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Widespread structural brain abnormalities have been con-
sistently reported in schizophrenia, but their relation to the 
heterogeneous clinical manifestations remains unknown. 
In particular, it is unclear whether anatomical abnormal-
ities in discrete regions give rise to discrete symptoms or 
whether distributed abnormalities give rise to the broad 
clinical profile associated with schizophrenia. Here, we 
apply a multivariate data-driven approach to investigate 
covariance patterns between multiple-symptom domains 
and distributed brain abnormalities in schizophrenia. 
Structural magnetic resonance imaging and clinical data 
were derived from one discovery sample (133 patients and 
113 controls) and one independent validation sample (108 
patients and 69 controls). Disease-related voxel-wise brain 
abnormalities were estimated using deformation-based 
morphometry. Partial least-squares analysis was used to 
comprehensively map clinical, neuropsychological, and 
demographic data onto distributed deformation in a single 
multivariate model. The analysis identified 3 latent clinical-
anatomical dimensions that collectively accounted for 55% 
of the covariance between clinical data and brain defor-
mation. The first latent clinical-anatomical dimension was 
replicated in an independent sample, encompassing cogni-
tive impairments, negative symptom severity, and brain ab-
normalities within the default mode and visual networks. 
This cognitive-negative dimension was associated with low 
socioeconomic status and was represented across multiple 
races. Altogether, we identified a continuous cognitive-
negative dimension of schizophrenia, centered on 2 intrinsic 
networks. By simultaneously taking into account both clin-
ical manifestations and neuroanatomical abnormalities, 
the present results open new avenues for multi-omic strat-
ification and biotyping of individuals with schizophrenia.

Key words:  schizophrenia/negative symptoms/functional 
MRI/structural MRI/transdiagnostic models/addiction

Introduction

Schizophrenia is characterized by heterogeneous clinical 
manifestations, including positive symptoms, negative 
symptoms, and generalized cognitive impairments. This 
complex clinical pattern is already prevalent prior to and 
during first-episode psychosis.1 While positive symptoms 
tend to reduce over time, negative and cognitive symp-
toms are more likely to persist over time, severely af-
fecting long-term social functioning and quality of life.2–9

Convergent findings from neuroimaging link clinical 
manifestations of schizophrenia with widespread dis-
ruption of structural and functional brain networks.10–13 
Several large-scale studies and meta-analyses provide ev-
idence for widespread anatomical alterations, including 
reduced cortical thickness, subcortical volume, and white 
matter integrity.14–16 These localized brain abnormalities 
have individually been linked to clinical manifestations of 
positive, negative, and cognitive symptoms.17–20

But how do complex clinical phenotypes map onto 
distributed brain networks? The organization of brain 
connectivity increases the likelihood that local patholog-
ical perturbations affect synaptically connected neuronal 
populations.21 Thus, structural abnormalities with a dis-
tributed topography may reflect the underlying network 
architecture and manifest as a diverse set of cognitive 
and affective symptoms.22–25 Recent studies have demon-
strated such links between brain structure and function 
both in healthy controls26,27 and across a number of neu-
rological and psychiatric diseases.28–32
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Several methodological limitations might have ham-
pered the progress to identify comprehensive clinical-
anatomical signatures of schizophrenia. First, the 
heterogeneity of clinical manifestation cannot be cap-
tured by case-control designs or studies focusing on a 
single-symptom domain (eg, only positive or only negative 
symptoms). Second, many previous studies were designed 
to capture associations between symptom dimensions 
and global brain measures or localized brain changes 
with a priori defined regions of interest. Altogether, pre-
vious work eschews the possibility of a pleiotropic-like 
mapping between anatomy and function, whereby dis-
tributed structural alterations may simultaneously lead 
to multiple positive and negative symptoms.17–20,33

The relationship between anatomical abnormalities 
and clinical manifestation is particularly important for 
understanding heterogeneity in the patient population. 
Recent efforts have been directed toward stratifying in-
dividuals into nonoverlapping clusters or biotypes based 
either on clinical-behavioral features34 or neuroimaging 
features.35 Although promising, such “hard partitioning” 
methods are designed for precise categorical stratifica-
tion based either on clinical/behavioral or neuroimaging 
measures but do not consider the possibility of contin-
uous phenotypic dimensions that span multiple clinical 
domains, nor do they explicitly integrate clinical and neu-
roanatomical features. By focusing on single “modalities” 
(clinical only or imaging only), unsupervised learning 
methods miss out on the critical link between brain 

and behavior and may yield solutions that are difficult 
to interpret or reconcile with clinical experience.30 Thus, 
identifying continuous clinical-anatomical dimensions 
would complement categorical biotyping efforts, helping 
to situate individuals and biotypes in a wider multivariate 
space defined by both clinical presentation and anatom-
ical abnormalities.36,37

Here we apply a data-driven method to identify mul-
timodal phenotypic axes of  schizophrenia. Specifically, 
we use a multivariate mapping between whole-brain 
anatomical alterations and clinical domains in schizo-
phrenia to reveal latent clinical-anatomical dimensions. 
In the present work, clinical dimensions comprise pos-
itive and negative symptoms (based on clinical ratings) 
and cognitive impairments (based on neurocognitive 
testing) following the dimensional framework from 
van Os and Kapur38,39 and current conceptualizations 
of  the Diagnostic and Statistical Manual of  Mental 
Disorders (DSM)-5 and the International Classification 
of  Diseases (ICD)-1140,41. We first estimate gray matter 
abnormalities in a sample of  n = 133 individuals with 
chronic schizophrenia and n = 113 healthy controls 
from the Northwestern University Schizophrenia Data 
and Software Tool (NUSDAST; http://schizconnect.
org).42 Deformation-based morphometry (DBM) was 
applied to T1-weighted MR images to estimate cortical 
and subcortical gray matter tissue volume loss in pa-
tients with schizophrenia relative to healthy controls 
(hereafter referred to as “deformation”).43–48 We then 

Fig. 1. Partial least-squares (PLS) analysis is a form of reduced-rank regression used to relate two sets of variables to each other. The 
original variables are correlated across participants and subjected to singular value decomposition. The decomposition yields multiple 
latent variables: linear combinations of the original variables, with the weights chosen to maximize the covariance between them. The 
contribution of individual variables to the latent variable is assessed by bootstrap resampling. The pairing of the deformation and 
clinical-cognitive pattern is assessed by permutation tests and cross-validation. Clinical dimensions adapted from van Os and Kapur38 
and follow current conceptualizations of the DSM-5 and ICD-1140,41. In the present study, data for the following clinical dimensions were 
available: positive symptoms, negative symptoms, and cognitive impairments.

http://schizconnect.org
http://schizconnect.org
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identify disease-related deformation patterns using 
partial least-squares (PLS) analysis (figure 1).49–51 The 
technique isolates patterns of  deformation directly 
related to multiple-symptom dimensions (including 

positive, negative, and cognitive symptoms) and demo-
graphic data (table 1). We first validate the results in an 
independently collected data set. We then investigate 
whether the spatial patterning of  deformation is related 

Table 1. Sample characteristics. Clinical, behavioral and demographic characteristics. (A) Discovery sample (Northwestern University 
Schizophrenia Data and Software Tool [NUSDAST]). (B) Validation sample (Douglas Institute) 

(A) Discovery data (NUSDAST) SCZ (n = 133) HC (n = 113) Statistic

Age, mean (SD) 34.8 (13.2) 23.5 (8.4) t = 7.85**
Female sex, no. (%) 48 (36.1) 64 (56.6) x2 = 10.48*
Years in school, mean (SD) 12.2 (2.3)   
Age of onset, mean (SD)a 21.6 (8.0)   
Years illness duration, mean (SD)a 12.9 (12.5)   
SES score, mean (SD) 45 (15.5)   
WMS cognitive, mean (SD) −0.00005 (4.9)   
WAIS score, mean (SD)
 Matrix 8.9 (3.3)   
 Vocabulary 7.9 (3.6)   
ESRS score, mean (SD)
 Global 1.2 (1.9)   
 Total 5.5 (6.6)   
SANS score, mean (SD)
 Avolition/apathy 10.7 (6.9)   
 Avolition/apathy—global 4.3 (2.4)   
 Diminished expression 10.3 (9.5)   
 Diminished expression—global 3.0 (2.2)   
SAPS score, mean (SD)
 Disorganization 5.1 (5.8)   
 Disorganization—global 1.8 (1.7)   
 Reality distortion 13.5 (12.7)   
 Reality distortion—global 3.2 (2.5)   
Chlorpromazine equivalent dosage, mean (SD)b 391.3 (379.8)   
Information on medication status obtained, no. (%)c 93.2   
Type of medication, %c

 Typical 12.9   
 Atypical 70.2   
 Both 12.2   
 Unmedicated 4.8   

(B) Validation data (Douglas Institute) SCZ (n = 108) HC (n = 69) Statistic

Age, mean (SD) 35.2 (8.2) 34.1 (9.0) t = 0.84
Female sex, no. (%) 26 (24.0) 21 (30.4) x2 = 0.87
WASI full-scale IQ, mean (SD) 95.23 (14.58)   
Cognitive composite score, mean (SD)d −5.5 (5.6)   
SANS score, mean (SD)
 Avolition/apathy 12.3 (7)   
 Avolition/apathy—global 5.8 (2.1)   
 Diminished expression 10.3 (7.1)   
 Diminished expression—global 3.7 (2.0)   
SAPS score, mean (SD)
 Disorganization 5.6 (6.5)   
 Disorganization—global 2.4 (2.1)   
 Reality distortion 12.8 (13.7)   
 Reality distortion—global 4.2 (3.1)   
Chlorpromazine equivalent dosage, mean (SD) 798.3 (825.3)   

Note: SCZ, schizophrenia; HC, healthy control; SES, socioeconomic status; WMS, Wechsler Memory Scale; ESRS, Extrapyramidal 
Symptom Rating Scale; SANS, Scale for the Assessment of Negative Symptoms; SAPS, Scale for the Assessment of Positive Symptoms.
aBased on 131 patients. 
bBased on 86 patients. 
cBased on 124 patients.
dNormalized composite cognitive score estimated from the CogState Research Battery protocol that includes cognitive domains of verbal 
memory, visual memory, working memory, processing speed, executive function, visual attention, and social cognition. 
*< .01, **< .001
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to the intrinsic functional architecture of  the brain. 
Finally, we link the most reliable clinical-anatomical 
dimensions to broader societal variables of  interest, in-
cluding socioeconomic status (SES) and race.

Methods

Discovery Data set: NUSDAST

The discovery data set was derived from the NUSDAST,42 
downloaded from XNAT Central (http://central.xnat.
org/) and the SchizConnect data-sharing portal (http://
schizconnect.org/). Briefly, the NUSDAST data set 
is a cohort of  individuals with schizophrenia, their 
nonpsychotic siblings, healthy controls, and their sib-
lings. Detailed information is available at 42. The final 
data set used in this study comprised 133 individuals 
with schizophrenia and 113 healthy controls. Detailed 
inclusion criteria are included in the supplementary 
methods, while the selection flowchart is shown in sup-
plementary figure S1.

NUSDAST Clinical and Neurocognitive Data

Clinical and demographic data were derived from the 
baseline visit provided by the NUSDAST database 
(table  1). Among the demographic measures, we used 
age, sex/gender, years of schooling, and SES. The clin-
ical assessment included the Scale for the Assessment 
of Positive Symptoms (SAPS52) and the Scale for the 
Assessment of Negative Symptoms (SANS53). Following 
the 4 symptom dimensions approach from Kotov et al,54 
as well as Strauss et al (for 2 negative symptom factors, 
respectively),55 we calculated 2 negative symptom factors 
and 2 positive symptom factors. The 2 negative symptom 
dimensions comprised the SANS diminished expression 
factor (including affective flattening, alogia) and the 
SANS avolition–apathy factor (including avolition and 
anhedonia). The 2 positive symptom dimensions com-
prised the SAPS reality distortion factor (including hal-
lucinations and delusions) and the SAPS disorganization 
factor (including bizarre behavior and thought disorder). 
These 4 factors were calculated for individual items (sum 
scores) and global ratings separately, resulting in a total 
of 8 factors. Furthermore, total and global scores of the 
Extrapyramidal Symptom Rating Scale were included 
to assess 4 types of drug-induced movement disorders 
(DIMD) caused by antipsychotic treatment: parkin-
sonism, akathisia, dystonia, and tardive dyskinesia.56,57

Overall cognitive functioning was assessed with a 
composite score following the method suggested by 
Czepielewski et al.18 The composite score (WMS Cog) in-
cluded the sum of the z-transformed scores on Logical 
Memory, Family Pictures, Letter-Number Sequencing, 
Spatial Span, and Digit Span from the Wechsler Memory 
Scale (WMS-III58). Finally, individual scaled scores from 
the WAIS-III Matrix Reasoning and Vocabulary subsets 

were included as measures of executive function42 and 
crystallized knowledge (ie, premorbid crystallized intel-
lectual functioning18), respectively. Altogether, 15 dem-
ographic, clinical, and neurocognitive measures were 
entered in the PLS analysis to identify latent clinical-
anatomical dimensions related to multiple-symptom 
dimensions. Please note that, in the present work, cog-
nitive deficits are defined as a clinical dimension fol-
lowing the current conceptualizations of the DSM-5 and 
ICD-1140,41. This approach should be distinguished from 
research investigating cognition in a biomarker frame-
work of schizophrenia.34,59,60 SES, age of onset, duration 
of illness, and antipsychotic medication (chlorproma-
zine equivalents) were left out from the PLS analysis and 
their relation with the final statistical model (clinical-
anatomical dimensions) was tested post hoc (for details 
see supplementary methods).

NUSDAST Neuroimaging Data

All magnetic resonance imaging (MRI) scans were ac-
quired on the same 1.5 T Vision scanner platform 
(Siemens Medical Systems) at the Mallinckrodt Institute 
of Radiology at Washington University School of 
Medicine.42 Automated preprocessing was performed 
using the minc-bpipe-library pipeline (https://github.com/
CobraLab/minc-bpipe-library) following manual quality 
control to remove scans with insufficient quality; see sup-
plementary methods. Local change in the brain tissue’s 
volume density was calculated using DBM61. We interpret 
regional DBM values as measures of tissue loss or tissue 
expansion.43–47 Note, however, that morphometric tech-
niques do not directly measure the underlying cellular 
morphology and constitute a statistical model of physi-
ological changes. DBM is estimated based on the defor-
mation applied at each voxel to nonlinearly register each 
brain to a given template. For details of the DBM pipe-
line, please see supplementary methods. Chronological 
age was regressed from DBM values prior to PLS anal-
ysis in both the NUSDAST and Douglas data sets.

Validation Data Set: Douglas Institute

T1-weighted MRI scans of 108 individuals with schizo-
phrenia and 69 healthy controls were obtained from an 
independently collected data set to validate the original 
findings (table  1). Details about the participant inclu-
sion criteria, MRI acquisition, and data preprocessing 
are available elsewhere62 and also described in the supple-
mentary information. Regional DBM values and clinical-
cognitive measures overlapping with the discovery set 
were used for further analysis.

Partial Least Squares

We used PLS analysis to investigate the relationship be-
tween local changes in deformation (DBM values) and 

http://central.xnat.org/
http://central.xnat.org/
http://schizconnect.org/
http://schizconnect.org/
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
https://github.com/CobraLab/minc-bpipe-library
https://github.com/CobraLab/minc-bpipe-library
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
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clinical-cognitive measures (figure  1). PLS analysis is a 
multivariate statistical technique that identifies weighted 
patterns of variables in 2 given sets or data blocks that max-
imally covary with each other.49–51 In the present analysis, 
1 variable set corresponded to deformation and the other 
to clinical-cognitive measures. The 2 variable sets were cor-
related with each other across patients, and the resulting 
correlation matrix was subjected to singular value decom-
position to identify latent clinical-anatomical dimensions.

Inference and validation of the statistical model were per-
formed using nonparametric methods: (1) statistical signifi-
cance of overall patterns was assessed by permutation tests63; 
(2) feature (voxel, clinical-cognitive measure) importance 
was assessed by bootstrap resampling64; (3) out-of-sample 
correlations between projected scores were assessed by 
cross-validation65; (4) stability of deformation and clinical-
cognitive patterns was assessed by split-half resampling.66 
Mathematical details of the analysis and inferential methods 
are described in supplementary methods and results.

Results

Clinical-Anatomical Dimensions of Schizophrenia

Multivariate PLS analysis identified 3 statistically sig-
nificant latent variables (LVs) that represent pairings 
between distributed deformation patterns (estimated by 
age-corrected DBM) and clinical-cognitive measures 
(figure  2a; LV-1: permuted P = 7.3 × 10−3; LV-2: per-
muted P = 5 × 10−4; LV-3: P = 7 × 10−4). These pat-
terns respectively account for 27.5%, 15%, and 13% (total 
of  55.5%) of the covariance between clinical-cognitive 
data and brain deformation. Based on effect size and re-
liability (see below), we focus on LV-1 in the main text.

Figure  2b shows the loadings (ie, correlations) of in-
dividual clinical and cognitive scales with the first latent 
variable (LV-1). The strongest contributors to LV-1 were 
cognitive deficits (all r < −.45), severity of negative symp-
toms (all r > .38), and educational attainment (r = −.45). 
Positive symptoms and DIMD also contributed to LV-1 but 
to a lesser extent (all r > .15 but < .2). In other words, LV-1 
captures predominantly clinical features of the cognitive and 
negative symptom domains (cognitive-negative dimension).

Figure 2c shows the corresponding deformation pattern 
associated with LV-1, indexed by bootstrap ratios. Briefly, 
bootstrap ratios measure the reliability of each weight 
across participants and can be interpreted as a z-score (see 
supplementary methods for more detail). This brain defor-
mation pattern is comprised of occipital (visual), medial 
parietal, lateral temporal, prefrontal (medial prefrontal 
cortex and superior frontal gyrus), limbic, and paralimbic 
regions, including the cingulate (anterior and posterior) 
and hippocampus. In addition, the deformation pattern 
involves subcortical regions, including the caudate and 
cerebellar structures. Altogether, the first latent clinical-
anatomical dimension indicates that distributed deforma-
tion in this distributed network of regions is associated 

with negative symptom severity and lower cognitive per-
formance. Finally, clinical and deformation scores were 
then correlated (figure  2d); the mean out-of-sample cor-
relations were r = .27 (figure 2e). Further details on cross-
validation in supplementary results.

LV-2 and LV-3 are shown and described in detail in the 
supplementary results (supplementary figures S2b and 
S2c). Associations between patient-specific scores of all 3 
latent variables and age of onset, duration of illness, and 
medication dosage are reported in supplementary results.

External Replication

To further assess the reliability of the results, we validated 
the PLS-derived patterns in an independently acquired 
replication data set (Douglas data set; n = 108 individuals 
with schizophrenia; see Methods). Regional DBM values 
from the validation set (Douglas) were projected onto the 
PLS model derived from the discovery set (NUSDAST) 
to estimate the predicted brain deformation scores for the 
validation set. The predicted brain deformation scores 
were then correlated with the 12 clinical, cognitive, and 
demographic measures that were common to 2 data sets, 
yielding a predicted clinical profile for the validation set 
(supplementary figure S3, left column). The discovery 
and validation clinical profiles were then correlated, and 
the significance of correlations was tested against a per-
muted null model (1000 repetitions; supplementary figure 
S3, middle column). Finally, bootstrap resampling was 
used to generate a distribution of correlations between 
the discovery and validation profiles (1000 repetitions; 
supplementary figure S3, right column).

For LV-1 (cognitive-negative dimension), we find a sig-
nificant association between the clinical profiles of the dis-
covery and validation data sets (r = .6, P = 2.0 × 10−2; 
95% CI: [0.09 0.90]; supplementary figure S3). In other 
words, projecting the brain deformation data from the 
validation set on LV-1 of the discovery revealed a sim-
ilar cognitive-negative clinical profile with 36% of vari-
ance explained. Thus, we were able to partly replicate the 
clinical-anatomical dimension of LV-1 in an independent 
validation data set. Repeating the same analysis for LV-3 
revealed a positive but nonsignificant association between 
the clinical profiles of the discovery and validation data 
sets (r = .42, P = 1.09 × 10−1; 95% CI: [−0.60 0.92]) and 
no significant association between the clinical profiles of 
LV-2 (r = −.50, P = 5.8 × 10−2; 95% CI: [−0.87 0.26]). 
Please note that the discovery (NUSDAST) and replica-
tion data set (Douglas) differed significantly in several 
aspects, including ethnicity (NUSDAST: mixed Caucasian 
and African-American, Douglas: Caucasian), fewer fe-
male participants (χ2 = 4.04, P = 4.4 × 10−2), higher 
antipsychotic medication (t = 4.49, P < 1.0 × 10−4) and 
higher global positive and negative symptoms in the dis-
covery sample (SAPS Disorganization Global, t = 2.38,  
P = 1.8 × 10−2; SAPS RealityDistortion Global, 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
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t = 2.55, P = 1.1 × 10−2; SANS Avolition–Apathy 
Global, t = 2.75, P = 6.0 × 10−3; SANS Diminished 
Expression Global, t = 2.55, P = 1.1 × 10−2). Although 
these marked differences might have hampered the repli-
cation of all 3 clinical-anatomical dimensions, the most 
prominent clinical profile of the LV-1 is still represented 
in the independent replication data set.

Clinical-Anatomical Dimensions Map on Intrinsic 
Networks

We next asked how clinically defined deformation patterns 
are topographically distributed in the brain and whether 
their organization reflects the underlying functional 

architecture. The deformation pattern corresponding 
to the clinical features of LV-1 (cognitive-negative di-
mension) appears to mainly target brain regions associ-
ated with the default mode network and visual network 
(figure 2c). To statistically assess if  this is the case, we used 
a recently developed spatial permutation procedure.67 We 
stratified voxels according to their membership in 7 in-
trinsic networks and calculated the mean bootstrap ratio 
value within each network.68 To construct a null distribu-
tion for network means, we projected the data on a sphere 
and randomly rotated the sphere, permuting the intrinsic-
network labels of brain regions but preserving the spatial 
autocorrelation of the map.67,69 The mean bootstrap ratio 
was then recalculated for each network for the permuted 

Fig. 2. A clinical-anatomical signature of schizophrenia. (a) Partial least-squares (PLS) analysis detected 3 statistically significant latent 
variables, mapping distributed patterns of deformation to clinical-cognitive characteristics. The first latent variable (LV-1) accounted for 
27.5% of the covariance between the MRI and clinical-cognitive data. (b) Clinical features of LV-1. The contribution of individual clinical 
cognitive measures is shown using correlations between patient-specific clinical scores and scores on the multivariate pattern (loadings). 
Error bars indicate bootstrap-estimated SEs. (c) LV-1 deformation pattern. The contribution of individual voxels is shown using bootstrap 
ratios (ratios between voxel weights and bootstrap-estimated SEs, interpretable as z-scores; see supplementary methods for more detail). The 
deformation pattern is displayed on an MNI template (MNI152_symm_2009a; x = −3, y = −2). Patients who display this deformation pattern 
tend to score higher on measures of clinical severity of negative symptoms (eg, SANS Avolition–Apathy) and tend to score lower on cognitive 
measures (eg, WAIS). (d) Individual patient data is projected onto the weighted patterns shown in (b) and (c) to estimate scalar patient scores 
that quantify the extent to which individual patients express each pattern in LV-1. The 2 scores are correlated, suggesting that patients who 
display the deformation pattern in (c) tend to express the clinical phenotype in (b). (e) Correlations between deformation and clinical scores in 
the original sample (left; same as panel d), in held-out data (middle), and in a permuted null (right). (f) Specific intrinsic-network deformation. 
The PLS-derived deformation pattern is stratified into resting-state networks (RSNs) defined by Yeo et al68. The bars indicate mean 
deformations for each network. P-values are estimated with respect to the spin test null developed by Alexander-Bloch et al67. Yeo networks: 
DM = default mode, DA = dorsal attention, VIS = visual, SM = somatomotor, LIM = limbic, VA = ventral attention, FP = fronto-parietal.

https://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
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sample. The procedure was repeated 10 000 times to con-
struct a distribution of network means under the null 
hypothesis that regional volume loss patterns are inde-
pendent of affiliation with specific intrinsic networks.

Figure  2e shows the mean bootstrap ratios for each 
network. Consistent with the voxel-wise anatomical pat-
tern in figure  2c, deformation of the cognitive-negative 
dimension (LV-1) was significantly greater in the de-
fault mode and visual networks than expected by chance 
(P = 1.2 × 10−2 and P = 3.5 × 10−2, respectively), 
demonstrating a specific spatial mapping within these 2 
intrinsic networks. Complete results for network speci-
ficity of deformation patterns of LV-2 and LV-3 are pre-
sented in the supplementary results and supplementary 
figure S2 (right column).

Clinical-Anatomical Dimensions Are Associated With 
Lower SES

In schizophrenia, SES is a predictor for increased risk 
of hospitalization,70,71 symptom severity,72,73 and poor 
outcome74,75 and has been shown to be associated with 
brain function and structure.76,77 Using simple correl-
ations, we investigated the relation between the clinical 
features and corresponding deformation patterns of 
the first clinical-anatomical dimension with SES. We 
observed that both brain deformation and clinical fea-
tures of LV-1 were associated with SES (anatomical: 
r = .36, P = 1.8 × 10−05, 95% CI [0.20, 0.50], clinical-
cognitive: r = .28, P = 1.0 × 10−03, 95% CI [0.11, 0.43]). 
To illustrate this association, we colored the individual 

points, corresponding to patients, according to their SES 
(figure  3a). Taken together, the clinical-anatomical sig-
nature of the cognitive-negative dimension is associated 
with lower SES.

We next used mediation analysis (details in supple-
mentary results) to ask whether the brain deformation 
pattern of LV-1 mediates the effect of SES on the corre-
sponding clinical outcome (symptom severity; figure 3b). 
Unstandardized parameter estimates and SE for the 
model are shown in figure 3b. Regressing the PLS-derived 
brain deformation pattern on SES showed that lower SES 
is significantly associated with decreased brain volume (a;  
figure  3b). Regressing clinical expression (LV-1) on the 
brain deformation pattern (LV-1) showed a significant 
effect of brain deformation on clinical expression (b). 
However, the direct effect of SES on clinical expression 
(c) did not remain significant after the deformation pat-
tern was modeled as a mediator (c′; figure 3b). In con-
trast, the LV-1 brain deformation pattern significantly 
mediates the effect of SES on clinical expression (a × b;  
figure  3b). Taken together, the mediation analysis re-
veals an indirect-only mediation (mediated effect a × b)  
with brain deformation as mediator. In other words, the 
severity of brain abnormalities mediates the effect of 
lower SES on clinical expression of the cognitive-negative 
dimension.

As SES is often confounded with race, we strati-
fied patients into Caucasian and African-American 
and directly compared their clinical and deforma-
tion scores. Supplementary figure S4a suggests that 
African-American patients tend to have greater LV-1 

Fig. 3. Mediation analysis. (a) Correlations between patient-specific scores on the deformation and clinical-cognitive patterns in LV-1 
(shown previously in figure 2d). Individual points (representing individual patients) are colored (grayscale)  by their socioeconomic 
status (SES); individuals with lower SES tend to score more highly on both patterns. (b) Mediation analysis testing the hypothesis that 
the effect of SES on clinical-cognitive outcome is mediated by neuroanatomical changes. Regressing the PLS-derived brain deformation 
pattern on SES showed that lower SES is significantly associated with decreased brain volume (a = −0.43 (0.092); P < 1.0 × 10−4; 95% 
CI [−0.62, −0.24]). Regressing clinical expression (LV-1) on the brain deformation pattern (LV-1) and SES showed a significant effect of 
brain deformation on clinical expression (b = 0.077 (0.06); P < 1.0 × 10−1; 95% CI [0.065, 0.089]). However, the direct effect of SES on 
clinical expression (c = −0.034 (0.01); P < 1.0 × 10−2; 95% CI [−0.05, −0.01]) did not remain significant after the deformation pattern 
was modeled as a mediator (c′ = −0.001 (0.008); P = 0.9; 95% CI [−0.016, 0.014]). In contrast, the LV-1 brain deformation pattern 
significantly mediates the effect of SES on clinical expression (a × b = −0.033 (0.007); P < 1.0 × 10−1; 95% CI [−0.049, −0.018]).

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
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clinical and deformation scores, but that this is mainly 
explained by differences in SES (2-sample t-test: 
t(131) = 3.70, P = 3.15 × 10−4; significantly lower 
SES for African-American patients). Critically, the 
relationship between brain deformation and clinical 
scores can be observed in each group separately (sup-
plementary figure S4a; r = 0.76, P = 5.03 × 10−13 and 
r = 0.69, P = 4.00 × 10−11 for Caucasian and African-
American patients, respectively). Moreover, the 2 cor-
relation coefficients were not significantly different 
(Fisher’s test, Z = 0.83, P = .41), suggesting that the 
first clinical-anatomical dimension remains a viable 
measure across different races.

Discussion

In the present report, we used multivariate mapping of 
comprehensive clinical-cognitive features and voxel-wise 
brain deformation to isolate latent clinical-anatomical 
dimensions of schizophrenia. Three latent clinical-
anatomical dimensions were identified, collectively ac-
counting for 55% of brain-behavior covariance, but only 
the first (27%) was replicated in an independent data set. 
This clinical-anatomical dimension encompassed cogni-
tive deficits and negative symptoms and mapped onto 
a distributed brain deformation pattern centered on the 
default mode and visual networks. Brain deformation of 
this cognitive-negative dimension was represented across 
different races but was more pronounced in patients with 
lower SES. These findings suggest that a considerable 
population variance in schizophrenia can be described 
by a compact set of continuous multimodal phenotypic 
axes, mainly shaped by cognitive-negative symptoms and 
network-specific anatomical abnormalities.

Multimodal Heterogeneity of Schizophrenia

Understanding the heterogeneity of clinical and anatom-
ical manifestations of schizophrenia remains a major 
challenge in schizophrenia research.31 Numerous studies 
have investigated single-symptom domains in relation to 
either global measures (eg, total brain volume and global 
cortical thickness)15,18,19 or localized brain abnormalities 
in predefined regions of interest.17,20 And yet, symptom 
domains in schizophrenia often occur simultaneously 
(eg, secondary negative symptoms due to positive symp-
toms and/or depression,78,79) and are highly correlated 
(eg, cognitive deficits and negative symptoms,80–82). 
Likewise, brain abnormalities covary across structurally 
and functionally connected regions.22,23 In the present re-
port, we take a step toward a more comprehensive and 
multimodal understanding of the disease. Using a single 
integrative analysis, we find that the complex constella-
tion of clinical-cognitive and anatomical features can be 
parsimoniously summarized by a smaller set of latent 
clinical-anatomical dimensions. In doing so, we derive 

continuous, multimodal markers of individual disease 
status that can be easily computed in new patients and 
data sets and are readily comparable with other contin-
uous or categorical solutions.

Importantly, the present results complement modern 
efforts to derive transdiagnostic biotypes. For instance, 
Clementz et  al used comprehensive neurocognitive 
and neurophysiological data to identify 3 discrete bio-
types across the schizophrenia spectrum (bipolar, 
schizoaffective, and schizophrenia).34 A  subsequent 
voxel-based morphometry study showed that biotype 1 
with poor cognitive-sensory function had a broadly dis-
tributed cortical and subcortical volume reduction, while 
biotype 2 with moderate cognitive impairments exhibited 
more regional volume reduction within the insula and 
fronto-temporal regions.83 Transdiagnostic symptom di-
mensions have been identified in the same data set, with 
more severe negative symptoms for biotypes 1 and 284. 
Our findings enrich insights from this work, showing a 
dimensional clinical (cognitive-negative) and neuroan-
atomical pattern that effectively bridges biotypes 1 and 
2. Consistent with Reininghaus et al,84 the present study 
demonstrates successful integration of phenomenolog-
ical and neuroimaging data to identify dimensional char-
acteristics of schizophrenia. Altogether, the identified 
clinical-anatomical dimension can be readily applied in 
concert with categorical biotypes to advance progress in 
treatment development and diagnostics across the schiz-
ophrenia spectrum.34,35,83

Default mode and visual networks—anchors of the 
cognitive-negative dimension

In the present model, the dominant cognitive-negative di-
mension was most closely related to deformation in the 
default mode and visual networks. Our group and others 
have recently demonstrated that deformation topography 
in schizophrenia reflects anatomical and functional net-
work topology, with core deficits observed in the default 
mode network.13,22,23 For instance, Wannan et al observed 
a similar network-based pattern of brain abnormalities 
across multiple stages of the schizophrenia spectrum 
(from first episode to chronic and treatment-resistant pa-
tients).22 In addition, using a transdiagnostic approach 
(schizophrenia, bipolar disorder, and relatives) Stan 
et al demonstrated that psychotic symptoms are related 
to a regional pattern within the heteromodal cortex.85 
The present findings extend this work by showing that 
network-based deformation can be mapped to a cognitive-
negative dimension.

Previous case-control studies revealed that clinical sub-
types with predominantly negative symptoms86 and bio-
types with cognitive-sensory impairments83 demonstrated 
most extensive cortical thinning and global gray matter 
reduction, respectively. At the same time, localized asso-
ciations have been reported for cognitive function and 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa097#supplementary-data
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volume reduction in the anterior cingulate, insula, hip-
pocampus/parahippocampal gyrus, middle frontal gyrus, 
and cognitive function,18,19 as well as negative symp-
toms and reduced orbitofrontal cortical thickness.17 The 
present report builds on these findings, demonstrating 
that a cognitive-negative dimension of schizophrenia re-
flects targeted abnormalities in spatially specific networks.

More generally, these results shed new light on how 
pathological processes of brain structure and function 
are intertwined.10,21,87 An emerging literature points to a 
continuous unimodal–transmodal cortical synaptic hi-
erarchy,88,89 manifesting as smooth topographic gradi-
ents of gene transcription,90,91 intracortical myelin,92,93 
cortical thickness,94 excitation–inhibition balance,95 and 
macroscale structural and functional connectivity.69,96–98 
Our results show that the dominant cognitive-negative 
dimension originates from the ends or “anchors” of this 
hierarchy: the visual15,99 and default mode networks.100–102 
This raises the possibility that multiple pathological pro-
cesses, originating from opposing ends of the putative 
sensory-fugal hierarchy, may be involved in the disease. 
Interestingly, 2 recent functional imaging studies found 
evidence of atypical functional connectivity and integra-
tion between unimodal and transmodal cortices.103,104 Our 
results show that these deficits in functional coordination 
may ultimately originate from underlying anatomical ab-
normalities, reflecting large-scale molecular and cellular 
gradients.

Limitations and Future Directions

The present report highlights a latent clinical-anatomical 
dimension of schizophrenia, but the findings should 
be interpreted with respect to several important limi-
tations. First, data-driven multivariate models seek to 
map multiple modalities to one another but, as a result, 
they cannot be used to make inferences about localized 
relationships between specific clinical symptoms and 
specific brain regions. Second, the present findings are 
based on cross-sectional data, precluding the extrapo-
lation of longitudinal progression. In addition, there is 
consistent evidence for 5 specific psychosis domains of 
positive, negative, disorganized, manic, and depressive 
symptoms across the schizophrenia spectrum.84 The cur-
rent study was based on data sets assessing psychotic 
symptoms with the SAPS and SANS, which limited the 
ability to investigate clinical-anatomical dimensions in 
the presence of more comprehensive psychopathological 
measures of the affective domain (mania and depres-
sion) and disorganization domain. Future work should 
extend the present findings and study dimensional multi-
variate brain-behavior relationships across the psychosis 
continuum, trans-diagnostically (eg, schizophrenia-
schizoaffective-bipolar disorders) and across different 
biotypes, including comprehensive psychopathological 
and neurocognitive data.34,38,59

In terms of methodology, it is important to note 
that head motion could systematically bias structural 
MRI.105–108 Addressing this potential confound would re-
quire additional in-scanner head-motion estimates from 
functional MRI (fMRI),106,108 which were not available in 
either data set. Finally, the influence of drug exposure on 
brain structure is another important confounding factor 
that is challenging to address in cross-sectional studies. 
We found no evidence of an association between cur-
rent medication dose and the clinical-anatomical dimen-
sions in a subsample (n = 87) of the discovery data set. 
However, these results are limited by the fact that current 
medication does not allow conclusions to be drawn on 
long-term drug exposure. Future studies in longitudinal 
data are warranted to explore medication effects on latent 
clinical-anatomical dimensions.

Conclusion

The present work contributes to a growing recognition 
that individual clinical symptoms do not occur in isola-
tion, nor can they be precisely mapped to a single locus 
in complex disorders, such as schizophrenia. An inte-
grated multivariate model allows clinical experience and 
objective neuroanatomical measurements to simultane-
ously inform one another, yielding a more holistic un-
derstanding of heterogeneity in the patient population. 
The clinical-anatomical dimension identified here opens 
a new direction for dimensional stratification, comple-
menting existing efforts to develop sensitive diagnostics 
and individualized treatment strategies.

Supplementary Material

Supplementary material is available at Schizophrenia 
Bulletin.
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Data Availability Statement

Deformation patterns of the clinical-anatomical di-
mensions are freely available for visualization and 
download for further exploration and future research 
from Neurovault (https://identifiers.org/neurovault.
collection:6825).
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