less consideration to putative histologically-normal tissue surrounding solid tumors, which we

hereafter refer to as extratumoral microenvironment (EM). The reasons for this inattention

are related to concerns over whether the surrounding tissue is truly normal or, as we posit, rep-

resents a subclinical permissive environment for tumor formation on a molecular scale. Previ-

ous studies of breast cancer [5, 6], as well as recent pathway-based findings using data from the

TCGA [7], are supportive of the latter.

A better temporal understanding of metabolic perturbations influencing melanoma devel-

opment and progression could further characterize melanoma heterogeneity and identify

influential biological pathways, as well as potential therapeutic targets. To identify and evaluate

metabolic patterns and differences among temporally distinct tissues, we conducted a metabo-

lomics investigation of frozen primary melanoma tissue and matched EM tissue. And, to better

characterize advanced disease, we analyzed a cohort of frozen unmatched metastatic mela-

noma tissues.

Methods

Patient selection

Participants for this study were adults aged 19 to 96 years who were treated for primary cuta-

neous malignant melanoma at the H. Lee Moffitt Cancer Center and Research Institute (Mof-

fitt)—a National Cancer Institute-designated comprehensive cancer center—and had signed

informed written consent for participation in Moffitt’s Total Cancer Care Protocol. Study par-

ticipants’ medical records were accessed between July, 2015 and September, 2017 to obtain rel-

evant patient level data. Ethics approval was obtained from Liberty IRB (Liberty IRB Tracking

#: 15.06.0013) prior to the start of the study (even after an initial "Non-Human Subjects
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Research" determination by the Moffitt Cancer Center’s Protocol Support Office:

MCC#18133) and all research was performed in accordance with relevant regulations.

Melanoma is primarily a disease of Caucasian populations, so eligible cases were limited to

patients who self-identified as white. Efforts were made to include participants equitably

according to gender, but there were no restrictions on vital status or tumor stage. Eligible

cases had existing frozen primary cutaneous melanoma with matching EM tissue available for

research purposes. We also selected a different cohort of patients for whom metastatic mela-

noma tissue (unmatched) was available. Metastases from different organ sites were included to

reflect a representative distribution of metastatic lesions observed at the Moffitt Cancer Center

and minimize the potential systematic bias that could be introduced by the inclusion of ana-

lytes specific to cells other than skin.

Tissue specimen handling

Primary melanoma and EM specimens as well as metastatic melanoma lesions were procured

from patients at the time of surgical excision, and were flash frozen within 30 minutes. H&E-

stained frozen sections from each specimen were reviewed by the board-certified study pathol-

ogist (JLM) to ensure the presence of tumor at�70% cellularity, or in the case of EM tissues,

<1% malignant cells. During macrodissection of specimens, efforts were made to exclude tis-

sue regions directly exposed to optimal cutting temperature compound (OCT). OCT is a

potentially adulterating compound containing polyvinyl alcohol and polyethylene glycol that

is routinely used by pathologists to enable frozen tissue sectioning. To facilitate reproducibility

of analyses and ensure adequate tissue availability for future assays, specimens were required

to have a minimum mass of 15mg. Tumor specimens were required to exhibit at least 70%

tumor cellularity and efforts were made to exclude regions of necrosis and small heteroge-

neous regions not representative of cells present in the total specimen.

Frozen tissue specimens were stored at -80˚C before processing, which involved biopulveri-

zation (Biospec Biopulverizer). After pulverization, each sample was divided into aliquots

for metabolomics and future molecular studies, and again stored at -80˚C prior to further

analysis.

IROA and internal standardization

Isotopic Ratio Outlier Analysis (IROA) is a mass spectrometry-based analytic technique that

discriminates compounds of biological origin from non-biological artifacts in a two-group or

multi-group study [8]. The IROA process was employed in this study and involves the selec-

tion of a standardized control cell group that is grown on a medium in which the carbon iso-

tope 13C is randomly distributed into all nutrients at 95% abundance (normal or, natural,

abundance ~1%). The labeled control cells are then pooled with an equivalent measure of tis-

sue primarily containing the carbon isotope 12C (natural abundance ~99%). The pooled sam-

ples are then analyzed using liquid chromatography—mass spectrometry (LC-MS) methods.

This protocol allows for unambiguous detection of 12C and 13C monoisotopic peaks for all

compounds present in the pooled samples, leading to the accurate differentiation of metabo-

lites found in the standardized control cells versus the tissue specimens. The primary advan-

tage of this method is that only biologically relevant compounds will exhibit incorporation of

the 13C label in the standard control; thus, only relevant metabolic peaks identified in the tissue

specimens will contain matching peaks in the standard control. As a result, significant data

reduction is achieved and artifacts that commonly interfere with analysis of mass spectrometry

in traditional metabolomics approaches [9] can be readily identified and excluded. This proto-

col also benefits from unbiased relative quantitation of compounds present in the tissue
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compared to the standard control cell line and reduced sample-to-sample variability due to the

simultaneous preparation and pooling of standard control and tissue samples.

IROA standardized control preparation

Yeast (Saccharomyces cerevisiae) was selected as the standard control for this study due to the

range of metabolites exhibited. Yeast was grown on 5% and 95% 13C labeled media containing

randomized labeled glucose as a single carbon source to enrich the natural abundance of 13C

of all biologically formed metabolites. An extract from 95% 13C yeast was added as an Internal

Standard (IS) to a dried, prepared extract of each homogenized tissue specimen (e.g. EM, pri-

mary melanoma, or metastatic melanoma) for phenotypic IROA injections, and extracts from

both 5% and 95% 13C yeasts were pooled for the combined IROA injections.

In order to determine the optimal quantities of tissue and labeled control yeast in the

pooled analytic sample, we conducted a titration pilot using stand-in meat homogenates. The

protein concentration of the pooled meat homogenates was measured. From the stock, 250,

200, 150, 100, 50, and 25μg protein/mL samples were prepared at 50μL. Proteins were precipi-

tated with 400μL 8:1:1 acetonitrile:methanol:acetone and centrifuged at 20,000xg for 10 min-

utes at 8˚C. The supernatant (375μL) was dried under nitrogen gas at 30˚C, and 10x diluted

yeast IROA IS was used to reconstitute samples at a final volume of 40μL. After mass spectra

were acquired, 50μg protein/mL was determined to be the optimal protein concentration for

sample pre-normalization.

Metabolite extraction and LC-MS data processing

Pooled samples were pre-normalized at 50μg protein/mL, 25μL prepared as described below,

randomized and batched into seven sets that included balanced numbers of samples from

each group. Detailed procedures for metabolite extraction and analysis by ultra-high perfor-

mance liquid chromatography—mass spectrometry (UHPLC-MS) have been previously

described [10]. Briefly, the first batch was extracted and immediately placed on LC-MS for

analysis. Extraction of subsequent batches was scheduled immediately following the end of the

previous batch. Samples (25μL) were extracted using 200μL of 8:1:1 acetonitrile:methanol:ace-

tone and centrifuged at 20,000xg for 10 minutes at 8˚C. 188μL of supernatant was dried down

under nitrogen gas at 30˚C and 10x diluted yeast IROA IS was used to reconstitute samples to

a final volume of 25μL, thereby assuring that all samples received identical quantities of the

IROA IS.

Mass spectra were acquired on a Thermo Scientific Q Exactive orbitrap equipped with a

heated electrospray ionization (HESI II) probe in positive ion mode. Full scan mode data were

collected in profile mode from m/z 70–1000 corresponding to the mass range of most expected

metabolites; external calibration (of both mass and mass resolution) was applied before each

run to allow for liquid chromatography—high resolution mass spectrometry (LC-HRMS) at

35,000 resolution (m/z 200). Chromatographic separation of metabolites was achieved by cou-

pling a Thermo Dionex UltiMate 3000 RS UHPLC system to the Q Exactive Orbitrap. Separa-

tion was achieved under gradient elution on an Ace Excel C18-pfp column (100 x 2.1mm,

2μm) at 25˚C. Mobile phase A was 0.1% formic acid in water and B was acetonitrile. The flow

rate was 350μL/min starting at 100% A and holding for 3 minutes, followed by an increase in B

to 80% over 10 minutes. Mobile phase B was then held constant at 80% for 3 minutes before

returning to 100% A for equilibration.

Processing of raw LC-MS data was performed by the Thermo Xcalibur Workstation soft-

ware (v2.2.44) and Proteowizard’s MS Convert (v3.0.5759) was used to centroid and convert

Thermo (.raw) files in mzXML data files for further analysis. The mzXML files were analyzed
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using ClusterFinder (version 3, IROA Technologies) in order to locate all IROA isotopic

peaks and their associated natural abundance companions; results were compared to known

metabolite peaks contained within the ClusterFinder library. Quantitation of the natural

abundance peak areas and their ratios to the corresponding IROA IS was performed by

ClusterFinder.

Statistical analysis

Principal component analysis (PCA) was performed using the NIPALS [11] algorithm as

implemented in the pcaMethods [12] R package, and indicated a significant batch effect after

metabolite extraction. The observed batch effect was mitigated by fitting partial least squares

(PLS), with the response Y being the batch number (from 1–7). To account for missing data

when fitting PLS, we used the R package mixOmics [13]. After visual inspection confirmed

that the first component of the PLS analysis contained the batch effect, we computed the resul-

tant residual PLS data matrix with one component which was used for the primary analysis.

We repeated PCA using this corrected data to verify no clear separation of batches (Fig 1).

Primary analyses focused on discriminating mean metabolite abundance differences

between primary melanoma and matched EM and between metastatic melanoma and

unmatched EM. We also explored differences in mean metabolite abundances between pri-

mary melanoma and metastatic melanoma. To account for data skewness and an over-repre-

sentation of zero counts, we conducted both a non-parametric Wilcoxon signed rank test and

a parametric t-test; a metabolite was considered noteworthy only if it was found to be signifi-

cantly differentially abundant between tissue types according to both statistical tests. Paired

tests were used for the analysis of matched tissues and unpaired tests were performed for anal-

yses of unmatched tissues. We observed a high level of concordance between the resultant p-

values from the two tests when comparing primary melanoma vs. matched EM (Pearson corre-

lation = 0.96) and metastatic melanoma vs. unmatched EM (Pearson correlation = 0.92). To

account for multiple comparisons, p-values from each test were adjusted to control the false

Fig 1. Identification and mitigation of batch effects. Results of principal components analysis (PCA) illustrating an observed

sample batch effect associated with mass spectrometry (A) and mitigation of that batch effect by fitting partial least squares (PLS)

(B).

https://doi.org/10.1371/journal.pone.0240849.g001
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discovery rate (FDR) using the Benjamini-Yakutieli approach [14] at α = 0.01. Heatmaps illus-

trating metabolite abundances were generated using the ComplexHeatmap R package [15].

We performed pathway-based analyses comparing primary melanoma vs. EM as well as

metastatic melanoma vs. EM, including as input all statistically significant results from both

positive and negative ion modes from previous analyses, using Mummichog 1 interfaced

through MetaboAnalyst [16–25]. We adopted the Mummichog default p-value cutoff of

1×10−05 to delineate between significantly enriched and non-significantly enriched metabo-

lites. The KEGG pathways program was then used to identify the most strongly influenced

metabolic pathways. We report enrichment factors—the ratio of the number of significant

pathway hits to the expected number of compound hits within the pathway—to summarize

the influence of individual KEGG pathways.

To further explore functional characteristics of metabolite differences, we performed

metabolite set enrichment analysis (MSEA) within MetaboAnalyst. We used the RefMet con-

version tool within Metabolomics Workbench [26] to standardize metabolite names prior to

MSEA. Enrichment was performed using the Pathway-associated metabolite sets (SMPDB)

[27], which consist of 99 metabolite sets from normal pathways. Network analysis was per-

formed in MetaboAnalyst using the metabolite-metabolite interaction network based on asso-

ciations extracted from STITCH [28].

Results

Study samples and patient characteristics

A total of 34 patients with matching frozen primary cutaneous melanoma and EM tissues

(mean age at melanoma diagnosis = 64 years), as well as 46 patients with unmatched frozen

metastatic melanoma tissue (mean age at melanoma diagnosis = 62 years), were eligible for

inclusion in the final analytic cohort. Table 1 describes patient and tissue characteristics of

those included in the analytic cohort. Among the 34 patients with matching primary mela-

noma and EM tissues, 4 patients also had matching metastatic melanoma tissue; these 4 meta-

static melanoma tissue specimens were included with the unmatched metastatic melanoma

tissue specimens in unmatched analyses only. One patient was excluded from the matched pri-

mary melanoma—EM analysis due to primary melanoma sample contamination prior to MS

analysis, leaving a total of 33 patients (66 tissue samples) in the final matched cohort (S1 Fig).

Metabolite detection

In total, 9,599 peaks were detected by UHPLC-MS among the 118 frozen tissue samples

included in the study. The final analytic data set excluded 1,540 peaks (16%) due to missing

data among at least 50% of the tissue samples.

Comparison of metabolites in primary melanoma and EM

For the analysis comparing primary melanoma to EM tissues, an additional 552 peaks were

excluded from the matched analysis due to failure to detect them among at least 50% of sam-

ples contributing to a specific analysis. Of the 7,507 peaks tested among matching tissue sam-

ples, 824 (11%) were differentially abundant after FDR adjustment (p<0.01). Approximately

75% of statistically significant metabolites were noted with higher abundance among primary

cutaneous melanoma compared to matched EM (S2 Fig). Table 2 lists the top ten percent most

significant of the 824 differentially abundant metabolites by mass (m/z) and retention time in

the matched comparison of primary melanoma vs. EM. A heat map of these peaks is given in

Fig 2A, and the paired differences (primary vs. EM) are shown in Fig 2B. Five metabolites
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Table 1. Descriptive characteristics of subjects and tissue specimens contributing to study results.

Patients providing primary melanoma

tissue

Patients providing metastatic melanoma

tissue

# Subjects Total (N = 35) Total (N = 50)

Gender

Men 24 (69%) 28 (56%)
Women 11 (31%) 18 (36%)

Missing 4 (8%)

Vital status

Alive 21 (60%) 21 (42%)

Dead 14 (40%) 25 (50%)

Missing 4 (8%)

Average age at diagnosis

(years)�
64 61

Histology�

Malignant melanoma, NOS 15 (43%)

Nodular melanoma 14 (40%)

Lentigo maligna melanoma 1 (3%)

Superficial spreading

melanoma

4 (11%)

Acral lentignous melanoma 1 (3%)

Pathologic T Staging

(Primaries)

pT1 1 (3%)

pT2 0 (0%)

pT3 8 (23%)

pT4 15 (43%)

pTX 11 (31%)

Anatomic Site of primary

Trunk 9 (26%)

Head/Neck 12 (34%)

Arm/Hand 7 (20%)

Leg/Foot 7 (20%)

Skin, NOS

Anatomic Site of metastasis

Brain 5 (10%)

Large Bowel 1 (2%)

Lung 6 (12%)

Lymph node 13 (26%)

Salivary gland 1 (2%)

Skin 5 (10%)

Small intestine 5 (10%)

Soft tissue 9 (18%)

Spleen 2 (4%)

Stomach 1 (2%)

Throacic 1 (2%)

Vulva 1 (2%)

� Data correspond to primary lesion.

https://doi.org/10.1371/journal.pone.0240849.t001
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Table 2. Top ten percent of differentially abundant metabolites among primary melanoma and matched EM tissues according to mass (m/z) and retention time.

Row� Ion mode P-value�� Direction vs. EM† m/z Retention time (seconds) Compound Name‡ KEGG ID

1 Negative 9.10E-06 1 188.0565 2.1 N-Acetyl-DL-glutamic acid C00624

2 Positive 5.30E-06 1 190.0707 2.1 N-Acetyl-DL-glutamic acid C00624

3 Positive 3.40E-06 1 113.0346 1.3 Uracil C00106

4 Negative 2.90E-06 1 111.0199 1.3 Uracil C00106

5 Positive 6.60E-06 1 148.0603 0.7 N-Methyl-D-aspartic acid C12269

6 Positive 3.00E-06 1 131.0339 0.7

7 Positive 6.60E-06 1 150.0651 0.7

8 Positive 1.83E-05 1 148.1092 0.6

9 Positive 1.78E-05 1 171.0051 0.7 Dihydroxyacetone phosphate C00111

10 Negative 6.70E-06 1 168.9901 0.7 Dihydroxyacetone phosphate C00111

11 Positive 7.80E-06 1 210.9975 0.7

12 Positive 3.40E-06 1 192.9872 0.7

13 Negative 1.17E-05 1 338.9892 0.7 Fructose 1,6-bisphosphate C00354

14 Negative 9.70E-06 1 444.0363 2.0

15 Negative 7.80E-06 1 372.0843 6.3

16 Negative 1.87E-05 1 362.0508 3.7

17 Positive 3.50E-06 1 152.0566 3.6

18 Negative 9.10E-06 1 346.0558 2.7

19 Positive 2.90E-06 1 348.0693 2.6

20 Positive 1.69E-05 1 247.0570 0.8

21 Negative 6.40E-06 1 245.0431 0.8

22 Negative 6.60E-06 1 333.0593 0.7

23 Negative 3.40E-06 1 216.9390 0.7

24 Negative 3.00E-06 1 126.9440 0.7

25 Negative 5.00E-06 1 218.9359 0.7

26 Negative 2.90E-06 1 296.8818 0.6

27 Negative 3.80E-06 1 346.8808 0.6

28 Negative 3.00E-06 1 278.8926 0.7

29 Negative 6.70E-06 1 500.8455 0.7

30 Negative 3.00E-06 1 432.8575 0.6

31 Negative 3.00E-06 1 280.9070 0.7

32 Negative 2.90E-06 1 128.9597 0.6

33 Negative 1.18E-05 1 445.0531 0.8

34 Positive 5.40E-06 1 324.0584 0.9

35 Negative 5.90E-06 1 533.1057 0.9

36 Positive 3.00E-06 1 245.0603 0.9

37 Negative 1.47E-05 1 577.0958 0.9

38 Positive 1.15E-05 1 213.0163 1.2

39 Positive 1.18E-05 1 123.5941 0.9

40 Positive 6.40E-06 1 186.0758 3.0

41 Positive 6.60E-06 1 292.1018 1.2

42 Positive 1.18E-05 1 186.0761 0.7

43 Positive 1.13E-05 1 130.1227 1.7

44 Negative 1.60E-05 1 98.9737 0.7

45 Negative 2.90E-06 1 96.9693 0.7

46 Negative 5.00E-06 1 186.9649 0.7

47 Positive 5.40E-06 1 267.0562 0.8

(Continued)

PLOS ONE Metabolomics of cutaneous melanoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0240849 October 27, 2020 8 / 24

https://doi.org/10.1371/journal.pone.0240849


falling in the top ten percent of statistically significant results had verified KEGG Compound

IDs. Three of these five metabolites had significantly higher abundances among primary mela-

noma vs. EM in both positive and negative ion modes: N-Acetyl-DL-glutamic acid (KEGG

ID: C00624); Uracil (KEGG ID: C00106); and Dihydroxyacetone phosphate (KEGG ID:

C00111) (S3 Fig). Additionally, N-Methyl-D-aspartic acid (KEGG ID: C12269) and Fructose

1,6-bisphosphate (KEGG ID: C00354) had significantly higher abundances in primary

Table 2. (Continued)

Row� Ion mode P-value�� Direction vs. EM† m/z Retention time (seconds) Compound Name‡ KEGG ID

48 Negative 1.72E-05 1 451.1265 0.8

49 Positive 6.60E-06 1 177.9573 0.7

50 Positive 3.50E-06 1 193.9296 0.7

51 Positive 9.80E-06 1 195.9679 0.7

52 Positive 1.45E-05 1 154.9414 0.7

53 Positive 3.00E-06 -1 218.9191 0.6

54 Negative 2.90E-06 -1 312.9429 0.6

55 Positive 7.80E-06 -1 349.2111 0.7

56 Negative 7.70E-06 -1 315.9351 0.6

57 Negative 6.70E-06 -1 358.9227 0.6

58 Negative 1.60E-05 -1 468.8964 0.6

59 Negative 5.40E-06 -1 536.8855 0.6

60 Negative 5.80E-06 -1 248.9604 0.6

61 Negative 3.80E-06 -1 316.9480 0.6

62 Negative 6.40E-06 -1 446.9031 0.6

63 Negative 2.90E-06 -1 314.9326 0.6

64 Negative 2.90E-06 -1 246.9449 0.6

65 Negative 3.00E-06 -1 380.9042 0.6

66 Positive 3.50E-06 -1 158.9615 0.9

67 Positive 3.40E-06 -1 226.9510 0.6

68 Positive 5.00E-06 -1 90.9766 0.7

69 Positive 5.80E-06 -1 156.9483 0.6

70 Positive 5.80E-06 -1 82.0264 0.6

71 Positive 6.60E-06 -1 288.9207 0.6

72 Negative 1.88E-05 -1 94.9247 0.7

73 Negative 7.00E-06 -1 92.9278 0.7

74 Negative 7.80E-06 -1 96.9218 0.7

75 Negative 1.66E-05 -1 154.8986 0.8

76 Negative 6.40E-06 -1 181.9661 0.7

77 Negative 3.00E-06 -1 113.0243 0.7

78 Negative 2.90E-06 -1 89.0239 0.7

79 Negative 7.10E-06 -1 119.0353 0.7

80 Negative 5.80E-06 -1 143.0354 0.7

81 Negative 2.90E-06 -1 217.0299 0.7 Glucose/Fructose

82 Negative 2.90E-06 -1 215.0327 0.7 Glucose/Fructose

�Corresponds to row in Fig 2.

��Minimum FDR adjusted P-value among Wilcoxon signed rank test and T-test.
†1 = metabolite is more abundant in tumor relative to EM; -1 = metabolite is less abundant in tumor relative to EM.
‡ Compound identification according to IROA ClusterFinder library.

https://doi.org/10.1371/journal.pone.0240849.t002
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Fig 2. Metabolite abundance profiles differ significantly between primary melanoma and matched EM tissues. (A) Heatmap of the

top 10% of significant metabolites (n = 824). Tissue type (EM: Green or primary melanoma: Red) is noted in the top color bar.

Unidentified metabolites are annotated with retention time (RT) and mass (m/z). (B) Heatmap of the metabolite differences between

matched primary melanoma and EM tissues from the same patient for the top 10% of significant metabolites.

https://doi.org/10.1371/journal.pone.0240849.g002
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melanoma vs. EM in positive ion mode and negative ion mode, respectively (S3 Fig). Supple-

mental bar graphs illustrate all metabolites that were identified as significantly differentially

abundant between primary melanoma tissue and paired EM (S4 Fig).

Comparison of metabolites in metastatic melanoma and EM

The analysis comparing metastatic melanoma to EM tissues was performed after an additional

294 peaks were excluded due to failure to detect them among at least 50% of EM samples.

Among the 7,765 peaks subsequently tested in the comparison of metastatic melanoma and

EM tissues, 1,118 (14%) were differentially abundant after FDR adjustment (p<0.01). Approx-

imately 67% of statistically significant metabolites were observed at higher abundances among

metastatic melanoma compared to EM (S2 Fig). Of the 1,118 differentially abundant metabo-

lites identified, the top ten percent most significant are presented in Table 3 according to mass

(m/z) and retention time and are mapped in Fig 3. Four metabolites falling in the top ten per-

cent of statistically significant results had verified KEGG IDs based on m/z and retention

times; one of four metabolites was significantly higher in abundance among metastatic mela-

noma vs. EM in both positive and negative ion modes: Uracil (KEGG ID: C00106). The

remaining three, Cytidine 5’-diphosphocholine (KEGG ID: C00307), Cytosine (KEGG ID:

C00380), and N-Methyl-D-aspartic acid (KEGG ID: C12269) were higher in abundance

among metastatic melanoma compared to EM in positive ion mode (S5 Fig). Supplemental

box plots illustrate all metabolites that were identified as significantly differentially abundant

between EM and unmatched metastatic melanoma (S6 Fig). A comparison of metabolite abun-

dances found in primary melanomas and unmatched metastatic melanomas yielded no statis-

tically significant differences at the adjusted p<0.01 threshold (S7 Fig).

KEGG pathway-based analysis of metabolites

KEGG pathway-based analysis of metabolites distinguishing primary melanoma and matched

EM showed significant influence of compounds involved in the metabolism of: ascorbate

and aldarate (Enrichment Factor = 1.67, p = 0.003); propanoate (Enrichment Factor = 0.96,

p = 0.04); and tryptophan (Enrichment Factor = 0.65, p = 0.04). Metabolites involved in vita-

min B6 metabolism (Enrichment Factor = 1.21, p = 0.06) and pyruvate metabolism (Enrich-

ment Factor = 1.37, p = 0.08) were identified as strongly enriched, but were not statistically

significant (Table 4).

KEGG pathway-based analysis including metabolites identified in the unmatched analysis

of EM and metastatic melanoma showed pronounced influence of compounds involved in

ascorbate and aldarate metabolism (Enrichment Factor = 1.33, p = 0.002). Additionally,

pyrimidine (Enrichment Factor = 1.03, p = 0.01) and histidine (Enrichment Factor = 0.81,

p = 0.03) metabolism were significantly influential in distinguishing metastatic melanoma

from EM. Pentose phosphate metabolism (Enrichment Factor = 1.46, p = 0.05) was notably

enriched, but marginally statistically significant (Table 4).

MSEA pathway-based analysis of metabolites

We conducted MSEA for metabolites with statistically significantly higher abundance (or

lower abundance) in primary (or metastatic) melanoma compared to EM; and for each condi-

tion, the MSEA of pathway-associated metabolite sets—based on the small molecule pathway

database (SMPDB) [27]–was considered. A network of metabolite-metabolite interactions was

plotted for each condition, with nodes representing metabolites and edges indicating a rela-

tionship between metabolites based on STITCH databases [28]. L-glutamic acid and pyruvic

acid exhibited the most interactions when we considered significantly overabundant
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Table 3. Top ten percent of differentially abundant metabolites among metastatic melanoma and EM tissues according to mass (m/z) and retention time.

Row� Ion mode P-value�� Direction vs. EM† m/z Retention time (seconds) Compound Name KEGG ID

1 Negative 4.28E-08 1 218.0671 3.2

2 Positive 4.00E-11 1 230.1129 1.5

3 Positive 2.59E-08 1 264.0341 0.9

4 Positive 5.80E-10 1 272.0199 0.9

5 Negative 1.15E-08 1 533.1057 0.9

6 Positive 5.89E-09 1 245.0603 0.9

7 Positive 1.98E-08 1 489.1135 0.9 Cytidine 5’-diphosphocholine C00307

8 Negative 3.61E-09 1 577.0958 0.9

9 Positive 1.50E-10 1 112.0505 0.8 Cytosine C00380

10 Positive 9.60E-09 1 204.0864 3.0

11 Positive 1.19E-09 1 186.0758 3.0

12 Negative 5.66E-09 1 606.0745 3.0

13 Positive 4.91E-09 1 204.0863 3.1

14 Negative 4.80E-08 1 606.0745 3.2

15 Positive 1.41E-09 1 204.0863 3.3

16 Negative 3.80E-10 1 333.0593 0.7

17 Positive 1.10E-10 1 335.0726 0.7

18 Negative 4.40E-10 1 245.0431 0.8

19 Positive 1.50E-10 1 247.0570 0.8

20 Positive 8.91E-08 1 148.0603 0.7 N-Methyl-D-aspartic acid C12269

21 Positive 3.63E-08 1 131.0339 0.7

22 Positive 5.00E-10 1 150.0651 0.7

23 Negative 1.98E-08 1 228.0639 0.7

24 Negative 1.39E-08 1 272.0540 0.7

25 Positive 1.10E-07 1 706.0822 7.8

26 Positive 1.10E-07 1 706.2252 7.8

27 Negative 9.21E-08 1 160.0823 0.7

28 Negative 4.40E-10 1 126.9440 0.7

29 Negative 1.50E-10 1 216.9390 0.7

30 Negative 6.00E-11 1 218.9359 0.6

31 Negative 6.00E-11 1 128.9597 0.6

32 Negative 6.00E-11 1 296.8818 0.6

33 Negative 1.65E-08 1 346.8808 0.6

34 Negative 1.27E-09 1 278.8926 0.6

35 Negative 1.36E-09 1 432.8575 0.6

36 Negative 2.40E-10 1 280.9070 0.6

37 Negative 8.20E-08 1 500.8455 0.6

38 Positive 6.00E-10 1 156.9981 1.3

39 Positive 1.10E-10 1 123.5234 1.3

40 Negative 3.00E-11 1 173.0203 1.3

41 Positive 1.00E-11 1 113.0346 1.3 Uracil C00106

42 Negative 1.00E-11 1 111.0199 1.3 Uracil C00106

43 Positive 4.40E-10 1 114.5181 1.3

44 Positive 9.00E-11 1 214.9969 1.3

45 Positive 3.18E-08 1 126.0268 1.4

46 Positive 1.50E-10 1 230.9694 1.3

47 Positive 9.00E-11 1 212.9581 1.3

(Continued)
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Table 3. (Continued)

Row� Ion mode P-value�� Direction vs. EM† m/z Retention time (seconds) Compound Name KEGG ID

48 Positive 1.98E-08 1 268.1033 6.4

49 Positive 1.59E-09 1 290.0852 6.4

50 Negative 6.26E-09 1 266.0898 6.4

51 Negative 8.20E-10 1 306.0498 1.2

52 Positive 2.80E-10 1 395.4083 7.2

53 Positive 2.59E-08 1 325.0422 2.0

54 Positive 2.28E-09 1 213.0159 2.0

55 Negative 8.15E-09 1 323.0286 2.0

56 Positive 8.25E-09 1 347.0240 2.0

57 Negative 8.25E-09 1 435.0059 2.0

58 Negative 1.85E-08 1 346.0558 2.6

59 Positive 1.16E-08 1 348.0693 2.6

60 Positive 1.20E-07 1 152.0566 3.6

61 Positive 2.55E-08 1 357.0994 5.7

62 Positive 1.67E-08 1 358.1028 5.7

63 Negative 8.71E-09 1 356.0893 5.7

64 Positive 1.90E-10 1 374.0977 6.3

65 Negative 1.10E-10 1 372.0843 6.3

66 Negative 8.30E-08 1 332.0587 2.5

67 Negative 7.58E-08 1 105.0016 15.8

68 Positive 7.06E-08 1 334.0722 2.0

69 Positive 2.69E-08 1 356.0540 2.0

70 Negative 1.61E-08 1 444.0363 2.0

71 Negative 1.06E-08 1 332.0589 2.0

72 Positive 2.69E-08 1 218.0323 2.0

73 Negative 1.06E-08 -1 340.9375 0.6

74 Negative 3.70E-10 -1 312.9429 0.6

75 Negative 1.59E-09 -1 181.9661 0.7

76 Positive 4.32E-08 -1 216.9216 0.6

77 Positive 3.20E-10 -1 218.9191 0.6

78 Positive 1.14E-07 -1 150.0139 0.7

79 Negative 5.30E-10 -1 315.9351 0.6

80 Negative 3.70E-10 -1 358.9227 0.6

81 Positive 1.50E-10 -1 226.9510 0.6

82 Positive 1.40E-10 -1 90.9766 0.7

83 Positive 9.00E-11 -1 158.9615 1.0

84 Positive 7.40E-10 -1 82.0264 0.6

85 Positive 1.21E-09 -1 288.9207 0.6

86 Negative 3.80E-10 -1 446.9031 0.6

87 Positive 2.54E-08 -1 236.9065 0.6

88 Negative 2.04E-09 -1 246.9449 0.6

89 Negative 1.59E-09 -1 314.9326 0.6

90 Negative 1.00E-10 -1 380.9042 0.6

91 Negative 1.67E-08 -1 468.8964 0.6

92 Negative 1.58E-09 -1 536.8855 0.6

93 Negative 2.90E-09 -1 248.9604 0.6

94 Negative 4.60E-10 -1 316.9480 0.6

(Continued)
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metabolites among primary melanoma compared to EM (S8 Fig), while D-glucose and D-

galactose exhibited the most interactions when we considered metabolites that were signifi-

cantly less abundant among primary melanoma compared to EM (S9 Fig).

For those metabolites that were overabundant among metastatic melanoma vs. EM, we

again noted that L-glutamic acid and pyruvic acid exhibited the most interactions in the

MSEA generated metabolite network (S10 Fig). Similarly to results from our comparison of

primary melanoma and EM, D-glucose and D-galactose exhibited the most interactions when

we considered metabolites that were significantly less abundant among metastatic melanoma

compared to EM (S11 Fig).

Discussion

To date, metabolomics investigations of frozen human tissue specimens in the context of can-

cer have been limited; especially scant are those involving non-malignant tissue. To our knowl-

edge, this study represents the largest examination of extratumoral and matched primary

cutaneous melanoma tissues as well as a cohort of unmatched metastatic melanomas.

Our evaluation showed significantly differentially abundant metabolites comparing either

primary melanoma or metastatic melanoma to EM, and that 75% and 68% of differences,

respectively, represented higher levels of metabolite in the melanoma tissue. In contrast, com-

parison of metabolite abundances between primary and metastatic melanoma yielded no sta-

tistically significant differences. In a study of melanoma cell lines, Yu et al. reported 12

metabolites different between primary melanoma and descendent metastatic melanoma [29].

This study applied a less conservative significance level (α = 0.05) whereas our approach was

Table 3. (Continued)

Row� Ion mode P-value�� Direction vs. EM† m/z Retention time (seconds) Compound Name KEGG ID

95 Positive 7.40E-10 -1 156.9483 0.6

96 Negative 1.31E-08 -1 144.8697 0.8

97 Negative 1.50E-10 -1 146.8667 0.8

98 Negative 6.80E-10 -1 154.8809 0.8

99 Negative 1.11E-08 -1 94.9247 0.7

100 Negative 4.91E-09 -1 92.9278 0.7

101 Negative 1.31E-08 -1 154.8986 0.8

102 Negative 7.12E-08 -1 96.9218 0.7

103 Positive 1.10E-07 -1 241.1588 2.3

104 Positive 2.63E-09 -1 256.1775 6.3

105 Positive 2.58E-08 -1 257.1614 1.8

106 Positive 1.10E-07 -1 200.0912 4.7

107 Negative 4.28E-08 -1 113.0243 0.7

108 Negative 2.82E-08 -1 143.0354 0.7

109 Negative 8.29E-08 -1 89.0239 0.7

110 Negative 3.61E-09 -1 217.0299 0.7 Glucose/Fructose

111 Negative 3.30E-09 -1 215.0327 0.7 Glucose/Fructose

112 Positive 3.16E-08 -1 180.0865 0.7

�Corresponds to row in Fig 3.

��Minimum FDR adjusted P-value among Wilcoxon signed rank test and T-test.
†1 = metabolite is more abundant in tumor relative to EM; -1 = metabolite is less abundant in tumor relative to EM.
‡ Compound identification according to IROA ClusterFinder library.

https://doi.org/10.1371/journal.pone.0240849.t003
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Fig 3. Metabolite abundance profiles differ significantly between metastatic melanoma and unmatched EM tissues. Heatmap of the

top 10% of significant metabolites (n = 1,118). Tissue type (EM:green or metastatic melanoma: Black) is noted in the top color bar.

https://doi.org/10.1371/journal.pone.0240849.g003
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deliberately conservative to identify differences with high confidence focused on malignant vs.

EM conditions. Our data suggest that primary vs. metastatic differences may be more subtle

than differences observed between malignant tissues and EM, and future studies are needed to

fully characterize these differences.

Overall, pathway-based analysis yielded three significantly influential pathways in distin-

guishing primary melanoma from EM (ascorbate and aldarate metabolism, propanoate

metabolism, and tryptophan metabolism) and three significantly influential pathways in dis-

tinguishing metastatic melanoma from EM (ascorbate and aldarate metabolism, pyrimidine

metabolism and histidine metabolism) that may reflect important foci of carcinogenesis and

cancer progression, respectively. Within these pathways, the majority of individual metabolite

abundances observed in comparisons of primary melanoma vs. EM and metastatic melanoma

vs. EM were directionally consistent; that is, the majority of compounds that were observed to

be higher in abundance (or less abundant) in primary melanoma compared to EM were also

higher in abundance (or less abundant) in metastatic melanoma compared to EM. This

observed concordance suggests most identified compounds are implicated in the initiation or

maintenance of melanoma, as opposed to progression of disease. Nevertheless, we observed

several key metabolites within pathways that were in opposing directions according to primary

melanoma vs. EM or metastatic melanoma vs. EM. These discordant observations are sugges-

tive of metabolites that may be influential in disease progression.

Ascorbate and aldarate metabolism showed notable differences between both malignant tis-

sue types and EM. Interestingly, within this pathway, arabinose was observed at lower abun-

dances in primary melanoma compared to EM, whereas it was at higher levels in metastatic

melanoma compared to EM. An overabundance of arabinose was reported in colorectal

tumors compared to matched normal mucosa, where the majority of malignant tissues sam-

pled (56%) represented metastatic disease [30]. Similarly, in a study comparing serum metabo-

lite concentrations between advanced pancreatic cancer patients (79% stage III/IV) and

healthy volunteers, arabinose was found at nearly 2-fold higher concentrations among pancre-

atic cancer patients [31]. In contrast, a study comparing relatively early staged esophageal car-

cinomas (60% stage I/II; 70% non-metastatic) to matched normal mucosae reported a lower

abundance of arabinose among the tumor tissue [32]. These results may indicate that

Table 4. Top KEGG biological pathways distinguishing primary melanoma from EM and metastatic melanoma from EM.

Primary melanoma vs. EM Metastatic melanoma vs. EM

Pathway name Total

metabolites�
Hits (all/

sig)��
Expected† Enrichment

factor‡
P-

value

Total

metabolites�
Hits (all/

sig)��
Expected† Enrichment

factor‡
P-

value

Ascorbate and

aldarate

45 32/29 17.41 1.67 0.003 45 32/32 24.1 1.33 0.002

Tryptophan 79 23/20 30.56 0.65 0.04 79 26/23 42.31 0.54 0.33

Propanoate 35 14/13 13.54 0.96 0.04 35 15/12 18.74 0.64 0.76

Vitamin B6 32 17/15 12.38 1.21 0.06 32 19/17 17.14 0.99 0.35

Pyruvate 32 20/17 12.38 1.37 0.08 32 20/14 17.14 0.82 0.96

Pyrimidine 60 35/24 23.21 1.03 0.57 60 34/33 32.13 1.03 0.01

Histidine 44 17/12 17.02 0.71 0.54 44 19/19 23.56 0.81 0.03

Pentose phosphate 32 24/14 12.38 1.13 0.90 32 26/25 17.14 1.46 0.05

� Total number of KEGG metabolites considered by Mummichog/Metaboanalyst according to pathway.

�� Total number of hits per pathway and total number of statistically significant hits per pathway (p<1x10-05).
† Expected number of hits.
‡ The ratio of the number of significant pathway hits to the expected number of compound hits within the pathway.

https://doi.org/10.1371/journal.pone.0240849.t004
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arabinose and related metabolic pathways should be more thoroughly investigated. In addi-

tion, arabinose has been the target of bacteria-based cytotoxic therapies in murine colorectal

tumors involving Salmonella typhimurium. The attenuated strain is engineered to exclude the

ara operon that is responsible for metabolizing arabinose to D-xylulose-5-phosphate. When

affected mice were treated with the operon-deleted strain, arabinose accumulation resulted,

facilitating expression of the cytotoxic protein cytolysin A in the tumors [33]. In conjunction

with arabinose supplementation, such therapies may show promise among earlier staged mela-

nomas, as well as in the treatment of metastatic melanomas that accumulate high levels of

arabinose. It should be noted that compounds involved in the KEGG annotated ascorbate and

aldarate metabolic pathway are involved in several other pathways, leading some to suggest the

pathway is redundant and should not be considered as an independent pathway [34].

We noted a significant influence of compounds involved in propanoate metabolism on dis-

tinguishing primary melanoma from EM. Propanoate was notably reduced among primary

melanoma compared to EM, whereas it was at significantly higher levels among metastatic

melanoma compared to EM. Propanoate has been shown to inhibit tumor cell proliferation

and promote apoptosis in different cancer cell types [35–37]; one possible explanation for our

observation may be related to reduced expression of free fatty acid receptor 2 (FFAR2, also

known as GPR43)—a receptor for which propanoate is the most potent ligand [38]—leading

to an unproductive pool of propanoate. Loss of FFAR2 has been shown to promote colon can-

cer and leukemia in murine models [39–41], and expression levels are relatively diminished

among TCGA melanoma tissues vs. several other cancers according to the Human Protein

Atlas [42]. Loss of FFAR2 (or obstruction of ligand binding) may be a significant marker of

melanoma progression, and is already being examined as a therapeutic target for metabolic

and inflammatory diseases [43]. Surprisingly, in comparisons of both primary melanoma and

metastatic melanoma vs. EM, we observed a reduced abundance of L-lactate. Lactate is

involved in propanoate metabolism as a contributor to the pool of propionyl-CoA, which is

converted to succinyl-CoA and enters the Krebs cycle. It is also an important factor in glycoly-

sis. Increased production of lactate via glycolysis is a hallmark of cancer in general, as the vast

majority of human cancers exhibit overexpression of glycolytic genes [44, 45]. Melanoma cells

are known to exhibit the Warburg effect in cell line studies, but have also demonstrated func-

tional oxidative phosphorylation, even under hypoxic conditions [46]. However, in the context

of tumor microenvironment, newer research suggests metabolic heterogeneity across tumors

[47] that may be attributed to a preference for oxidative phosphorylation—a so-called “reverse

Warburg effect” [48–51]. This theory involves aberrant induction of aerobic glycolysis in adja-

cent cells and utilization of the products for mitochondrial oxidative phosphorylation in

tumor cells [52–55]. The proposed mechanism involves tumor cell stimulation of oxidative

stress among adjacent fibroblasts, leading to downregulation of caveolin-1 (CAV1)—a plasma

membrane protein associated with increased mitochondrial activity [55, 56]. Downregulated

CAV1 promotes glycolysis in adjacent cells leading to increased tumor growth via the reverse

Warburg effect [57]. Loss of stromal CAV1 has been associated with poorer prognosis among

metastatic melanoma patients [58], and clinical studies of squamous cell carcinoma have dem-

onstrated reconstitution of CAV1 and increased tumor cell apoptosis in patients treated with

Metformin [59]—a drug known to inhibit mitochondrial oxidative phosphorylation.

Endogenous molecules related to tryptophan metabolism could also distinguish primary

melanoma from EM. Notably, N-acetylserotonin was less abundant among primary melanoma

vs. EM and more abundant in metastatic melanoma vs. EM, whereas melatonin levels were

not significantly different between melanoma tissues and EM. Melanoma cells can possess

high and low affinity binding sites for melatonin, which is known to inhibit cell proliferation

[60]. Souza et al. demonstrated equally potent antiproliferative effects for N-acetylserotonin
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and melatonin [60]; however, N-acetylserotonin only binds low affinity receptors whereas mel-

atonin binds both high and low affinity sites. As N-acetylserotonin is a precursor of melatonin,

and both ligands have similar binding affinities, our results may suggest inhibited binding of

an extant, but limited, pool of melatonin.

Pyrimidine and histidine metabolic pathways accounted for some of the differences

between the metabolomes of metastatic melanoma and EM. With respect to pyrimidine

metabolism, cytidine was notably increased among metastatic melanoma relative to EM, but

reduced among primary melanoma vs. EM. One explanation may be reduced expression of

cyditine deaminase (CDA), which is responsible for the irreversible conversion of cytidine to

uridine. CDA has recently been reported as downregulated in approximately 60% of cancer

cells and tissues, making it a promising therapeutic target [61]. The histidine metabolic path-

way also exhibited individual metabolite differences when comparing metastatic melanoma vs.

EM to primary melanoma vs. EM results. Notably, urocanic acid (UCA) was detected at higher

levels among primary melanoma vs. EM and was less abundant in metastatic melanoma vs.

EM, whereas histidine was less abundant in primary melanoma vs. EM and conversely more

abundant in metastatic melanoma vs. EM. UCA is present in the stratum corneum and has

been called a “natural sunscreen” due to its photoprotective properties [62]. UCA is synthe-

sized from histidine by the enzyme histidine ammonia lyase [63]. Changes in the expression of

histidine ammonia lyase may be related to a transition from primary melanoma to metastatic

melanoma.

Our exploratory MSEA pathway-based analysis, which drew on a larger number of physio-

logical pathways and was not limited to KEGG pathways alone, yielded comparable influential

network nodes when we compared primary melanoma to EM and metastatic melanoma to

EM. L-glutamic acid and pyruvic acid were influential in distinguishing networks of overabun-

dant metabolites in both primary melanoma and metastatic melanoma vs. EM, whereas D-glu-

cose and D-galactose were influential in distinguishing networks of less abundant metabolites

in both primary melanoma and metastatic melanoma vs. EM. Glutamic acid influences more

metabolic reactions than any other amino acid and serves as a key source of glucose. Glutamic

acid has exhibited anti-cancer properties when conjugated with current pharmaceutical treat-

ments (e.g. paclitaxel, cisplatin) [64]. In a recent study aimed at differentiating slow and fast

proliferative states among melanoma cell lines compared to control media, glutamic acid was

observed to play a supportive role in significantly accelerating proliferation, migration, and

invasiveness among early stage melanoma cells, but not among metastatic melanoma cells

[65].

The overabundance of pyruvic acid we observed among melanoma cells compared to EM is

consistent with recent research that suggests it may accumulate in the cytosol as a result of sus-

tained ERK1/2 activation in melanoma, leading to downregulation of pyruvate dehydrogenase

and promotion of lactic fermentation—a hallmark of cancer [66].

The relatively diminished abundance of glucose and galactose among melanoma cells vs.

EM is not surprising; melanoma cells are known to metabolize a large proportion of glucose

into lactate under both normoxic and hypoxic conditions via the Warburg effect, and galactose

is a precursor to glucose production by conversion to glucose 6-phosphate.

Conclusions

In summary, compounds in the ascorbate and aldarate metabolic pathway distinguish the

metabolomes of both primary and metastatic melanoma from that of EM. The tryptophan and

propanoate metabolic pathways distinguished primary melanoma from EM, but not metastatic

melanoma from EM, suggesting that these pathways may be important to the initiation or
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maintenance of the carcinogenic process for melanoma. In contrast, pyrimidine and histidine

metabolic pathways could distinguish metastatic melanoma from EM, but not primary mela-

noma from EM. This finding indicates that these pathways may be important to the progres-

sion of melanoma rather than its initiation, and that the proteins or metabolites in these

pathways may play a role as potential therapeutic targets to inhibit metastasis.
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