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Abstract

Longitudinal brain image analysis is critical for revealing subtle but complex structural and functional changes of brain
during aging or in neurodevelopmental disease. However, even with the rapid increase of clinical research and trials, a
software toolbox dedicated for longitudinal image analysis is still lacking publicly. To cater for this increasing need, we have
developed a dedicated 4D Adult Brain Extraction and Analysis Toolbox (aBEAT) to provide robust and accurate analysis of
the longitudinal adult brain MR images. Specially, a group of image processing tools were integrated into aBEAT, including
4D brain extraction, 4D tissue segmentation, and 4D brain labeling. First, a 4D deformable-surface-based brain extraction
algorithm, which can deform serial brain surfaces simultaneously under temporal smoothness constraint, was developed for
consistent brain extraction. Second, a level-sets-based 4D tissue segmentation algorithm that incorporates local intensity
distribution, spatial cortical-thickness constraint, and temporal cortical-thickness consistency was also included in aBEAT for
consistent brain tissue segmentation. Third, a longitudinal groupwise image registration framework was further integrated
into aBEAT for consistent ROI labeling by simultaneously warping a pre-labeled brain atlas to the longitudinal brain images.
The performance of aBEAT has been extensively evaluated on a large number of longitudinal MR T1 images which include
normal and dementia subjects, achieving very promising results. A Linux-based standalone package of aBEAT is now freely
available at http://www.nitrc.org/projects/abeat.
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Introduction

Brain structure and function change as a result of aging or

brain diseases such as Alzheimer’s disease [1]. Magnetic

resonance imaging (MRI) provides a safe way to image brain

structure and function in vivo. Thus, longitudinal MRI is widely

used to reveal brain changes in basic and clinical neuroscience

studies. For example, Chetelat et al. [2] used a longitudinal

voxel-based method to map the progression of gray matter

(GM) loss in mild cognitive impairment (MCI) patients over

time, and found a significant GM loss in brain areas such as

temporal cortex and parietal cortex. Nakamura et al. [3] further

found longitudinal neocortical GM volume reduction in the

first-episode schizophrenia, but increase in the first-episode

affective psychosis. In addition to these volumetric studies,

longitudinal cortical surface change associated with normal

aging was also studied in [4] by reconstructing cortical surfaces

from longitudinal MR images. They found widespread aging-

related cortical thickness decline, especially in frontal and

parietal regions [4]. On the other hand, 4D cortical thickness

measurement was also developed for studying Alzheimer’s

disease (AD) in [5,6].

Since brain change pattern could be subtle and complicated

during aging or in brain diseases, it is important to develop

accurate longitudinal analysis tools. To do this, current analysis

tools are generally based on independent processing of each time-

point image of the same subject, involving the steps of image

preprocessing, brain extraction, tissue segmentation, and brain

labeling. Specifically, image preprocessing is first used for bias

correction and histogram matching for each original MR image.

Brain extraction is then used to remove non-brain tissues, such as

scalp, skull, and dura [7], while keeping all brain tissues such as

white matter (WM), gray matter (GM), and cerebral spinal fluid

(CSF). Tissue segmentation is further performed to classify the

brain-extracted image into WM, GM, and CSF, which will allow

the measurement of overall brain tissue changes over the time.

Finally, brain labeling is applied to delineating brain ROIs in each

time-point image, which allows the study of longitudinal change of

each ROI [8,9].

Various toolboxes have been developed for this purpose,

including ITK [10], FSL [11], FreeSurfer [12], and SPM [13].

However, these toolboxes are mainly developed for analysis of

single-time-point images, not for longitudinal images, except

FreeSurfer that includes a longitudinal surface reconstruction
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component. Since brain changes are subtle during aging and in

most degenerative diseases [1], especially for a typical longitudinal

follow-up of only one to two years [9,14], it is expected that the

analysis results in each step of brain extraction, tissue segmenta-

tion, and ROI labeling should be accurate and consistent for the

longitudinal images. However, it is challenging for the conven-

tional single-time-point based analysis methods to achieve the

longitudinal consistent results, since no temporal guidance is

applied.

To address this limitation, we have developed a dedicated 4D

Adult Brain Extraction and Analysis Toolbox (aBEAT). Specially,

aBEAT provides functions of 4D brain extraction, 4D tissue

segmentation, and 4D brain labeling for achieving the consistency

in analyzing longitudinal brain MR images. It is worth noting that

single-time-point image can be considered as a special case of

longitudinal images and thus can also be analyzed by aBEAT. The

functions of 4D brain extraction, 4D tissue segmentation, and 4D

ROI labeling are provided by the following three 4D image

analysis algorithms, respectively:

1: 4D deformable-surface-based brain extraction.

Classic brain extraction algorithms such as BSE [15], BET [16],

and graph cut [17] generally perform a single run of brain

extraction on a given image. Recently, advanced algorithms were

developed to perform multiple brain extractions with multiple

atlases or algorithms [7,18–20] and then fuse all results to produce

the final result with improved accuracy. However, all these

algorithms are not able to achieve consistent brain extraction

results from the longitudinal brain images, due to separate

extraction of each time-point brain image. To address this issue,

we use a 4D brain extraction algorithm [21], which was extended

from a 3D deformable-surface-based brain extraction method

[22]), for achieving consistent brain extraction results. It is

performed by first constructing the initial common brain surface

from the group mean of all aligned longitudinal images and then

deforming it simultaneously to each time point with the constraint

of temporal smoothness.

2: 4D tissue segmentation with cortical-thickness constraint

[23].

A number of automated tissue segmentation algorithms

[12,13,24] have been proposed to segment WM, GM, and CSF

from the brain image. However, most of them were designed to

segment 3D image. In contrast, CLASSIC [25] was specially

designed for simultaneous segmentation of longitudinal brain

images using voxel-wise tissue classification framework. However,

it still cannot guarantee the consistency of cortical thickness

measured on the longitudinal images, which could seriously affect

the power of longitudinal study. To address this issue, we

incorporate a 4D tissue segmentation algorithm with cortical-

thickness constraint [23] into our toolbox. In this algorithm, a 3D

coupled-level-sets method [26] is first used to obtain the initial

segmentation of WM, GM, and CSF at each time-point, and then

a longitudinal cortical-thickness constraint is further used to ensure

its temporal consistency during the 4D tissue segmentation.

3: 4D ROI labeling with longitudinal groupwise image

registration [27].

Although many pairwise image registration methods (such as

Demons [28] and HAMMER [29]) can be used for atlas-based

brain labeling, their labeling results for the longitudinal images

could be inconsistent, since each time-point image is labeled

independently. We thus propose to label all longitudinal images

simultaneously with our longitudinal groupwise image registration

algorithm [27], which can not only register all longitudinal images

jointly to the common space, but also maintain their temporal

coherence. Specifically, we will first adopt this algorithm to align

all longitudinal images onto a common space for obtaining their

group-mean image. Then, we use our symmetric feature-based

pairwise registration method [30] to register an atlas with pre-

labeled ROIs to this group-mean image. Finally, by combining the

respective deformations, we can label the ROIs for each time-

point image. Since the temporal coherence is well respected in our

method, we will be able to get consistent labeling for different time

points.

The performance of aBEAT has been extensively evaluated

with a large number of longitudinal brain MR images from ADNI

database. Compared with other existing algorithms for brain

extraction (e.g., using 3D deformable-surface-based method) and

tissue segmentation (e.g., using CLASSIC), aBEAT can achieve

superior accuracy and consistency for longitudinal images.

Moreover, our brain labeling module in aBEAT also shows

promising results for longitudinal images. The remainder of this

paper is organized as follows. The methodological description of

aBEAT is provided in Section 2. Representative results by aBEAT

are demonstrated in Section 3. Finally, discussion is presented in

Section 4.

Methods

1. ADNI Database
Data used in the preparation of this article were obtained from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(http://adni.loni.ucla.edu). The ADNI was launched in 2003 by

the National Institute on Aging (NIA), the National Institute of

Biomedical Imaging and Bioengineering (NIBIB), the Food and

Drug Administration (FDA), private pharmaceutical companies

and non-profit organizations, as a $60 million, 5-year public-

private partnership. The primary goal of ADNI has been to test

whether serial magnetic resonance imaging (MRI), positron

emission tomography (PET), other biological markers, and clinical

and neuropsychological assessment can be combined to measure

the progression of mild cognitive impairment (MCI) and early

Alzheimer’s disease (AD). Determination of sensitive and specific

markers of very early AD progression is intended to aid

researchers and clinicians to develop new treatments and monitor

their effectiveness, as well as lessen the time and cost of clinical

trials.

The Principal Investigator of this initiative is Michael W.

Weiner, MD, VA Medical Center and University of California–

San Francisco. ADNI is the result of efforts of many co-

investigators from a broad range of academic institutions and

private corporations, and subjects have been recruited from over

50 sites across the U.S. and Canada. The initial goal of ADNI was

to recruit 800 adults, ages 55 to 90, to participate in the research,

approximately 200 cognitively normal older individuals to be

followed for 3 years, 400 people with MCI to be followed for 3

years and 200 people with early AD to be followed for 2 years.’’

For up-to-date information, please see www.adni-info.org.

2. Overview of aBEAT
The architecture of aBEAT is shown in Fig. 1. The complete

data processing pipeline consists of five major modules (see the five

blue boxes in the middle row of Fig. 1). Briefly, the image

preprocessing module normalizes the original images and corrects

their intensities. The 4D brain extraction module consistently

removes non-brain tissues (such as scalp and skull) and keeps brain

tissues (including WM, GM, and CSF) from the preprocessed

longitudinal images of each subject. The serial brain tissues of each

subject are then jointly segmented by the 4D tissue segmentation

module. Next, the 4D brain labeling module simultaneously warps

aBEAT
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an atlas with pre-labeled ROIs onto the longitudinal images for

ROI labeling. Finally, longitudinal ROI volumes and the volume

changes for all subjects can be automatically measured and

displayed using the ROI analysis module. Major functions in each

module are also listed in the top row of Fig. 1. It’s worth noting

that the processing pipeline of the architecture is similar to that of

our previously developed toolbox iBEAT [31]. However, the

iBEAT is a dedicated toolbox for analysis of infant brain MR

images, which have poor image quality, low tissue contrast, and

most importantly the dynamic tissue change over time. Thus, all

steps used for infant brain extraction, tissue segmentation, and

brain labeling are different from the adult brain analysis, and

definitely much different from the longitudinal image analysis. On

the other hand, the 4D processing algorithms integrated in each

functional module of aBEAT are specialized for the consistent

analysis of longitudinal adult brain MR images, and are thus

completely different from the processing algorithms in iBEAT. In

addition, there is no ROI analysis module in iBEAT.

Parallel computing strategy is used in aBEAT for fast

processing. Specifically, each image is processed by a thread in

the image preprocessing module, while in the 4D modules such as

brain extraction, tissue segmentation, and brain labeling, each

subject is processed by a thread. It is worth noting that the current

computer generally has multiple CPU cores, thus the use of the

parallel computing strategy can largely reduce the computation

time. The graphical user interfaces (GUIs) and the overall

framework of aBEAT were implemented in MATLAB, while

the modules and functions in aBEAT were implemented with the

combination of C/C++, MATLAB, Perl and Shell scripts. The

main interface and image preprocessing interface in aBEAT are

shown in Fig. 2. Specifically, the main interface (see Fig. 2(a))

includes the menus for activating all five major processing modules

(refer to Fig. 1). In addition to the step-by-step processing, the

input images can be processed automatically from image

preprocessing to brain labeling. The image preprocessing interface

(see Fig. 2(b)) includes the step-by-step functions for image

preprocessing. The interfaces of other modules are similar to the

interface of this preprocessing module, except for the functions

listed in the processing flow panel (#1).

3. Image Preprocessing
Since the orientations, voxel sizes, and volume sizes of original

input images may be different, aBEAT first reorients and

resamples each image to a standard format, for facilitating further

data analysis. Specifically, the standard orientation of aBEAT

follows the RAS (Right, Anterior, and Superior) coordinate, which

is a standard neurological convention and widely used in other

neuroimaging software such as MRIcro [32], SPM [13], and

eConnectome [33]. The standard voxel size and volume size in

aBEAT are set as 16161 mm3 and 25662566256, respectively.

The input images, whose original orientations are not in the RAS

coordinate, are reoriented semi-automatically. Specifically, first

the input image is reoriented tentatively with all valid reorientation

parameters (obeying the right-hand rule). Then, the user can check

all tentatively-reoriented images in the GUI and determine the

right one that matches with the RAS coordinate system. Using the

right reorientation parameters, aBEAT can reorient the input

image, as well as other images that have the same original

orientation, into the RAS coordinate. After all input images are

reoriented and resampled, N3 bias correction [34] is performed on

each of these images to remove intensity inhomogeneity. Finally,

for each subject, the histograms of follow-up images are matched

to the histogram of the baseline image to remove intra-subject

intensity variations. Fig. 3 shows the N3 correction and histogram

matching result for one subject.

The reorientation, resampling, and N3 bias correction functions

were implemented based on the FSL library (Analysis Group,

FMRIB, Oxford, UK), ITK toolkit (Kitware Inc.), and MINC

package (McConnell Brain Imaging Centre of the Montreal

Neurological Institute, McGill University), respectively. In addi-

tion to the image preprocessing functions, a variety of functions

were also implemented in aBEAT to support interactive inspection

of MR images, including display of image slices, mouse-driven

image slicing, zooming, translation, and rotation.

4. 4D Brain Extraction
A 4D deformable-surface-based brain extraction algorithm [21]

was implemented in aBEAT to remove non-brain tissues (such as

scalp, skull, and dura) simultaneously from the preprocessed

images and produce consistent brain images for the following step

of tissue segmentation.
4.1 4D Deformable-surface-based brain extraction. The

4D brain extraction algorithm, which was extended from our 3D

deformable-surface-based brain extraction algorithm [22], consists

of two steps: initialization of deformable surfaces, and consistent

brain extraction with the deformable surfaces.

1: Initialization of Deformable Surfaces.

The initial deformable surfaces that roughly represent the brain

boundaries of longitudinal images of a subject are obtained as

follows. First, the preprocessed longitudinal brain MR images

Figure 1. The architecture of aBEAT. The user is free to process data using either an individual module or the entire pipeline (from image
preprocessing to ROI analysis).
doi:10.1371/journal.pone.0060344.g001
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Figure 2. The main interface and image preprocessing interface in aBEAT. (a) The main interface includes the menus for activating all five
major processing modules (refer to Fig. 1). In addition to step-by-step processing, input images can be processed automatically from image
preprocessing to brain labeling. (b) The upper left panel (#1) displays step-by-step functions for image preprocessing. The bottom left panel (#2)
lists the input images and generated images. The upper right panel (#3) displays a selected image. The bottom right panel (#4) shows the image
processing status. The interfaces of other modules are similar to the interface of this preprocessing module, except for the functions listed in the
processing flow panel (#1).
doi:10.1371/journal.pone.0060344.g002

Figure 3. Illustration of N3 correction and histogram matching on serial images of one subject at 4 time points. Axial slices of the serial
images before and after the processing are shown, respectively. We can see that the intensity inhomogeneity and inconsistency of the serial images
are removed clearly.
doi:10.1371/journal.pone.0060344.g003
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(with skull) are affine-aligned to their common space using a

groupwise affine registration algorithm [35], for avoiding any

potential bias due to the selection of template. Second, a brain

probability map, attached with the MNI (Montreal Neurological

Institute) brain atlas [36], is warped onto the affine-aligned image

of each time-point by linear registration via FLIRT [37], followed

by nonlinear registration via Demons [28]). Notice that the brain

probability map in the space of MNI brain atlas was obtained by

aligning and averaging a population of brain MR images with

manually-delineated brain masks [22]. Third, the warped brain

probability map is used to remove most non-brain voxels (scalp,

skull, and dura) for the respective image of each time-point.

Fourth, a spherical volume is estimated for each brain-extracted

image of each time-point, according to its intensity and spatial

distributions of brain voxels (WM, GM, and CSF). Notice that

each estimated spherical volume is represented by its center of

gravity (COG) and radius. Finally, the averaged COG and radius

of all estimated spherical volumes from all brain-extracted images

of all time-points are used to construct a common spherical

surface, which is then imposed onto each time-point image as the

initial brain surface.

2: Consistent Brain Extraction with Deformable Surfaces.

The above-obtained initial brain surfaces for the longitudinal

images are deformed to achieve consistent brain extraction,

typically with 1000 iterations [16]). Specifically, during the

evolution of the deformable surface for each time-point image,

four forces are placed at each vertex of the deformable surface to

drive the surface deformation, which includes (1) spatial-smooth-

ness force to smooth surface and obtain evenly spacing vertices; (2)

image-intensity-based force to separate brain voxels from non-

brain voxels; (3) brain-probability-map-guided force to drive the

vertices to the true brain boundary; (4) temporal-smoothness force

to drive each vertex to the center of its corresponding vertices in

the temporal neighbors. Specially, with the temporal-smoothness

force, we can obtain more accurate and temporally-consistent

brain extraction results for the longitudinal brain images,

compared with the case of using the 3D deformable-surface-based

brain extraction method [22].

4.2 4D Cerebellum removal and manual

delineation. Automatic 4D cerebellum removal is performed

based on the above brain extraction result for keeping only the

cerebrum in the final image, as detailed below. First, as similarly

described above, those brain-extracted longitudinal images are

simultaneously registered with a groupwise affine registration

algorithm [35], to further obtain their group-mean image. Then,

the MNI brain atlas [36] is registered with this group-mean image

using FLIRT [37], followed by Demons registration [28]. Finally,

the cerebellums in the brain-extracted longitudinal images are

simultaneously removed by the warped cerebellum mask from the

MNI brain atlas. Fig. 4 shows the 4D brain extraction and

cerebellum removal results on the preprocessed images at four

time-points for a subject.

If needed, the automatic 4D brain extraction results can be

further refined by a manual editor provided in aBEAT. In this

manual edition step, a colored brain mask (as shown in Fig. 4),

representing the automatically-extracted brain of each time-point,

will be overlaid on the corresponding preprocessed brain image.

Then, a 3D (or 2D) painter or eraser tool can be used to edit each

brain mask interactively in the three orthogonal slices (i.e., axial,

coronal, and sagittal). Mouse-driven image inspection functions,

such as image slicing, zooming, and translation, are also available

in the manual editor for convenient editing. The final edited brain

masks can be used to generate the final brain extraction results for

the longitudinal images.

5. 4D Tissue Segmentation
The 4D tissue segmentation algorithm [23], which integrates

local intensity distributions, spatial cortical-thickness constraint,

and temporal cortical-thickness consistency constraint into a level-

sets framework, was implemented in aBEAT to achieve consistent

tissue segmentation for the longitudinal images.

Specifically, three level-set functions are used to separate WM,

GM, CSF, and background intensities of each time-point image,

where the zero-level surfaces of the level-set functions are the

interfaces of WM/GM, GM/CSF, and CSF/background, respec-

tively. Three terms, i.e., data fitting energy, spatial cortical-

thickness constraint, and temporal cortical-thickness consistency

constraint, are integrated into the level-sets framework. The three

terms are briefly described below:

1: The data fitting term integrates local intensity distributions of

current image and also the tissue probability from the

population data. Specifically, the local intensity distributions

are modeled for WM, GM, and CSF, respectively, by using

Gaussian distributions with spatially-varying means and covari

ance matrices.

2: The spatial cortical-thickness constraint is proposed to preserve

the cortical thickness (i.e., the distance between the surfaces of

WM/GM and GM/CSF) within a biologically reasonable range

(i.e., 1,6.5 mm according to the literature), to guide the surface

evolution during the segmentation [38].

3: The temporal cortical-thickness consistency constraint is

proposed for consistent cortical segmentation of longitudinal

images by making the estimated cortical thickness of current

time-point in-between those at the immediate temporal

neighbors [23].

The 4D tissue segmentation is then achieved by optimizing the

above level-sets framework. First, an initial 3D segmentation using

only the data fitting term and the spatial cortical-thickness

constraint, also called as coupled level-sets [26], is performed at

each time-point separately. Second, 4D registration [39] is

performed based on the current segmentation results to obtain

the difference of cortical thickness between neighboring time

points. Third, the proposed 4D segmentation using data fitting

term, cortical-thickness constraint, and temporal cortical-thickness

smoothness constraint [23] is performed at each time-point image

for joint segmentation. The second and third steps are performed

alternately until convergence. It is worth indicating the importance

of selecting good initialization for the three level-set functions. We

adopted the initialization method in [26], where a convex

optimization method was employed for initialization by using

both global image statistical information and atlas spatial prior.

The related parameters were chosen based on the cross-validation.

This method has been proven robust by taking advantage of both

global statistics and atlas prior. More details can be referred to

[26]. Fig. 5 shows the 4D tissue segmentation result for

longitudinal images of a normal control subject.

6. 4D Brain Labeling
A novel longitudinal ROI labeling framework was developed in

aBEAT to consistently label brain ROIs for the longitudinal

images of subject. The MNI brain atlas [36] is used to label each

longitudinal image into 45 ROIs in each hemisphere. It is worth

noting that customized brain atlases can also be used in aBEAT

for brain labeling.

The general framework of our longitudinal ROI labeling is

given in Fig. 6, which consists of two steps. In the first step, all

longitudinal images of a subject are simultaneously registered to

aBEAT
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Figure 4. Demonstration of 4D brain extraction and cerebellum removal on four time-point images of a subject. Cerebrums are
extracted consistently.
doi:10.1371/journal.pone.0060344.g004

Figure 5. Demonstration of 4D tissue segmentation result. WM, GM, and CSF tissues are segmented from the brain-extracted longitudinal
images of a normal control subject at 4 time points. Both WM and GM surfaces are also displayed to show their consistency across different time-
points.
doi:10.1371/journal.pone.0060344.g005
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their group-mean image in the common space by our longitudinal

groupwise image registration algorithm [27]. Specifically, we

hierarchically select a set of key points with distinctive features to

guide the registration between the tentatively-estimated group-

mean image (in the middle of Fig. 6) and different time-point

images by robust feature matching. Since the key points are

located at distinctive regions, their correspondences can be

identified more reliably. These key points are used as driving

points to steer the whole registration. Meanwhile, by mapping the

group-mean image onto the domain of each time point, every key

point in the group-mean image has several warped points in

different time points, which can be assembled into a time sequence

to form a temporal trajectory. Therefore, the temporal coherence

within longitudinal images can be assured by deploying kernel

smoothing along all these temporal trajectories. Next, thin-plate

splines (TPS) are performed to interpolate the dense deformation

field for each time-point image, by considering all key points as

control points in TPS. Given these tentatively-estimated spatio-

temporal deformations, their average deformation will be used to

further update the group-mean image. By repeating the above

procedure (which includes correspondence detection, kernel

smoothing, dense deformation interpolation, and group-mean

image updating), we can finally obtain the spatiotemporal

deformation fields (blue curves in Fig. 6) of all images to the

group-mean image in the common space.

In the second step, a symmetric feature-based pairwise

registration [30] is performed to estimate the deformation field

(red curve in Fig. 6) from the MNI atlas image to the group-mean

image of the subject. Finally, the deformation pathway from each

longitudinal image to the MNI atlas can be obtained by

composing its deformation field to the group-mean image

(obtained in the first step) and the deformation field from the

group-mean image to the MNI atlas image (obtained in the second

step). Following the combined deformation pathway, we are able

to map all 4562 labels onto each time-point image. Since

temporal coherence is well persevered in the first step, the labeling

results across all time-point images are consistent, as shown in

Fig. 7. From the second to the fifth columns of Fig. 7, we

demonstrate the 4D ROI labeling result on the longitudinal brain

images of a normal control subject, along with the MNI brain atlas

shown in the first column.

7. ROI Analysis
After performing 4D tissue segmentation and 4D brain labeling

on longitudinal brain MR images of a group of subjects, we can

obtain their respective serial tissue-segmented images and brain-

labeled images, as well as their ROI volumes that can be used for

longitudinal analysis of ROI volume changes. Specifically, the

labeled ROI maps can be overlaid on the respective brain-

extracted images (as shown in Fig. 8(a)), where a set of ROIs (such

as temporal lobe and hippocampus) can be selected interactively

by the user. The volumes of the selected ROIs for the longitudinal

brain images of all subjects can then be measured automatically.

Finally, the volume change over time for each ROI (or all ROIs) of

each subject (or average volume across all subjects) can be

displayed in aBEAT. In addition, longitudinal ROI volumes of all

subjects can further be exported as a MATLAB ‘.mat’ file for

future statistical analysis. Fig. 8(a) shows the interface for ROI

selection and volume measurement. Fig. 8(b) shows the interface

for display of volume change of selected ROIs.

Results

The performance of aBEAT in analysis of longitudinal brain

MR images is evaluated qualitatively and quantitatively with a

large number of longitudinal data from ADNI database. Repre-

Figure 6. Illustration of our longitudinal ROI labeling framework. The labels in MNI atlas are consistently warped, via the group-mean image,
onto all time-point images of the subject.
doi:10.1371/journal.pone.0060344.g006
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sentative evaluation results for 4D brain extraction, 4D tissue

segmentation, 4D brain labeling, and the computation time are

presented below.

1. 4D Brain Extraction
30 subjects (each with 4 time points), including 10 normal

controls (NC), 10 mild cognitive impairment (MCI), and 10

Alzheimer’s disease (AD), were employed for the evaluation of 4D

brain extraction. The longitudinal brain images of all these

subjects were preprocessed (including bias correction and histo-

gram matching) by aBEAT before brain extraction. The brain

extraction results by aBEAT were compared with the results

obtained by the 3D deformable-surface-based brain extraction

method which achieved better performance over the classic BET

and BSE methods as shown in [22]. Fig. 9 shows typical brain

extraction results by the 3D deformable-surface-based method

(top) and aBEAT (bottom), respectively. The small red regions in

Fig. 9 indicate false negative voxels (wrongly-removed brain

regions w.r.t. manual ground-truth), and the green regions denote

false positive voxels (residual non-brain tissues w.r.t. manual

ground-truth). Obviously, the 4D brain extraction in aBEAT

achieves better performance than the 3D deformable-surface-

based method.

Furthermore, the 4D brain extraction was quantitatively

evaluated. Specifically, for each time-point image of every subject,

the overlap ratios between the manual ground-truth and the

automated brain extraction results by the 3D deformable-surface-

based method and the 4D method in aBEAT were measured using

Jaccard Index, respectively. Notice that the manual ground-truth

was semi-automatically delineated (similar to [40]) as follows:

automated brain extraction was first performed, followed by

manual delineation by experienced human raters using ITK-

SNAP [41]. The averaged Jaccard Index degrees (across all

subjects and all time points) for the 3D deformable-surface-based

method and aBEAT are 0.9660.02 and 0.9860.005, respectively,

which quantitatively indicates better performance achieved by the

4D brain extraction in aBEAT.

2. 4D Tissue Segmentation
Ninety subjects (each with 4 time points in 24 months),

including 30 NC, 30 MCI, and 30 AD, were employed for the

evaluation of 4D tissue segmentation in aBEAT (after brain

extraction). To demonstrate the advantage of aBEAT in 4D tissue

segmentation, we compared its results with those obtained using

CLASSIC [25]. Specifically, cortical thickness maps were

constructed from the tissue-segmented images generated by

Figure 7. Demonstration of 4D brain labeling result on longitudinal brain images of a normal control subject at four time-points.
The MNI brain atlas is shown in the first column, and different ROIs are shown with different colors.
doi:10.1371/journal.pone.0060344.g007

Figure 8. ROI Analysis. (a) The interface for ROI selection and volume measurement. When a brain-extracted image of a subject is selected, the
respective labeled ROI map will be overlaid on the brain-extracted image. Then, a set of ROIs (shown in #2 panel) can be created, where each ROI
may be a combination of multiple basic ROIs from the 90 basic ROIs (as shown in #1 panel, with Section 2.6 providing the definitions for the 90 basic
ROIs). It’s worth noting that the selected basic ROIs in #1 panel are highlighted (in pink) in the labeled ROI map. The volumes of the selected ROIs (in
#2 panel) for the longitudinal brain images of all subjects can then be measured automatically and displayed. (b) The interface for display of volume
change of selected ROIs. The volume change over time for each ROI (or all ROIs, #4) of each subject (or the average volume across all subjects, #3)
can be displayed.
doi:10.1371/journal.pone.0060344.g008
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CLASSIC and aBEAT, respectively. For each cortical thickness

map, the cortical surface was reconstructed using the function

‘‘isosurface’’ in MATLAB, while the cortical thicknesses at surface

vertices were colored using the function ‘‘isocolors’’ in MATLAB.

Typical cortical thickness maps (which were obtained from a NC

subject) by the two methods are shown in Fig. 10(a). We can see

clearly, e.g., in the frontal lobe, that the cortical thickness by

CLASSIC changes dramatically over time, while it is much

consistent by aBEAT.

Furthermore, we measured the average cortical-thickness

changes for each group (i.e., NC, MCI, and AD), using the

cortical-thickness maps derived by CLASSIC and aBEAT,

respectively. Specifically, we first calculated the mean cortical

thickness for each time-point image of each subject, and then

averaged the longitudinal mean cortical thicknesses from all

subjects in each group. In Fig. 10(b), we show the longitudinal

changes of mean cortical thickness obtained by CLASSIC and

aBEAT. As we can see, the mean cortical thickness by aBEAT

declines obviously and smoothly along time, while not obviously

by CLASSIC. The lowest mean cortical thickness and the largest

decrease of mean cortical thickness are both coming from AD

group, which agrees with previous findings in the literature

[42,43]. Besides, we also measured the longitudinal changes of

mean cortical thickness of each group using the longitudinal

processing pipeline recently included in FreeSurfer [44]. It can be

seen that the curves by aBEAT are smoother than those by

FreeSurfer, especially for the NC and MCI groups.

3. 4D Brain Labeling
Fifteen subjects (5 NC, 5 MCI, and 5 AD, each with 4 time

points at baseline, 6th, 12th, and 24th months) were evaluated for

automatic 4D ROI labeling using aBEAT. For longitudinal images

of each subject, the WM, GM, and CSF were first segmented from

the brain-extracted images using the 4D tissue segmentation

module as evaluated above. Then, the ROIs in the MNI atlas were

simultaneously mapped onto each time-point image to obtain the

labeling maps by the 4D brain labeling module in aBEAT.

Fig. 11(a) shows the automatically-labeled hippocampus (in red) on

the sagittal view for a typical normal control subject. We can see

that the hippocampus was accurately and consistently labeled at

different time-points. To sensitively detect small neuronal changes

in hippocampus [45], the hippocampal GM at each time-point

image of each subject was further obtained, by masking the

hippocampus ROI label with the GM map obtained from tissue

segmentation result. The temporal change trends of hippocampal

GM volume (normalized by the volume at baseline) are illustrated

in Fig. 11(b) for all groups (NC, MCI, and AD). Notice that, for

each group, the temporal change trend was estimated from the

average change of hippocampal GM volume across all subjects in

the group. It can be seen that, the decrease of hippocampal GM is

subtle for NC, while very obvious for MCI and AD. The AD

group shows the largest hippocampal GM reduction. These results

are in agreement with previous findings by Kitayama et al. [45],

Chetelat et al. [46], Colliot et al. [47], and Schuff et al. [9].

Figure 9. Brain extraction results by the 3D deformable-surface-based method and the 4D method in aBEAT. Sagittal slices are shown.
Blue voxels show the common labeling results by automated method and manual ground-truth. Green voxels are the residual non-brain tissues (false
positives), and red voxels are the wrongly-removed brain regions (false negatives). The regions in the yellow dotted squares are zoomed, which
indicates that the 4D method is more accurate and consistent than the 3D method.
doi:10.1371/journal.pone.0060344.g009
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4. Computation Time
The computation time of aBEAT was estimated on a

longitudinal dataset with 4 time points (i.e., 4 images were

acquired for one subject at 4 different time points) and also on a

cross-sectional dataset with 4 single-time-point images (i.e., 4

images were acquired from 4 different subjects at certain time

point), respectively. The voxel size and volume size of each image

are 16161 mm3 and 25662566256, respectively. Experiments

were performed on a server with 8 CPU cores (Intel Xeon,

2.4 GHz) in Linux operating system. The total memory size of the

server is 16 GB. The longitudinal dataset and cross-sectional

dataset independently underwent the analysis pipeline in aBEAT

(from image preprocessing to brain labeling as shown in Fig. 1),

referred to as 4D analysis and 3D analysis, respectively. The

computation time taken in each step of the 4D or 3D analysis is

given in Table 1. The overall processing times for the 4D analysis

and 3D analysis were 6.7 hours and 2.3 hours, respectively. The

4D analysis took more time, as it had to process all longitudinal

images using just one thread, while the 3D analysis used multiple

threads to process the cross-sectional images parallelly. In the

future, we will accelerate the 4D/3D analysis in aBEAT by using

more advanced technology, such as parallel computing based on

Graphics Processing Units (GPU).

Conclusion and Discussion

We have developed the aBEAT software with GUIs for 4D

analysis of longitudinal brain MR images. The most significant

feature of the aBEAT software is that it integrates a group of 4D

image analysis algorithms and further provides a user-friendly

platform for various 4D brain image analysis tasks, such as brain

tissue segmentation and ROI labeling. Specifically, the integration

of the advanced 4D brain extraction, 4D tissue segmentation, and

4D brain labeling algorithms ensures accurate and consistent

measurement and analysis of longitudinal brain MR images. In

addition, aBEAT can also be applied to 3D images for cross-

sectional studies, i.e., by using a 3D deformable-surface-based

method for brain extraction [22], a coupled level-sets algorithm for

3D tissue segmentation [26], and a symmetric diffeomorphic

registration method for 3D brain labeling [30]). So far, a Linux-

based standalone software package for aBEAT has been released

on the website of Neuroimaging Informatics Tools and Resources

Clearinghouse (NITRC). A computer with 8 GB memory (or

Figure 10. Tissue segmentation results. (a) Cortical thickness maps derived by CLASSIC (the upper row) and aBEAT (the lower row) from a
normal control subject. Circles indicate the region with dramatic thickness changes by CLASSIC, while consistent measurement achieved by aBEAT.
(b) Changes of mean cortical thickness derived by CLASSIC (left), aBEAT (middle), and FreeSurfer (right) for the NC, MCI, and AD groups, respectively.
doi:10.1371/journal.pone.0060344.g010
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more) is recommended for analysis of longitudinal images using

the software package.

The five major modules in aBEAT (as shown in Fig. 1) interact

with each other seamlessly as explained below. The image

preprocessing module corrects bias field in the intensities of input

images and further normalizes them to match with those in the

baseline image, thus benefiting the subsequent processing steps.

The brain extraction module removes non-brain tissues and

produces brain-extracted images, which facilitates the segmenta-

tion of WM, GM, and CSF by the tissue segmentation module.

The brain-extracted images and the tissue-segmented images are

then used in the brain labeling module for labeling brain ROIs,

which can be analyzed statistically in the ROI analysis module.

These five modules work sequentially for completing the

processing and analysis of brain images. Importantly, each module

can also perform its respective task independently, e.g., performing

brain extraction by using only the brain extraction module.

aBEAT can be applied to many medical studies. For example,

we can use it to segment brain tissues (i.e., GM, WM, and CSF)

and brain ROIs (i.e., hippocampus) from longitudinal brain MR

images of a subject, and then analyze temporal changes of brain

tissues and ROIs to determine whether the subject has certain

brain disease such as AD [2] or schizophrenia [3]. We can also use

it for analysis of cross-sectional brain MR images, i.e., classifying

the subjects into different groups (e.g., with high-risk psychosis or

not [48]) according to the measured brain tissues and ROI labels.

In addition to these examples on volume-based analysis, the brain

tissues and ROI labels obtained by aBEAT can further be used for

cortical surface reconstruction and the analysis of cortical ROIs

[43].

Our current software package has several limitations, which also

indicates the future direction of our work. (1) Although the

volume-based ROI analysis function is available in aBEAT,

surface-based ROI analysis function is not included yet. There-

Figure 11. Brain labeling results. (a) Automated 4D labeling results of hippocampus (in red) for a typical normal control subject, with four
example slices provided. The hippocampal volume, which was normalized by baseline, decreases slightly from 1 (baseline) to 0.995 (6 months), 0.99
(12 months), and 0.981 (24 months). (b) The temporal development trends of hippocampal GM volume (also normalized by baseline) for the NC, MCI,
and AD groups, respectively. The blue line in each plot is a linear fitting for the mean hippocampal GM measured at different time-points.
doi:10.1371/journal.pone.0060344.g011

Table 1. Computation time taken in each major module for the 4 longitudinal or cross-sectional images.

Image Preprocessing
Brain Extraction with
Cerebellum Removal Tissue Segmentation Brain Labeling

4D Analysis (Longitudinal) 1.64 Minutes 18.4 Minutes 4 Hours 2.38 Hours

3D Analysis (Cross-sectional) 1.43 Minutes 16.2 Minutes 1.15 Hour 0.85 Hours

doi:10.1371/journal.pone.0060344.t001
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fore, 4D/3D surface reconstruction tools [43] are still required to

reconstruct cortical surfaces from the segmented brain tissue maps.

In addition, the measurement tools (i.e., cortical thickness

estimator) and visualization tools (i.e., for rendering cortical-

thickness map) [43] are also required. We will integrate these tools

in our future version of the aBEAT software. (2) The parallel

computing strategy used in aBEAT (as described in Section 2.2)

can take advantage of multiple processor cores to accelerate image

analysis. However, as tissue segmentation was implemented in

MATLAB (not as efficient as C/C++ languages) and brain

labeling was not fully parallelized, the computational speed of

aBEAT is still limited. In the future, we will use C/C++ and

GPGPU (General-Purpose computation on Graphics Processing

Units) to speedup these algorithms and thus make our software

computationally more efficient. (3) Currently, only the Linux

version of our software is available. In the future, we will make

cross-platform software for aBEAT. (4) Although the Analyze file

format is one of the most popular file formats, it is currently the

only file format supported by aBEAT. Therefore, users have to use

other programs to convert the image file formats, e.g., between

DICOM and Analyze formats. In the future, we will support more

file formats to ease use of our software. (5) Currently, aBEAT is

used for analysis of MR T1 images (the most widely-used type of

MR images for adult brain). In the future, we will extend the

software for analysis of other types of MR images such as T2 and

FA images.

aBEAT is a free software for academic use. The Linux-based

standalone software package and tutorial are available at http://

www.nitrc.org/projects/abeat. For convenience of using this

software, two NC datasets (each with 4 time points) from ADNI

database are included in the package. The tutorial describes how

to install and use aBEAT software correctly. In addition,

frequently asked questions (FAQ) from users and the answers are

also provided with the tutorial to address possible questions that

new users may have during the use of this software package. User

feedbacks are greatly welcomed for further improvement of this

software package.
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