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Abstract
Growing	 evidence	 indicates	 that	 oral	 health	 and	 brain	 health	 are	 interconnected.	
Declining	cognition	and	dementia	coincide	with	 lack	of	self‐preservation,	 including	
oral	hygiene.	The	oral	microbiota	plays	an	important	role	in	maintaining	oral	health.	
Emerging	evidence	suggests	a	 link	between	oral	dysbiosis	and	cognitive	decline	 in	
patients	with	Alzheimer's	disease.	This	review	showcases	the	recent	advances	con‐
necting	oral	health	and	cognitive	 function	during	aging	and	the	potential	utility	of	
oral‐derived	biospecimens	to	inform	on	brain	health.	Collectively,	experimental	find‐
ings	indicate	that	the	connection	between	oral	health	and	cognition	cannot	be	under‐
estimated;	moreover,	oral	biospecimens	are	abundant	and	readily	obtainable	without	
invasive	procedures,	which	may	help	inform	on	cognitive	health.
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1  | INTRODUC TION

Alzheimer's	disease	 (AD)	 is	a	chronic	neurodegenerative	disorder	and	
the	leading	cause	of	dementia	worldwide.	AD	affects	more	than	5.7	mil‐
lion	Americans,	predominately	in	those	65	years	and	older	(Alzheimer's	
Association	 Report,	 2018;	 Hebert,	 Weuve,	 Scherr,	 &	 Evans,	 2013).	
Clinically,	 AD	 is	 diagnosed	 by	 a	 progressive	 decline	 in	 cognition	 and	
memory	resulting	in	an	inability	to	function	independently	in	everyday	
life.	A	confirmed	AD	diagnosis	requires	the	presence	of	amyloid	beta	
(Aβ)	plaques	and	tau‐containing	neurofibrillary	tangles	 (NFTs)	 in	brain	
tissue	 analyzed	postmortem.	Advances	 in	 brain	 imaging	 and	 cerebral	
spinal	fluid	measurements	have	greatly	aided	in	accurate	AD	diagnoses	
that	closely	parallel	postmortem	histopathology	(Johnson,	Fox,	Sperling,	
&	Klunk,	2012).	Historically,	therapeutic	interventions	to	treat	AD	have	
focused	on	targeting	brain	pathologies	(primarily	Aβ	plaques,	and	more	
recently	tau).	Due	to	the	limited	success	in	developing	disease‐modify‐
ing	treatments	with	this	strategy,	a	growing	appreciation	for	systemic	
health	and	its	role	in	AD	pathogenesis	is	emerging.	Indeed,	AD	patients	
suffer	more	comorbid	health	conditions	than	age‐matched	older	adults,	
including	diabetes	mellitus,	osteoporosis,	 and	depression	 (Wang,	Wu,	
Tee,	&	Lo,	2018).	Among	these,	recent	preclinical	and	epidemiological	
studies	 have	 suggested	 an	 interconnection	 between	 oral	 health	 and	
brain	health.	Here,	we	will	review	the	potential	role	of	the	oral	cavity	
and	oral‐derived	biomarkers	for	AD	diagnosis	and	tracking	disease	pro‐
gression	(Figure	1).	Table	1	provides	an	overview	of	studies	evaluated.

2  | OR AL HE ALTH AND COGNITIVE 
IMPAIRMENT— CLINIC AL STUDIES

Oral	 health	 tends	 to	 deteriorate	 as	 cognitive	 function	 declines	
(Martande	 et	 al.,	 2014;	 Ribeiro,	 Costa,	 Ambrosano,	 &	 Garcia,	

2012).	Reasons	for	this	observation	are	likely	multifaceted;	for	ex‐
ample,	 individuals	with	dementia	often	are	 limited	by	 resources,	
capabilities	for	oral	hygiene,	and	receive	less	dental	care	than	the	
general	population	(Teng,	Lin,	&	Yeh,	2016).	Nevertheless,	demen‐
tia	 has	 been	 found	 to	 be	 a	 strong	 predictor	 of	 poor	 oral	 health	
including	 the	 severity	 of	 periodontitis	 (Rapp,	 Sourdet,	 Vellas,	 &	
Lacoste‐Ferre,	 2017;	 Syrjala	 et	 al.,	 2012;	 Zenthofer	 et	 al.,	 2017;	
Zimmerman	et	al.,	2017).	Additionally,	older	adults	with	dementia	
develop	multiple	oral	health	problems	related	to	hard	tissues	(e.g.,	
coronal	and	root	caries),	periodontal	 tissues	 (e.g.,	gingival	bleed‐
ing,	periodontal	pockets,	and	dental	plaques),	mucosal	lesions,	and	
lower	 salivary	 flow	 rates/xerostomia	 (Delwel	 et	 al.,	 2017,	2018).	
Some	 studies	 do	 not	 find	 significant	 associations	 between	 oral	
health	 and	 cognitive	 decline	 (Shimazaki	 et	 al.,	 2001;	 Stewart	 et	
al.,	2013)	to	suggest	that	oral	care	capacity	does	not	solely	medi‐
ate	the	association	between	cognition	and	oral	health.	However,	
current	epidemiological	studies	suggest	a	strong	link	between	oral	
health/function	 (that	may	occur	 independent	of	maintaining	oral	
care)	 and	 deterioration	 of	 cognitive	 health	 during	 aging	 (Chen,	
Clark,	Chen,	&	Naorungroj,	2015;	Cho	et	al.,	2018).

Epidemiological	studies	have	noted	a	bi‐directional	association	
between	 oral	 health	 and	 dementia.	While	 oral	 hygiene	 routines	
can	 be	 negatively	 affected	 by	 decreased	 cognition,	 oral	 health	
changes	can	drive	cognitive	decline.	The	number	of	teeth	in	young	
ages	is	a	strong	predictor	of	dementia,	as	well	as	other	oral	health	
issues	 (Luo	et	al.,	2015;	Park	et	al.,	2013;	Takeuchi	et	al.,	2017).	
The	relationship	between	the	number	of	teeth	and	cognitive	func‐
tion	 has	 been	 robustly	 confirmed	 in	multiple	 independent	 stud‐
ies.	These	include	a	large	twin	study	(11,884	twin	pairs)	designed	
to	evaluate	genetic	and	environmental	influences	on	AD	(Gatz	et	
al.,	2006)	and	the	Nun	Study	of	Aging	and	Alzheimer's	Disease,	a	
longitudinal	study	that	began	in	1986	to	examine	the	onset	of	AD	

F I G U R E  1  Schematic	interaction	of	
oral	health	and	brain	cognitive	function	
and	possible	mechanisms	linking	them.	
FA,	fatty	acids;	VOC,	volatile	organic	
compounds
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TA B L E  1  Overview	of	studies	evaluating	the	association	between	oral	health	and	cognition

Study Study type Population Outcome(s) Results

Luo	et	al.,	
2015

Human	cohort	
study

Dementia	(n	=	120)
MCI	(n	=	554)
Cognitive	normal	(n	=	2,389)

Mean	(SD)	teeth	
missing

Dementia:	18.7	(11.0)
MCI:	11.8	(9.9)
Cognitive	normal:	9.3	(9.3)

Park	et	al.,	
2013

Human	cohort	
study

Number	of	teeth	lost:
6–10	teeth
>10	teeth

Cognitive	impair‐
ment	based	on	
MMSE	<	24

6–10	teeth:	aOR	1.99,	95%	CI	1.08–3.69
>10	teeth:	aOR	2.25,	95%	CI	1.26–4.02

Takeuchi	et	
al.,	2017

Human	cohort	
study

Number	of	remaining	teeth:	≥20	(n	=	893)
10–19	(n	=	328)
1–9	(n	=	204)
0	(n	=	121)

All‐cause	dementia 10–19:	aHR	1.62,	95%	CI	1.06–2.46
1–9:	aHR	1.81,	95%	CI	2.94
0:	aHR	1.63,	95%	0.95–2.80

Gatz	et	al.,	
2006

Human	case–
control	twin	
study

Demented	(n	=	82)
Not	demented	(n	=	82)

Oral	disease	from	
tooth	loss

Demented	versus	non‐demented:	OR	
3.6,	95%	CI	1.34–9.70

Stein	et	al.,	
2007

Human	cohort	
study

Number	of	non‐third	molars:
0	(n	=	25)
1–9	(n	=	26)
10–16	(n	=	27)
17–28	(n	=	66)
Number	of	non‐third	molars	with	apoE4	

allele:
0	(n	=	3)
1–9	(n	=	6)
10–16	(n	=	5)
17–28	(n	=	18)

Dementia All	participants
0:	OR	0.9,	95%	CI	0.25–3.12
1–9:	OR	1.8,	95%	CI	0.58–5.46
10–16:	OR	0.4,	95%	0.10–1.76
ApoE4	allele:
0:	OR	0.1,	95%	CI	0.01–3.7
1–9:	OR	0.5,	95%	CI	0.04–5.6
10–16:	OR	0.3,	95%	CI	0.02–3.6

Shimazaki	
et	al.,	2001

Human	cohort	
study

Dentition	status:
>20	teeth	(n	=	150)
1–19	teeth	with	dentures	(n	=	440)
1–19	teeth	not	using	dentures	(n	=	371)
Edentulous	using	dentures	(n	=	621)
Edentulous	not	using	dentures	(n	=	347)

Six‐year	mental	
impairment

1–19	teeth	with	dentures:	OR	1.9,	95%	
CI	0.8–4.6
1–19	teeth	not	using	dentures:	OR	2.3,	
95%	CI	0.9–5.8
Edentulous	using	dentures:	OR	1.7,	95%	
CI	0.7–4.0
Edentulous	not	using	dentures:	OR	2.4,	
95%	CI	0.9–6.5

Stewart	et	
al.,	2013

Human	cohort	
study

Quartile	of	oral	health	parameters:
Q1	(n	=	264)
Q2	(n	=	186)
Q3	(n	=	110)
Q4	(n	=	46)

Cognitive	
impairment

Per	oral	health	quartile	increase:
OR	0.56,	95%	CI	0.48–0.67

Chen	et	al.,	
2015

Human	cross‐
sectional	study

CIND	(n	=	57)
Dementia	(n	=	51)
No	cognitive	impairment	(n	=	492)

Number	of	carious	
teeth	or	retained	
roots	while	ad‐
justing	for	the	ca‐
pacity	to	perform	
oral	hygiene

CIND:	RR	1.66,	95%	CI	1.13–2.46
Dementia:	RR	1.82,	95%	CI	1.23–2.70

Cho	et	al.,	
2018

Human	cohort	
study

Normal	cognitive	ability	(n	=	284)
Dementia	(n	=	61)

Oral	health Demented	versus	non‐demented:	OR	
2.29,	95%	CI	1.08–4.83

Oue	et	al.,	
2013

Interventional,	
prospective	
study	(J20	
mice)

Maxillary	molar	teeth	removed	(n	=	10)
Control	group	with	intact	molars	(n	=	10)

Impact	of	tooth	
loss	on	acquisi‐
tion	(learning)	
versus	retention	
(memory)	latency

Retention	versus	acquisition	latency	
(p	<	.05)
Retention	latency:	293.6	+	6.1	s
Acquisition	latency:	88.9	+	17.4	s

Oue	et	al.,	
2016

Interventional,	
prospective	
study	(Tg2576	
mice)

Maxillary	molar	teeth	removed	(n	=	9)
Control	group	with	intact	molars	(n	=	10)

Impact	of	tooth	
loss	on	acquisi‐
tion	(learning)	
and	retention	
(memory)	latency

Acquisition	latency	(p	>	.05):
Molar	teeth	removed:	89.0	+	17.9	s
Control	group:	172.0	+	40.7	s
Retention	latency	(p	<	.05):
Molar	teeth	removed:	300.0	+	0	s
Control	group:	296.7	+	3.3	s

(Continues)
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in	a	study	cohort	with	similar	environments	and	 lifestyles	 (Stein,	
Desrosiers,	 Donegan,	 Yepes,	 &	 Kryscio,	 2007).	 Similar	 findings	
have	been	reported	globally,	including	The	Shanghai	Aging	Study,	
a	prospective	cohort	study	of	3,000	Chinese	adults	aged	60	years	
and	 older.	 This	 study	 reported	 significantly	 fewer	 teeth	 in	 indi‐
viduals	with	dementia	than	those	with	mild	cognitive	impairment	
(MCI)	and	normal	cognitive	health	 (18.7,	11.8,	and	9.3	teeth	 lost,	
respectively)	(Luo	et	al.,	2015).	The	study	also	found	that	patients	
who	had	fewer	teeth	had	an	increase	in	colonization	of	periodon‐
tal	bacteria.	Other	large	clinical	cohort	studies	have	documented	
better	 cognitive	 function	 in	 persons	with	 good	mastication	 effi‐
ciency	and/or	more	functional	teeth	even	after	adjusted	for	a	large	
number	of	confounding	factors	(Miquel,	Aspiras,	&	Day,	2018)	to	
suggest	 that	 a	 reduction	 in	 tooth	 number	 may	 be	 overcome	 if	
chewing	efficiency	is	preserved.

The	specific	role	oral	health	plays	in	dementia	pathogenesis	is	
poorly	understood	and	 likely	 involves	multiple	etiologies.	For	ex‐
ample,	 poor	 oral	 health	 can	 give	 rise	 to	 pain,	 infection,	 and	 lack	
of	 gustation,	 all	 of	 which	 may	 alter	 the	 neural	 input,	 functional	
memories,	 and	 desire.	 Moreover,	 individuals	 with	 AD	 have	 poor	
swallowing	 function	 (Takagi	 et	 al.,	 2017)	 which	 also	 contributes	
to	decreased	ability	to	ingest	certain	foods	and	in	turn	affects	the	
oral	 environment	 and	 systemic	health.	A	 recent	MRI	morphome‐
try	 study	of	 non‐demented	dentate	 and	 edentulous	 subjects	 has	
shown	atrophy	of	gray	matter	in	the	hippocampus,	caudate	nucleus,	
and	 temporal	 pole	 of	 the	 right	 hemisphere	 in	 edentulous	 human	
subjects,	 suggesting	 tooth	 loss	 increases	 the	 risks	 for	 atrophy	of	
brain	areas	related	to	memory,	learning,	and	cognition	(Kobayashi	
et	 al.,	 2018).	 Preclinical	 studies	 in	model	 organisms	 offer	 critical	
insight	 into	 mechanism	 mediating	 downstream	 consequences	 of	
tooth	removal,	and	the	ability	to	derive	causation—key	studies	are	
highlighted	in	the	following	section.

3  | OR AL HE ALTH AND COGNITIVE 
IMPAIRMENT—MECHANISTIC INSIGHT 
FROM PRECLINIC AL STUDIES

Changes	to	the	oral	cavity	may	influence	health	conditions	of	the	
body,	 and	 its	 importance	 to	 cognitive	 health	 and	 brain	 function	
in	adults	as	 they	age	has	been	 recently	 recognized	and	 reviewed	
(Miquel	 et	 al.,	 2018;	 Tran	 et	 al.,	 2018).	 The	 activity	 of	 eating	 in‐
volves	sensory,	motor,	pleasure,	and	memory‐forming	neuronal	cir‐
cuitry	and	brain	regions.	Mastication,	or	chewing,	forms	functional	
memories	and	becomes	a	basic	and	pleasurable	physical	act	involv‐
ing	numerous	brain	regions	through	the	creation	of	sensory	inputs	
throughout	 the	 central	 nervous	 system	 via	 the	 trigeminal	 nuclei	
(Ono,	Yamamoto,	Kubo,	&	Onozuka,	2010).	This	elaborate	process	
is	akin	to	brain	exercise	requiring	coordinated	neuromuscular	and	
somatosensory	control	and	results	 in	 increased	blood	flow,	blood	
oxygenation,	 and	 activation	 of	 numerous	 cortical	 brain	 regions	
including	 the	hippocampus	 (Hasegawa	et	 al.,	 2013;	Hirano	et	 al.,	
2013;	Miyake	et	al.,	2012;	Onozuka	et	al.,	2002),	a	brain	region	crit‐
ical	for	learning	and	memory	that	is	susceptible	to	AD	pathogene‐
sis.	In	addition,	mastication	leads	to	the	expression	of	brain‐derived	
neurotrophic	factor	(BDNF),	as	well	as	its	receptor,	tyrosine	kinase	
receptor	B.	Expression	of	BDNF	via	mastication	leads	to	neuronal	
cell	proliferation,	differentiation,	and	synapse	formation	(Lu,	2003;	
Vicario‐Abejon,	Owens,	McKay,	&	Segal,	2002).	Disrupted	signaling	
between	the	oral	cavity	and	the	brain	may	interrupt	important	neu‐
robiological	processes	that	contribute	to	negative	health	outcomes,	
including	brain	function	and	memory.	Masticatory	dysfunction	also	
leads	to	the	downregulation	of	BDNF,	which	results	in	a	decrease	
in	neuronal	progenitor	cells	and	functional	neurons	(Smith,	2016).	
Experimental	 studies	 in	model	organisms	offer	an	opportunity	 to	
carefully	investigate	this	association.

Study Study type Population Outcome(s) Results

He	et	al.,	
2014

Interventional,	
prospective	
study	(SAMP8	
mice)

4‐month‐old	mice:
Alveolar	nerve	transection	(experimental)	
(n	=	20)
Sham	surgery	(control)	(n	=	20)
7‐month‐old	mice:
Alveolar	nerve	transection	(experimental)	
(n	=	10)
Sham	surgery	(control)	(n	=	10)

Escape	latency
Learning	rate

Escape	latency	significantly	greater	in	
elderly	experimental	group	than	elderly	
control	group	in	five‐minute	acquisition	
session	(p	<	.05)
Elderly	control:	39.70	+	14.84	s
Elderly	experimental:	63.60	+	15.31	s
Learning	rate	in	elderly	mice	significantly	
poorer	in	experimental	group	versus	
controls	(p	<	.05)
Elderly	control:	18.50	+	5.44
Elderly	experimental:	25.90	+	6.21

Kubo	et	al.,	
2017

Interventional,	
prospective	
study	(SAMP8	
mice)

Molars	removed	(n	=	33)
Molars	intact	(n	=	33)

Plasma	cortisol	
levels
Time	in	Morris	
water	maze

Higher	plasma	cortisone	levels	in	early	
tooth	loss	group	(p	=	.016)
Early	tooth	loss	group	required	more	
time	in	Morris	water	maze	test	
(p	=	.016)

Abbreviations:	aHR,	adjusted	hazard	ratio;	aOR,	adjusted	odds	ratio;	CIND,	cognitive	impairment,	no	dementia;	MCI,	mild	cognitive	impairment;	
MMSE,	mini‐mental	state	examination;	RR,	relative	risk;	SD,	standard	deviation.

TA B L E  1   (Continued)
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Mouse	models	of	AD	pathology	have	been	tested	for	the	effects	
of	tooth	extraction	and	mastication	on	AD‐associated	Aβ accumu‐
lation,	 neuron	 loss,	 and	 behavioral	 performance.	 Transgenic	 J20	
mice	accumulate	AD‐associated	Aβ	protein	and	acquire	behavioral	
impairments	 that	 are	 dependent	 upon	 age	 (Mucke	 et	 al.,	 2000).	
Tooth	extraction	of	young,	6‐month‐old	adult	J20	transgenic	mice	
resulted	in	poor	memory	retention,	as	assessed	four	months	later,	
which	occurred	coincident	with	greater	Aβ	pathology	and	neuron	
cell	loss	than	J20	mice	with	intact	teeth	(Oue	et	al.,	2013).	In	con‐
trast,	 tooth	extraction	performed	on	middle	 aged,	14‐month‐old	
Tg2576	mice,	a	different	Aβ‐producing	AD	mouse	model,	did	not	
alter	learning	and	memory	or	alter	Aβ	production	(Oue	et	al.,	2016).	
Together,	these	results	suggest	that	tooth	extraction,	particularly	
at	a	young	age,	may	be	a	critical	mediator	of	AD‐associated	brain	
structural	changes	that	influence	memory	formation	and	retention	
in	later	life.

Age‐dependent	 effects	 of	 trigeminal	 nerve	 damage	 without	
tooth	extraction	have	been	reported	among	studies	using	the	se‐
nescence‐accelerated	mouse	strain	P8,	SAMP8,	a	model	of	acceler‐
ated	aging	and	AD.	Experimental	results	suggested	that	trigeminal	
nerve	 damage	 in	 young	mice	 (i.e.,	 4‐month‐old	 SAMP8	mice)	 did	
not	impact	learning	and	memory	at	older	ages	(i.e.,	8	or	11	months).	
However,	nerve	damage	inflicted	in	8‐month‐old	adult	SAMP8	mice	
caused	deficits	in	learning	and	memory	in	11‐month‐old	mice	coin‐
cident	with	cholinergic	neuron	loss	in	the	hippocampus	and	basal	
forebrain	 (He	et	 al.,	 2014).	 Interestingly,	 tooth	extraction	 in	 very	
young	 SAMP8	mice,	 (1‐month‐old,	 an	 age	 immediately	 following	
tooth	eruption)	(Kubo	et	al.,	2017)	produced	learning	and	memory	
deficits	similar	to	that	observed	in	the	8‐month‐old	nerve‐damaged	
mice	(He	et	al.,	2014;	Kondo	et	al.,	2016).	In	both	cohorts,	the	oral	
stress	 negatively	 impacted	 structure	 and	 function	 of	 the	 hippo‐
campus	via	neuronal	loss	or	damage.	Similarly,	a	decrease	in	hippo‐
campal‐dependent	spatial	learning	ability	was	observed	in	SAMP8	
and	SAMR1	(senescence‐accelerated	mouse	resistant	1)	mice	that	
were	fed	a	soft	 food	diet	 (Yamamoto	&	Hirayama,	2001).	The	re‐
sults	 from	this	 study	suggest	 that	 reduced	activity	 from	chewing	
soft	 food	may	 result	 in	 changes	 in	 afferent	 impulses,	 which	 can	
cause	 alterations	 in	 neural	 pathways.	 Therefore,	 loss	 of	 sensory	
input	from	the	teeth,	and	not	the	physical	tooth	loss,	is	critical	for	
spatial	learning	and	memory	in	rodents.	Environmental	enrichment	
(i.e.,	increased	levels	of	motor,	sensory,	social,	and	cognitive	stimuli)	
(Kondo	et	al.,	2016)	or	molar	restoration	(Iida	et	al.,	2014)	partially	
restored	spatial	memory	function	and	gene	expression	 important	
for	learning	and	memory,	respectively,	to	suggest	that	there	may	be	
opportunities	for	therapeutic	intervention.	While	the	use	of	differ‐
ent	mouse	models	may	contribute	to	differences	in	findings,	overall	
these	studies	indicate	that	tooth	extraction	impacts	AD‐associated	
Aβ	 pathology,	 brain	 structure,	 and	 function	 in	 an	 age‐dependent	
manner.	Notably,	the	preclinical	studies	to	date	have	not	addressed	
whether	oral	health	stressors	affect	tau	protein	processing	and/or	
pathogenesis	similar	to	that	described	for	Aβ.	Tau	pathology	closely	
tracks	with	neurodegeneration	and	dementia	in	AD;	therefore,	fu‐
ture	studies	using	tau	transgenic	mice	and/or	evaluating	tau	in	the	

above‐mentioned	 AD	 mouse	 models	 may	 greatly	 aid	 the	 under‐
standing	of	 the	complex	connection	between	oral	health	and	AD	
pathogenesis.	While	the	physical	and	structural	changes	associated	
with	 tooth	 removal	cannot	be	underestimated,	AD	 is	complex.	 In	
the	 following	 sections,	 we	 highlight	 important	 oral	 health	 mea‐
sures	beyond	that	of	neural	 input	and	sensation	that,	with	recent	
advances	 in	 technology	 and	 bioinformatics,	 are	 aiding	 in	 the	 un‐
derstanding	of	 the	complex	 interplay	between	oral	 and	cognitive	
health.

4  | THE OR AL C AVIT Y A S A RICH SOURCE 
FOR POTENTIAL DEMENTIA‐REL ATED 
BIOMARKERS

While	 the	 brain	 is	 an	 inaccessible	 organ,	 the	 oral	 cavity	 is	 a	 rich	
depot	 for	collecting	non‐invasive	biospecimen	data	 including	cells,	
saliva,	microbiota,	 proteins,	 lipids,	 and	 other	metabolites	 found	 in	
exhaled	breath	 (Table	2).	Experimental	and	clinical	studies	suggest	
a	possible	 link	among	 these	biomarkers,	oral	health,	and	cognitive	
decline.	Here,	we	provide	a	brief	review	of	these	associations.

4.1 | Oral microbiome

The	human	microbiome	is	known	to	play	a	role	in	the	development	of	
AD,	owing	to	the	vast	functions	of	the	microbiome	in	human	health.	
For	example,	the	oral	and	gut	microbiomes	aid	in	the	metabolism	of	
short‐chain	fatty	acids,	organic	acids	and	vitamins,	and	transforming	
bile	 salts,	 lipids,	 and	amino	acids	 (Canfora,	 Jocken,	&	Blaak,	2015;	
Takahashi,	 2015).	 Thus,	 changes	 in	 the	 microbiota	 (i.e.,	 dysbiosis)	
could	alter	the	function	of	the	community	and	have	a	significant	im‐
pact	on	health.	Most	of	the	prior	literature	has	focused	on	the	asso‐
ciation	of	gut	microbiome	dysbiosis	with	AD.	The	gut	microbiome's	
role	in	AD	pathogenesis	likely	stems	from	the	gut–brain	axis,	a	bi‐di‐
rectional	communication	pathway	between	the	enteric	and	central	
nervous	systems.	Dysbiosis	seen	in	the	gut	can	also	lead	to	increased	
expression	of	amyloid	precursor	protein	in	mice,	which	can	increase	
an	individual's	risk	for	neuroinflammation	(Chalazonitis	&	Rao,	2018).	
One	prior	study	found	that	patients	with	AD	had	a	higher	abundance	
of	 gut	 Bacteroidetes	 and	 decreased	 abundance	 of	 Actinobacteria	
(Vogt	 et	 al.,	 2017).	 Similar	 findings	 have	 been	 reported	 in	mouse	
models	of	AD	(Harach	et	al.,	2017).

TA B L E  2  Potential	oral	biomarkers	for	AD	diagnosis

Biomarkers

Oral	microbiome	(e.g.,	presence	in	AD	brain)

Volatile	organic	compounds	(e.g.,	unique	profiles	among	neurode‐
generative	diseases)

Salivary	proteomics	(e.g.,	Aβ	peptides,	tau,	and	lactoferrin,	salivary	
acetylcholinesterase	activity	linked	to	AD)

Salivary	lipidomics	(a	new	frontier	for	AD)
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Oral	microbiome	dysbiosis	has	been	previously	associated	with	
oral	diseases,	including	dental	caries	and	periodontitis.	Additionally,	
experimental	 evidence	 suggests	 a	 link	 between	 oral	 bacteria	 and	
AD.	Circulating	levels	of	tumor	necrosis	factor‐alpha	(TNF‐α)	and	an‐
tibodies	for	oral	bacteria	including	A. actinomycetemcomitans,	T. for‐
sythia,	and	P. gingivalis	have	been	found	to	be	higher	in	AD	patients’	
serum	 compared	 to	 controls	 (Kamer	 et	 al.,	 2009).	 Furthermore,	
serum	IgG	levels	to	common	periodontal	microbiota	are	associated	
with	risk	for	developing	incident	AD	(Noble	et	al.,	2014).	Taken	to‐
gether,	this	evidence	suggests	a	potential	link	between	the	oral	mi‐
crobiome	and	AD.

The	mechanism	by	which	the	oral	microbiota	impacts	cognition	
is	likely	mediated	by	changes	in	the	oral	microenvironment	that	se‐
lect	for	pathogens	and	facilitate	transmission	of	bacteria	outside	of	
the	mouth.	Dysbiosis,	 particularly	due	 to	 antibiotic	 exposure,	 re‐
duces	the	abundance	of	the	protective	commensal	bacteria	and	en‐
riches	for	pathogens	(Socransky	&	Haffajee,	2005).	The	simple	acts	
of	chewing	and	brushing	can	leak	bacteria	and	inflammatory	mark‐
ers	into	systemic	circulation,	particularly	in	those	with	local	inflam‐
mation	due	to	periodontitis.	With	adequate	immune	response,	the	
transient	bacteremia	is	eliminated	from	circulation.	However,	since	
many	older	adults	experience	a	decline	of	the	immune	system	(also	
known	as	immunosenescence),	they	are	more	likely	to	be	immuno‐
compromised	and,	thus,	may	not	be	able	to	clear	the	bacteremia.	It	
has	been	suggested	that	immunosenescence	also	favors	the	over‐
growth	of	oral	anaerobes,	leading	to	a	pro‐inflammatory	response	
that	weakens	the	blood	brain	barrier,	allowing	bacteria	to	spread	to	
the	brain	 (Shoemark	&	Allen,	2015).	Once	pathogens	and	 inflam‐
matory	markers	migrate	to	the	brain	and	penetrate	the	blood–brain	
barrier,	 they	 can	 influence	 microglial	 activation,	 Aβ	 deposition,	
tau	 protein	 phosphorylation,	 and	 vascular	 changes	 that	 could	 all	
contribute	 to	 the	 pathology	 of	 AD	 (Aarabi,	 Thomalla,	 Heydecke,	
&	Seedorf,	2018;	Lewy	et	al.,	2018;	Uppoor,	Lohi,	&	Nayak,	2013).

4.2 | Volatile organic compounds (VOCs): 
Metabolites detected in exhaled breath

Volatile	organic	compounds	(VOCs)	comprise	a	chemically	diverse	
group	of	organic	compounds	that	arise	by	a	variety	of	catabolism	
routes,	 but	 principally	 from	 amino	 and	 fatty	 acids	 (Lundstrom,	
Hummel,	 &	 Olsson,	 2003).	 Their	 low	 molecular	 weight	 (~500	
Daltons),	 low	boiling	points,	and	high	vapor	pressure	under	ambi‐
ent	conditions	allow	them	to	readily	diffuse	through	the	gas	phase	
and	 within	 biological	 systems;	 they	 serve	 as	 signaling	 molecules	
(e.g.,	hormones)	and	scents	detectable	by	humans	 (Rowan,	2011).	
Thousands	of	VOCs	are	excreted	in	each	breath,	which	have	proven	
useful	 for	 diagnosing	 a	 broad	 range	 of	 diseases,	 including	 diabe‐
tes	 (Galassetti	 et	 al.,	 2005;	Novak	 et	 al.,	 2007;	 Phillips,	 Cataneo,	
Cheema,	 &	 Greenberg,	 2004),	 gastrointestinal	 and	 liver	 diseases	
(Probert	et	al.,	2009),	different	types	of	cancer	(Hakim	et	al.,	2012;	
Horvath,	Lazar,	Gyulai,	Kollai,	&	Losonczy,	2009;	Mazzone,	2008;	
Phillips	 et	 al.,	 2010),	 and	 infections	 (Chambers,	 Scott‐Thomas,	 &	
Epton,	2012;	Phillips	et	al.,	2006;	Ren	et	al.,	2017).	This	innovative	

approach	 is	 now	 being	 applied	 to	 neurodegenerative	 disease	 re‐
search.	Though	only	in	its	infancy,	changes	in	breath‐derived	VOC	
profiles	 are	 evident	 in	 several	 disease	 states,	 such	 as	 multiple	
sclerosis	 (Broza	 et	 al.,	 2017),	AD	 (Mazzatenta,	 Pokorski,	 Sartucci,	
Domenici,	&	Di	Giulio,	 2015),	 Parkinson's	 disease	 (Nakhleh	 et	 al.,	
2015),	and	discriminating	between	the	 latter	two	neurodegenera‐
tive	diseases	are	emerging	(Lau,	Yu,	Lee,	Huh,	&	Lim,	2017;	Tisch	et	
al.,	2013).	Mazzatenta	et	al.,	(2015	noted	that	AD	patients	exhibited	
a	significant	difference	in	breath	frequency	(p	=	.002)	and	maximum	
breath	peak	frequency	(p	=	.02)	compared	to	healthy	subjects,	pos‐
sibly	due	to	increased	neuronal	death	or	damage.	These	changes	in	
respiration,	along	with	utilizing	VOCs,	may	become	useful	 in	pre‐
dicting	and	diagnosing	AD.

4.3 | Salivary lipids and proteins

Saliva,	 or	 oral	 fluid,	 has	 long	 been	 of	 interest	 as	 a	 substitute	 for	
blood	and	other	body	fluids	for	disease	diagnosis	and	disease/drug	
monitoring.	 Saliva	 is	 readily	 accessible,	 can	be	obtained	non‐inva‐
sively,	and	contains	a	large	number	of	analytes	transferred	by	serum	
(e.g.,	 cytokines,	 antibodies,	 hormones,	 VOCs,	 and	 drugs	 (Broza,	
Mochalski,	Ruzsanyi,	Amann,	&	Haick,	2015).	Current	salivary	pro‐
teomic	 and	 transcriptomic	 knowledge	 for	 biomarker	 discovery	 in‐
cludes	oral	cancer	(Lee,	Garon,	&	Wong,	2009;	Park	et	al.,	2009)	and	
periodontal	diseases	(Christodoulides	et	al.,	2007;	Giannobile	et	al.,	
2009).	 Potential	 salivary	 biomarkers	 associated	with	 neurodegen‐
erative	 diseases	 have	 been	 recently	 reviewed	 (Farah	 et	 al.,	 2018).	
Changes	 with	 salivary	 protein	 levels,	 like	 Aβ	 peptides	 (Aβ40 and 
Aβ42),	tau	and	lactoferrin,	and	salivary	acetylcholinesterase	activity	
have	been	linked	to	AD.

Lipids	 present	 in	 body	 fluid	 carry	 a	 number	 of	 signatures	
from	 the	 cells/organs	 released.	 These	molecules	 include	 infor‐
mation	reflective	of	cellular	membrane	structure,	 function,	en‐
ergy	storage/metabolism,	and	signaling.	Saliva	 is	enriched	with	
neutral	 lipids	 such	 as	 cholesterol,	 cholesteryl	 esters,	 mono‐,	
di‐	 and	 triglycerides,	 and	 free	 fatty	acids	 (Larsson,	Olivecrona,	
&	 Ericson,	 1996).	 A	 previous	 study	 of	 serum	 and	 saliva	 found	
moderate	 correlation	 of	 total	 cholesterol	 and	 triglycerides,	 in‐
dicating	that	serum	lipoproteins	contribute	to	the	salivary	lipids	
a	great	deal	(Singh	et	al.,	2014).	However,	in	a	preliminary	study	
using	a	shotgun	lipidomics	platform	(Han,	Yang,	&	Gross,	2012;	
Wang,	Wang,	 Han,	 &	 Han,	 2016;	 Yang,	 Cheng,	 Gross,	 &	 Han,	
2009),	we	quantified	hundreds	of	polar	 lipid	 species,	 including	
phospholipids	 and	 sphingolipids	 (unpublished	data)	 from	 saliva	
samples	 of	 a	 group	 of	 healthy	 individuals.	We	 found	 that	 the	
profiles	between	plasma	and	salivary	lipids	were	different.	This	
observation	 indicates	 that	 salivary	 glands	 and	 other	 sources	
contribute	 a	 large	 amount	 of	 lipids	 to	 saliva	 and	 suggests	 that	
salivary	lipids	could	be	used	for	development	of	biomarkers	be‐
yond	those	of	plasma.

Studies	evaluating	salivary	lipids	as	markers	for	oral	health	or	
cognitive	decline	are	limited.	A	previous	study	using	lipid	analysis	
of	parotid	saliva	among	two	groups	of	female	subjects	susceptible	
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to	 and	 resistant	 to	 dental	 caries	 showed	 higher	 total	 lipid	 con‐
centration	 in	 the	 caries‐susceptible	 group	 (Tomita,	 Miyake,	 &	
Yamanaka,	2008),	suggesting	that	salivary	lipid	levels	play	a	role	in	
caries	development.	We	believe	that	changes	 in	saliva	 lipids	that	
occur	 in	the	context	of	neurodegeneration	and/or	declining	cog‐
nition	could	be	detected	by	 lipidomics	analysis	and	can	serve	as	
early	biomarkers	for	neurological	diseases	including	AD;	however,	
further	research	is	needed	in	this	area.

5  | CONCLUSIONS

Despite	decades	of	research	and	promising	preclinical	studies,	dis‐
ease‐modifying	 treatments	 for	AD	remain	elusive.	 Identifying	AD‐
susceptible	 individuals	 in	 early	 stages	may	be	key	 for	 successfully	
developing	disease‐modifying	treatments.	Numerous	experimental	
and	clinical	studies	suggest	a	link	between	oral	health	and	the	devel‐
opment	of	AD,	suggesting	that	the	oral	cavity	could	be	a	source	of	
important	biomarkers	of	AD,	as	well	as	a	potential	modifiable	target	
for	AD	prevention.	Further	research	 is	needed	to	fully	understand	
the	value	of	oral	biomarkers	as	predictors	or	mediators	of	AD	devel‐
opment	and	progression.
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