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The Chaotic Multiquenching Annealing algorithm (CMQA) is proposed. CMQA is a new algorithm, which is applied to protein
folding problem (PFP). This algorithm is divided into three phases: (i) multiquenching phase (MQP), (ii) annealing phase (AP), and
(iii) dynamical equilibrium phase (DEP). MQP enforces several stages of quick quenching processes that include chaotic functions.
The chaotic functions can increase the exploration potential of solutions space of PFP. AP phase implements a simulated annealing
algorithm (SA) with an exponential cooling function. MQP and AP are delimited by different ranges of temperatures; MQP is
applied for a range of temperatures which goes from extremely high values to very high values; AP searches for solutions in a range
of temperatures from high values to extremely low values. DEP phase finds the equilibrium in a dynamic way by applying least

squares method. CMQA is tested with several instances of PFP.

1. Introduction

DNA is a molecule that contains genetic instructions, which
are used in protein synthesis process [1]. This molecule has a
complete set of hereditary information of any organism. DNA
is formed by four different nucleotides, Adenine identified
by the letter A, Cytosine identified by the letter C, Guanine
identified by the letter G, and Thymine identified by the
letter T. This molecule is divided into genes; each gene is a
sequence of nucleotides that can express a functional protein.
The transcription process of DNA creates an RNA molecule,
which generates proteins. A protein is a linear polypeptide of
amino acids, which are joined by peptide bonds. The atoms
of a protein are arranged in a three-dimensional structure
geometric model. In principle, function and structure of
a protein are determined by its amino acids sequence. A
functional protein is conformed in a geometrical model
with a global minimum energy [2]; however, there are

some exceptions [3]. This structure is usually named native
structure (NS). The free energy of a conformation depends on
the interaction among the atoms and their relative positions;
normally, this energy can be calculated using torsion angles
and the distance among atoms.

A protein can take consequently many different con-
formational structures from its primary structure to its
native structure [4]. Therefore, computational methods are
currently designed in order to find the optimal solution,
which has the minimal free energy and determines the NS.
The computational problem involved to find the NS is known
as protein folding problem (PFP). Because PFP is a NP
problem [5], metaheuristic methods avoid the generation of
all possible states of the protein [6]. A particular class of these
methods is known as Ab-Initio. In other words, Ab-Initio
methods search for NS only using protein sequence amino
acids.
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New heuristic methods are used to solve PFP, where
simulated annealing (SA) [7, 8] is one of the most successful.
However, in order to generate high-quality solutions for
PFP, new and more efficient SA should be designed [9];
one of them is named Multiquenching Annealing algorithm
(MQA) [10]. This algorithm uses two phases. The first one
or quenching phase applies a fast cooling rate to reach a fast
solution. In contrast, the second phase applies a slow cooling
rate in order to obtain a high-quality solution.

In this paper, a new approach named Chaotic Multi-
Quenching Annealing (CMQA) for PFP is presented. CMQA
has three phases. The first one applies a quenching process
and chaotic functions in several subphases. The second phase
implements an annealing process. In the third phase, the
stochastic equilibrium is detected by using least squares
method.

2. Materials and Methods

In this section the protein folding problem is briefly described
and the next methods are explained: SA, MQA, and CMQA.
Then chaotic local search (CLS) is introduced and compared
with those algorithms trough a set of small proteins.

2.1. Protein Folding Problem. Native structure prediction of
a protein is an enormous challenge in the computational
biology domain [11, 12]. PFP is an interdisciplinary problem
which involves molecular biology, biophysics, computational
biology, and computer science [13]. In the case of Ab-Initio,
NS prediction requires different mechanisms that lead the
searching process to a unique biological three-dimensional
structure. This process only requires amino acids’ sequence.
There is an extremely large space of possible conformations
of the protein; the size of this space depends on the length of
the sequence of amino acids [4].

The function of a protein directly is related to its three-
dimensional structure, and misfolded proteins can cause a
variety of diseases [14-19]. In addition, PFP is analyzed in
protein engineering area [20] where proteins are designed
and constructed with desired functions and structures. PFP
can be solved by different combinatorial optimization algo-
rithms [21]. An objective function of PFP would be optimized
by finding the native structure of a protein. PFP requires the
following information:

(i) a sequence of n amino acids a;,a,, . .., a, that repre-
sents the primary structure of a protein;

(ii) an energy function, f(0,,0,,...,0,,), which repre-
sents the free energy. The variables 0,,0,,...,0,,
represent the m dihedral angles.

The solution of this problem is to find the native structure
such that f*(0,,0,,...,0,,) represents the minimal energy
value. The optimal solution ¢* = (0y,0;,...,0,,) defines the
best three-dimensional configuration. Force fields are used
to represent the energy of a protein [22]; some of the most
common are AMBER [23], CHARMM [24], ECEPP/2, and
ECEPP/3 [25]. These fields compute some energy compo-
nents, for example, the electrostatic energy [25], the torsion
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FIGURE 1: CMQA phases.

energy [23], the hydrogen bond energy, and the Lennard-
Jones energy [26].

Simulated annealing algorithm has generated very good
results for PFP [9, 27-29]. This method has been used in
many combinatorial optimization problems [9, 10, 30-32].
However, SA has a low convergence feature and requires too
much execution time. Thus, it is convenient to develop new
SA strategies for improving its effectiveness.

2.2. Chaotic Multiquenching Annealing Algorithm

2.2.1. General Description. The Chaotic Multiquenching
Annealing (CMQA) introduced in this paper is composed of
three phases as it is shown in Figure 1: (i) multiquenching
phase (MQP) applies several quenching processes, all of
which implement a chaotic local search at the end of each
stage; (ii) annealing phase (AP) is a classical simulated
annealing process; and (iii) dynamical equilibrium phase
(DEP) detects the stochastic equilibrium in a dynamical way
using a regression method. MQP is applied from extremely
high temperature to very high values. This phase applies a
very fast cooling function to decrease the temperature param-
eter. MQP is executed from T}, until Ty, .¢01q- After this phase,
AP is executed until a final threshold temperature (T',),
which is close to the final temperature of the whole algorithm.
AP develops an exploration of the solution space with a very
slow temperature’s decrement. Finally, DEP detects the final
temperature T by using an efficient implementation of the
least squares method.

All CMQA's phases apply a cooling function (1), which is
similar to that applied in the classical simulated annealing
algorithm. The initial and final temperatures (T, and T')
can be determined experimentally and/or analytically. The «
parameter is a decrement temperature factor; it is less than
one and greater than a certain value (close to 0.7) as follows:

Ty =aTy, k=0,1,2,...,07<a<l o)
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2.2.2. Multiquenching Phase. MQP has several subphases (see
Figure 2). It starts at extremely high initial temperature (T;))
and it is finished when a threshold temperature (T eqholq) 1S
reached. MQP uses the cooling function given by (2) and (3).
In this case, the temperature is decreased by using dquenching
and T parameters. Aqyenching Parameter is in the range (0, 1),
and it defines how fast each MQP’s subphase is decreased.
A very low value &guenching Will decrease the temperature
very fast. The T parameter is ranged in (0, 1), and it defines
a quadratic decrement of the temperature. Notice that T
converges to zero, and then (2) is equivalent to (1) as follows:

k=0,1,2,..., 0.7 <a<]1,
)

0<t<l1. (3)

Tk+1 = “Quenching (1 - T) Tkr

2
T=T,

The transition between two subphases is based on T
parameter. It occurs when 7 converges to zero (r = 0).
In this transition, a chaotic local search (CLS) is started.
When CLS is finished, the new MQP subphase (i.e., another
quenching process) is started, and 7 is set to its initial value.
This process continues until the temperature Ty ol 1
reached. Actually, this temperature corresponds to the initial
temperature of a classical SA algorithm. Therefore, MQP is
an additional search procedure that looks for improving the
quality solution, even though the execution time is increased.
An alternative approach is to increment the iterations’ num-
ber of the classical SA. However, in this alternative, the quality
solution is not significantly improved according to previous
experimentation.

Algorithm 1 shows the MQP’s pseudocode. In the setting
section, MQP’s parameters are established. The initial tem-
perature T, is defined according to a tuning method [33],
while &gyenching and T parameters experimentally are set (in
this case 0.85 and 0.90, resp.). MQP generates a random
initial solution S; (with an energy E(S;)) at the temperature
T,, which determines an initial minimal solution candidate
(Spin)- Two main cycles can be observed in this algorithm.
The first one (external cycle) controls the temperature, which

is decreased by applying geometric function (2). The other
cycle (or metropolis cycle) generates new solutions S; by
using a perturbation function. This function is a classical
probabilistic distribution at the beginning of the process,
which is different to that used at the end of the algorithm
when a chaotic search procedure is used. In the internal cycle,
S; is always accepted if it is better than a previous solution.
When a new solution does not improve the previous one,
it is accepted or rejected with the Boltzmann distribution.
When S is accepted, it replaces the previous solution §; (i.e.,
S; = §;). When a new accepted solution §; is better than
the current minimal solution S, ;,, it is replaced by S; (i.e.,
Smin = S;). Each time a metropolis cycle is finished, the T
parameter is updated according to (3), and when its value
converges to zero, a chaotic local search (CLS) is executed.
Once CLS (explained in Section 2.2.4) is finished, the 7
parameter retakes its initial value and a new MQP subphase
is started. In this case, a new temperature is calculated using
(2), and the process continues until the Ty .4 temperature
is obtained.

The parameter T, is set to an initial value and is assigned
to T (see line 4). The threshold temperature (T, eqnold) 18 Set
to an initial value (see line 5). &qyenching and y are set to initial
value (seeline 6). S; is set to initial solution. E(S;) is calculated,
which represents the energy of S; (see line 8). S,.,;,, is set to S;.
The energy of S, ;, is set to E(S;). The external cycle is started
(see line 11), and this is finished at line 30. The metropolis
cycle is started within the temperature cycle (see line 12),
and this cycle is finished at line 23. Within this cycle, §; is
created by applying a uniform perturbation (see line 13). The
difference of energies between E(S j) and E(S;) is calculated
(see line 14). If this difference is less than zero (see line 15),
then the §; is accepted (see line 16). Then, this solution S;

is assigned to S;. If this difference is greater than zero, then

the Boltzmann probability is calculated by using e~ (ifference/T)

(seeline 17). If this probability is greater than a random value
between 0 and 1 (see line 17), then the S ;s accepted (see line
18). Then, this solution §; is assigned to S;. If §; is less than S, ;,
(seeline 20), then S; is assigned to S,,,;, (see line 21). After the
metropolis cycle is finished, the variable y is updated by (3)
(seeline 24). If y is very close to zero (see line 25), then y is set
to initial value (see line 26), and the chaotic search is called
(see line 27). The temperature value T is set by applying (2)
(see line 29).

2.2.3. Setting the Temperature Range. CMQA uses an analyti-
cal tuning method to determine the initial and final tempera-
ture [33]. This method is based on the acceptance probability
of the solutions. At the beginning, the probability of accepting
a new solution is very close to one. This occurs at extremely
high temperatures; consequently, the deterioration of the cost
function is maximal. Therefore, the initial temperature T},
is associated with the maximal deterioration AZ .. On the
other hand, the probability of a new solution is very close to
zero at very low temperatures; in this case, the deterioration
of cost function is minimal. Thus, the final temperature
T is associated with the minimal deterioration AZ ;. The
acceptance probability based on Boltzmann distribution is
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(2) Begin
3) //Setting section

(31) End procedure

(1) Multi-quenching Phase Procedure()

(4) T, = Initial Temperature, T = T,

(5)  Trpeshod = initial value

(6) AlphaQuenching = initial value, tau = initial value
(7) //Creation of initial solution

(8) S; = Initial solution; E(S;) = Energy(S,);

(9) Smin = Si; E(Smin) = E(SI)

(10)  //Multi-quenching Cycles

(11)  Repeat //External Cycle (Temperature Cycle)

(12) Repeat //Internal Cycle (Metropolis Cycle)
13) S;= Perturbation (S;) //Uniform perturbation
(14) DE = E(S;) - E(S;)

(15) If DE < 0 Then

(16) S =S;

17) else if ¢"(~DE/T) > random [0,1] Then
18) S =S;

19) end if

(20) IfS; < Spin then //save S ;)

(21) Smin = Sis E(Spin) 1 saved

(22) end if

(23) Until Metropolis Cycle is Finish

(24) tau = tau "2

(25) If (tau is very to close 0) Then

(26) tau = initial value

(27) Call Chaotic Search Procedure()

(28) end if

(29) T = AlphaQuenching (1 — tau) T

(30)  Until T > Tyy,.noiq //External Cycle

ALrGgoriTHM 1: MQP pseudocode.

defined by (4). At extremely high temperatures, this equation
leads to (5). On the other hand, at the end of the process, the
final temperature is obtained by (6) as follows:

P(AZ) = exp(%), (4)
—AZmaX

0 n P (aZpe))’ )
—AZ

min
U (8 Z)) ©
Actually, CMQA uses the final temperature only as a
guide to detect stochastic equilibrium at dynamical equilib-
rium phase. This phase is a special process based on least
squares method during the last phase of CMQA. DEP is
started some cycle before Ty and is explained in Section 2.2.6.

2.2.4. Chaotic Local Search. In order to avoid falling into
local optima, CMQA applies CLS procedure at very high
temperatures. As it is shown in Algorithm 2, this process has
only a search cycle; S, ;, solution is improved by a chaotic
function f(x). This function is named chaotic perturbation in

(1) Chaotic Search Procedure

(2) Begin

(3) Saux - Si

(4) Si — Smin

(5) For k = 1 To Mchaot

(6) S;= Chaotic Perturbation (S;)
(7) IfS; < Sy then
(8) Smin — Sj
9) End if

(10) S < Suin

11) Next //end for

(12) si « Saux

(13) End procedure

ALGORITHM 2: CLS pseudocode.

the pseudocode of Algorithm 2. The purpose of this chaotic
function is to improve the possibility of escape from any
local optimum. In CLS, §; solution is generated by applying
a chaotic perturbation to S,;,; when §; is better than S,
then §,;, is replaced by S;. Thus, S, solution is improved
after several iterations (M, ,.,)- Generally, CLS improves S ;.
when M, is equal to the number of instance’s variables.
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(1) Annealing Phase Procedure

(2) Begin

3) AlphaAnnealing = initial value

(4) T = Final temperature of MQP (Threshold value)
(5)  Tgpa = very close to zero

(6)  Beta = value calculated by analytical method
(7) MC = initial value

(8) Repeat //External Loop

9) k=1

(10) Repeat //Internal Loop (Metropolis Cycle)
11) S; = New solution (S;)

(12) DE = E(S;) - E(S;)

(13) If DE < 0 Then

(14) S =S;

(15) else if ¢"(DE/T) > random [0, 1] Then
(16) S =S;

17) end if

(18) IfS; < Spin then

(19) Smin = Si

(20) end if

(21) Until kK < MC

(22) T = AlphaAnnealing * T

(23) MC = Beta * MC

(24) k=k+1

(25) Untl T > Ty,

(26) End procedure

ALGORITHM 3: AP pseudocode.

The current solution S; is assigned to S, (see line 3). The
minimal solution S, is assigned to §; (see line 4). The FOR
statement is started atline 5, and it is finished at line 11. Within
this FOR statement, the solution S is created by applying a
chaotic perturbation to S; (see line 6). If solution S i is better
than S, ;, then S, replaces S, ;, (see line 8). The solution S,;,
is assigned to S; (see line 10). After FOR statement is finished,

Saux 18 assigned to S;.

2.2.5. Annealing Phase. The annealing phase (AP) corre-
sponds to the classical simulated annealing algorithm and it
is shown in Algorithm 3. When CMQA reaches its threshold
level (T eshola)> AP phase is started with the cooling function
(1) using Aquenching @S decrement temperature factor. As it
is known, AP phase contains two cycles, as it is common
in classical SA. This pseudocode uses the same notation
previously explained in Section 2.2.2.

2.2.6. Dynamical Equilibrium Based on Least Squares Method.
CMQA algorithm dynamically finds the equilibrium by using
least squares method. In order to obtain better solutions for
PFP, this approach is applied after AP phase. Let (x, E;) be a
set of n points withi = 1,2,...,n. E; represents the energy of
protein at x; point. The goal is to find a straight line, which is
defined as f(x;) = ax; + b that approximates the set of points,
where a represents the slope of the straight line, and it is
calculated by applying least squares method. The b parameter

TABLE 1: Instances of PFP.

Mchaot
Instance of PFP Amino acids (number of
variables)
Met’-enkaphalin 5 19
Proinsulin 31 132
T0549 73 343
T0335 (Bacillus subtilis) 85 450
T0281 (hypothetical protein)
90
(1WHZ) 458

represents the intersection with axis. These parameters are
calculated by

0= ”Z?:l xE; - (ZL x;) (Z?:l E;) ’
nyi, x; - (X x,~)2
(XL E) (Z?:l xlz) - (X %) (X (KE)))
nYi, <t - (T %)’ '

It is easy to show that the slope of the straight line can be
calculated by

(7)
b=

1230 xE-6(n-1)Y E
= - ,

(8)

a

n —-n

CMQA determinates the dynamical equilibrium. This
condition is obtained when the slope (a) of the straight line is
very close to zero.

3. Results and Discussion

CMAQA is tested with five instances of PFP (see Table 1). These
instances have different sequence’s lengths and different num-
ber of variables (dihedral angles). The smallest sequence is
Met® -enkaphalin, which has five amino acids and 19 variables.
The largest sequence is a hypothetical protein (CASP T0281),
which has 90 amino acids and 458 variables. The proinsulin
instance has 31 amino acids and 132 variables; the 2K5E
(CASP T0549) has 73 amino acids and 343 variables. The
instance Bacillus subtilis (CASP T0335) has 85 amino acids
and 450 variables. The dihedral angles used in the simulations
were phi (®), psi (¥), omega (w), and Chi (y).

Some parameters of MQP phase were determined exper-
imentally. For example, the atguenching i st to 0.85 value; the
initial value for 7 is 0.90, and its final value is 0.0009. Different
chaotic functions were tested for generating PFP solutions.
These chaotic functions are (9), (10), (11), and (12). These
equations are graphically shown in Figures 3, 4, 5, and 6,
respectively. In AP phase, oty neqiing Was fixed from different
values taken from the range [0.75, 0.95] as follows:

f=sin(=), ©)

() w



1.5
1 . . . .
05 /\ /\ .
5
=z 0
—0.5 . . . . .
-1 . . . . .
—15
0.4 0.6 0.8 1 1.2
X
F1GURE 3: Chaotic function (9).
1.5
1 . . . . .
Eg 0 ‘
=
-1 , . = . A
—15
0.2 0.4 0.6 0.8 1 1.2
X
F1GURE 4: Chaotic function (10).
1.5
-1.5
0 0.2 0.4 0.6 0.8 1 1.2

X

F1GURE 5: Chaotic function (11).

(@) w

f(x)zsin(i)*sin(%). (12)

- X

The results obtained are shown in Tables 2 to 6, which
include information about the average energy of each pro-
tein (kcal/mol), its average processing time (minutes), and
dRMSD. These results are grouped by oyneqiing Values for

each chaotic function. For Mets-enkaphalin, the results
are shown in Table 2. The best average solution for this
protein was obtained by applying oy, neqling 0.95 and
the chaotic function number 12; the best average energy
was —5.4390 kcal/mol, with a processing time equal to 1.1191
minutes and dRMSD equal to 0.8913. Figure 7 shows the best
solution with a dRMSD close to 0.88 and energy value equal
to —7.1804 kcal/mol.
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The results obtained for proinsulin are shown in Table 3.
The best average solution for this protein was obtained by
applying chaotic function number 12. The best solution has
—126.9481 kcal/mol obtained with a processing time equal to
38.0507 minutes and dRMSD equal to 0.8233. Notice that the
best results are obtained with high values. In Figure 8, the
best solution is shown which has —162.5686 kcal/mol and a
dRMSD equal to 0.72. The results obtained for T0549 instance
are shown in Table 4. The solution with the best average
energy is —269.6413 kcal/mol with processing time equal to
288.8558 minutes and dRMSD value of 0.72. Again, the best
solution corresponds to the highest value of oy ealing €qual
to 0.95. In this case, chaotic function number 10 provided the
best results. The graphic of average energy versus dRMSD is
shown in Figure 9. The solution with the best quality solution
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TABLE 2: Average results of Met’-enkaphalin.
A nnealing Chaotic function Average energy (Kcal/mol) Processing time (minutes) Average dRMSD
0.75 9) —3.2864 0.2535 0.8877
0.75 (10) —4.0060 0.2105 0.9467
0.75 (11) —3.3431 0.2082 0.9017
0.75 (12) -3.4586 0.2514 0.9380
0.80 9) —3.0485 0.2959 0.9130
0.80 (10) —4.3873 0.2459 0.9197
0.80 (11) —4.2264 0.2447 0.9123
0.80 (12) -3.9217 0.2981 0.8927
0.85 9) -3.7723 0.4014 0.9160
0.85 (10) —4.6635 0.3365 0.8857
0.85 (11) —4.7060 0.3332 0.8757
0.85 (12) —4.2143 0.3957 0.8910
0.90 9) -3.7260 0.5581 0.8963
0.90 (10) —4.7153 0.4626 0.8827
0.90 (11) —4.6326 0.4627 0.8987
0.90 (12) —4.8833 0.5585 0.8953
0.95 9) -5.0771 1.3507 0.8957
0.95 (10) -4.9370 1.1181 0.9137
0.95 (11) —-5.4390 1.1191 0.8913
0.95 (12) -5.3156 1.3501 0.8963
TABLE 3: Average results of proinsulin.
Oz nnealing Chaotic function Average energy (Kcal/mol) Processing time (minutes) Average dRMSD
0.75 9) -93.9999 7.8882 0.9127
0.75 (10) -97.7679 6.3553 0.8643
0.75 (11) —-101.9142 6.3597 0.8703
0.75 (12) —95.6412 7.9355 0.8960
0.80 9) -96.7255 9.3634 0.8830
0.80 (10) -103.1905 7.5315 0.8847
0.80 (11) —-95.8967 7.5401 0.9290
0.80 (12) —-95.7312 9.3426 0.8920
0.85 9) -102.0535 12.0797 0.8523
0.85 (10) -102.3225 9.7425 0.8893
0.85 (11) —-101.6467 9.7446 0.8590
0.85 (12) -107.0401 12.1044 0.8933
0.90 9) -110.0378 18.3063 0.8427
0.90 (10) -108.0935 14.7514 0.8503
0.90 (11) -115.8930 14.7688 0.8503
0.90 (12) —110.3555 18.3217 0.8310
0.95 9) -120.7662 471712 0.8503
0.95 (10) -121.2029 38.0359 0.8550
0.95 (11) -126.9481 38.0507 0.8233
0.95 (12) —-122.4787 472287 0.8240

has an energy value of —317.1750 kcal/mol with dRMSD value
of 0.65.

The results obtained for T0335 instance are shown in
Table 5. The best average solution for this instance is obtained
by applying chaotic function number 11. The best average
energy is —377.6919 kcal/mol with a processing time equal to

379.8146 minutes and RMSD value of 0.9787. In Figure 10, the
graphic of average energy and dRMSD is shown. There is a
solution with high quality (see arrow on graphics). The energy
value is —455.0870 kcal/mol with dRMSD value of 0.76.

The results obtained for T0281 are shown in Table 6.
The best average solution for this protein is obtained by
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TABLE 4: Average results of T0549 instance.
Oz nnealing Chaotic function Average energy (Kcal/mol) Processing time (minutes) Average dRMSD
0.75 9) -180.1067 57.3851 0.7787
0.75 (10) —-184.8485 45.5662 0.8820
0.75 (11) -188.2290 46.2738 0.8567
0.75 (12) —-187.8759 58.0133 0.8077
0.80 9) —-187.5483 64.8901 0.8887
0.80 (10) —-194.7957 52.4376 0.8333
0.80 (11) —204.7029 52.9562 0.8333
0.80 (12) -194.0105 65.0954 0.7963
0.85 9) —212.1957 80.4466 0.7827
0.85 (10) —-213.3221 64.6595 0.8300
0.85 (11) —220.9546 64.9489 0.8423
0.85 (12) —-212.0730 80.7839 0.8763
0.90 9) —236.1182 117.9315 0.8190
0.90 (10) —241.1672 94.6274 0.8143
0.90 (11) —-230.1859 94.9217 0.8357
0.90 (12) -230.0091 117.9894 0.8093
0.95 9) —269.6413 288.8558 0.7200
0.95 (10) —263.9817 232.2564 0.7643
0.95 (11) —262.1850 232.2011 0.8203
0.95 (12) —262.4749 289.0106 0.8123
TABLE 5: Average results of T0335 instance.
KA nnealing Chaotic function Average energy (Kcal/mol) Processing time (minutes) Average dRMSD
0.75 9) —-267.9740 103.6328 1.0507
0.75 (10) -273.8770 82.4738 0.9760
0.75 (11) —270.0242 82.5450 1.0387
0.75 (12) —281.0588 102.7148 0.9503
0.80 9) —285.2499 114.5852 0.9963
0.80 (10) —293.6892 89.3586 0.9707
0.80 (11) —287.6764 89.1567 0.9360
0.80 (12) —296.9811 113.4518 1.0023
0.85 9) —-305.8353 135.3040 1.0110
0.85 (10) —-305.2537 107.3173 1.0560
0.85 (11) -300.5720 108.3275 0.9677
0.85 (12) —-300.6663 134.0739 0.9247
0.90 9) —329.4824 194.3791 0.9960
0.90 (10) —334.7426 155.6107 0.8840
0.90 (11) —327.1407 155.8174 0.9440
0.90 (12) —324.0686 194.1348 0.9017
0.95 9) —368.4190 473.1948 0.9777
0.95 (10) —-377.6919 379.8146 0.9787
0.95 (11) —372.4837 380.0762 0.9203
0.95 (12) -375.3686 473.5348 1.0157

applying chaotic function number 13. The best average energy
is —319.9603 kcal/mol with a processing time equal to 554.1053
minutes and dRMSD value of 2.9197. In Figure 11, the graphic
of average energy and dRMSD is shown. In these graphics,
all energy of T028I calculated by CMQA is plotted. There is a
solution with high quality (see arrow on graphics). The energy
value is —403.3333 kcal/mol with dRMSD value of 3.03.

In order to compare the CMQA with other implemen-
tations, two algorithms were designed. The Multiquenching
Annealing with dynamical equilibrium phase (MQA plus
DEP) and classical simulated annealing were implemented.
The results obtained are shown in Table 7. In general, CMQA
obtained high-quality solutions in comparison with other
implementations.
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TABLE 6: Average results of T0281 instance.
Oz nnealing Chaotic function Average energy (Kcal/mol) Processing time (minutes) Average dRMSD
0.75 9) —-206.5214 110.4517 2.9467
0.75 (10) —-215.2062 84.8609 2.9493
0.75 (11) —205.6181 84.4000 2.7670
0.75 (12) —211.9487 107.4365 2.9520
0.80 9) —224.1211 123.1385 2.9457
0.80 (10) —-233.2700 96.1731 2.9877
0.80 (11) —223.8302 96.5483 2.9027
0.80 (12) —222.5050 123.2675 2.8690
0.85 9) —251.9814 150.0813 2.9390
0.85 (10) —245.7741 120.1284 2.8303
0.85 (11) —251.0341 120.1144 2.8810
0.85 (12) —259.9042 149.6338 2.8929
0.90 9) —273.9763 221.5904 2.8367
0.90 (10) -260.1847 177.4887 2.8740
0.90 (11) —281.4230 177.3376 2.9937
0.90 (12) —290.0598 221.0355 2.8157
0.95 9) —314.9119 554.1073 3.000
0.95 (10) -310.1975 444.6089 2.8633
0.95 (11) -319.7511 444.5729 2.9873
0.95 (12) —319.9603 554.1053 2.9197
TaBLE 7: Comparison of results with other implementations.
Instance Approach Average energy (Kcal/mol) Processing time (minutes) Average dRMSD
Met CMQA —-5.1922 1.2345 0.8993
Met MQA plus DEP -0.3775 2.8278 0.8883
Met CSA 20.0864 0.0593 1.0267
Proinsulin CMQA —-122.8490 42.6216 0.8382
Proinsulin MQA plus DEP -120.6576 24.8549 0.8357
Proinsulin CSA 480.2667 1.9144 1.3263
T0549 CMQA —264.5707 260.5810 0.7793
T0549 MQA plus DEP —259.5423 187.5398 0.7277
T0549 CSA 1795.7408 12.9269 1.4320
T0335 CMQA —373.4908 426.6551 0.9731
T0335 MQA plus DEP —298.4703 130.3261 1.0453
T0335 CSA 3745.1859 3.3071 1.3413
T0281 CMQA —316.2052 499.3486 2.9426
T0281 MQA plus DEP -310.6578 407.8754 2.7654
T0281 CSA 2998.1609 22.6357 3.1280

4. Conclusions

In this paper, a new algorithm for protein folding problem
named Chaotic Multiquenching Annealing or CMQA is pro-
posed. In order to escape from local optima, this algorithm
applies a chaotic function in each subphase of quenching. In
addition, a very fast cooling function is applied in order to
decrease the temperature values and change the subphase.
During the multiquenching phase, solutions of PFP are
generated in order to explore the solution space in a very fast

way. An annealing phase is applied after the multiquenching
phase. In this phase, a very slow cooling function is used in
order to decrease temperature values. Besides, the annealing
phase searches for solutions from high to lower temperatures.
The last phase of CMQA is named dynamical equilibrium
phase, in which slope values of energy are calculated using
least squares method. The CMQA disadvantage is related to
the processing time, which is increased in order to obtain
high-quality solving. Therefore, processing time is sacrificed
to achieve quality in solving the protein folding problem.
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