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Abstract Lipid- and lipoprotein-modifying therapies have expanded substantially in the last 25 years, resulting in reduction in
the incidence of major adverse cardiovascular events. However, no specific lipoprotein(a) [Lp(a)]-targeting therapy
has yet been shown to reduce cardiovascular disease risk. Many epidemiological and genetic studies have demon-
strated that Lp(a) is an important genetically determined causal risk factor for coronary heart disease, aortic
valve disease, stroke, heart failure, and peripheral vascular disease. Accordingly, the need for specific Lp(a)-lowering
therapy has become a major public health priority. Approximately 20% of the global population (1.4 billion people)
have elevated levels of Lp(a) associated with higher cardiovascular risk, though the threshold for determining ‘high
risk’ is debated. Traditional lifestyle approaches to cardiovascular risk reduction are ineffective at lowering Lp(a).
To address a lifelong risk factor unmodifiable by non-pharmacological means, Lp(a)-lowering therapy needs to
be safe, highly effective, and tolerable for a patient population who will likely require several decades of treatment.
N-acetylgalactosamine-conjugated gene silencing therapeutics, such as small interfering RNA (siRNA) and antisense
oligonucleotide targeting LPA, are ideally suited for this application, offering a highly tissue- and target transcript-
specific approach with the potential for safe and durable Lp(a) lowering with as few as three or four doses per
year. In this review, we evaluate the causal role of Lp(a) across the cardiovascular disease spectrum, examine
the role of established lipid-modifying therapies in lowering Lp(a), and focus on the anticipated role for siRNA
therapeutics in treating and preventing Lp(a)-related disease.
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1. Overview: the current status of
Lp(a) in cardiovascular disease

1.1 Lipoprotein(a)—emergence as a risk
factor
Lipoprotein(a) [Lp(a)] was first identified and reported in 19631 with evi-
dence supporting its role as a cardiovascular (CV) risk factor accumulat-
ing steadily over the last five decades. However, the most informative
insights into its causal role in risk for CV disease (CVD) have been gener-
ated during the last decade. Much of these data have been generated
from large population-based observational studies2,3 and from post hoc
analyses of trials studying other lipid-lowering agents.4,5 These analyses
demonstrate a log-linear relationship between Lp(a) and risk of myocar-
dial infarction (MI), stroke,3 and peripheral arterial disease (PAD).6

Although effective interventions are now available for many other lipid-
related CV risk factors, elevated Lp(a) remains a largely untreatable
dyslipidaemia.

Following the introduction of HMG-CoA reductase inhibitors (sta-
tins) in 1987, lipid-modifying therapies for the management of CVD have
focused largely on modification of low- and high-density lipoprotein cho-
lesterol (LDL-C and HDL-C) and triglycerides. Large randomized out-
come studies have demonstrated important benefits of statins,7

ezetimibe,8 and fibrates9,10 for reducing risk of CV events, chiefly through
lowering circulating levels of LDL-C. More recently, novel therapeutic
targets, such as proprotein convertase subtilisin/kexin type 9
(PCSK9)11,12 and ATP citrate lyase, the target of bempedoic acid, have
shown efficacy13 in lowering LDL-C. There have also been notable

failures, most prominently niacin and cholesteryl ester transfer protein
(CETP) inhibitors. While these approaches to modulation of HDL-C
and other lipid fractions have not proved successful, HDL-C remains a
potentially valuable route to reduction of CVD risk.14 This arsenal of
lipid-modifying therapies offers excellent reduction in risk of CVD events
through reduction in LDL-C and, possibly, triglycerides. However, exist-
ing therapies provide only modest reductions in Lp(a). Consequently, for
many patients who have either effective control of other risk factors and
persistently raised Lp(a), or for whom Lp(a) is their sole risk factor, a
large portion of their risk remains unaddressed.

2. The Lp(a) particle and its role in
health and disease

The biochemistry and pathophysiological properties of Lp(a) have been
described in detail previously;15,16 here, we review the key features rele-
vant to Lp(a)-lowering therapy. The Lp(a) particle is an apolipoprotein B
(apoB)-containing lipoprotein similar to LDL, but with apolipoprotein(a)
[apo(a)] covalently bound to apoB-100 on the surface of the particle.17

Apo(a) itself is a protein encoded by the LPA gene (chromosome
6q25.3) that bears substantial homology with plasminogen (PLG, chro-
mosome 6q26). Lp(a) and PLG are characterized by kringle motifs, which
are protein domains that fold into loops stabilized by three disulphide
linkages. Kringle motifs I (KI)–V (KV) are present in PLG, whereas only
KIV and KV are found in Lp(a).17 In contrast to kringle IV of PLG, in
apo(a) KIV is present in 10 subtypes (KIV 1–10) with a single copy of
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each; the exception is KIV2, which can vary in copy number from 2 to
more than 40 identical copies underlying the substantial size heterogene-
ity of apo(a) in the population. Thus, Lp(a) exists as multiple isoforms,
the size of which is determined by the number of repeated KIV2 motifs.
The number of repeats is genetically encoded by well-characterized var-
iants at the LPA locus.18 Both alleles of these variants contribute to the
kringle repeat number and serum levels of Lp(a) in individual patients.
The Lp(a) isoform size has two important clinical implications. First,
smaller isoforms (i.e. those with fewer KIV repeats) have greater athero-
genic potential than the same circulating concentration of Lp(a) particles
containing larger proteins with more KIV repeats.19 Second, the number
of KIV repeats can lead mass-based assays (i.e. those reporting circulating
concentration in mg/dL) to underestimate the true Lp(a) concentration
in the presence of small Lp(a) isoforms. For this reason, the use of molar
concentration-based assays (i.e. particle concentration-based reporting
in nmol/L) has been increasingly advocated since these account ade-
quately for isoform size, mitigating against underestimating levels of small
Lp(a) isoforms or overestimating of large Lp(a) isoforms.20,21

Lp(a) has physiological and pathological roles. Its role in health is di-
verse and includes modulation of coagulation through its interactions
with PLG and the fibrinolytic system, immune cell interaction with the
vascular endothelium, and proliferation of vascular smooth muscle and
adhesion molecules.22 Lp(a) is a major carrier of oxidized phospholipid
(OxPL) in human plasma.23 OxPLs are mediators of potent proathero-
genic and pro-inflammatory effects and are thought to account for a sig-
nificant proportion of the CV risk attributable to Lp(a).24 LPA variants
[genetically determining increased plasma Lp(a) levels and apo(a)
isoform size] strongly associate with OxPL–apoB concentration.19 In
disease, Lp(a) also has several roles, of which three are most prominent:
(i) Lp(a) crosses the vascular endothelium and contributes to the
formation and progression of atherosclerotic plaques.25 (ii) In the event
of atheromatous plaque rupture, the prothrombotic properties of
Lp(a)—including inhibition of plasminogen activation to inhibit fibrinoly-
sis—potentiate thrombus formation and contribute to the onset of
MI or ischaemic stroke. (iii) Lp(a) crosses the intima of the aortic valve
leaflets, promoting inflammation, calcification, and, eventually, aortic
valve stenosis.25 The role of Lp(a) in specific manifestations of CVD is
discussed in more detail below.

3. Lp(a) epidemiology and
relationship with CVD risk

3.1 The pathological relevance of Lp(a)
for CVD
The profile of Lp(a) as a CV risk factor has several important differences
compared with more established risk factors. Unlike LDL-C, blood pres-
sure, and body mass index (BMI), the population distribution of circulat-
ing Lp(a) concentration is positively skewed rather than normally
distributed. The majority of the population (�80%) have concentrations
of Lp(a) below�50 mg/dL (�125 nmol/L),25 including a group of individ-
uals with very low or undetectable circulating Lp(a).26 Importantly, those
individuals are not known to experience any adverse consequences of
their low Lp(a) thereby providing reassurance regarding the safety of
large reductions using therapeutic interventions seeking to recapitulate
this pharmacologically.27 The population distribution of Lp(a) also differs
by ancestral group. People of African ancestry have, on average, higher
circulating Lp(a) than people of European or Asian ancestry,28,29 raising

important considerations for risk prediction and modification given the
inter-ancestral variation of other risk factors, such as hypertension and
dysglycaemia.

A person’s genotype regulates Lp(a) kringle number and isoform size;
kringle IV repeats are the most important, but not the sole, determinant
of serum concentrations, with LPA genotype accounting for >90% of cir-
culating Lp(a) variance.30 Circulating Lp(a) concentration is determined
at the time of conception and, with few exceptions, such as the influence
of renal dysfunction and perimenopausal hormonal changes,31,32 varies
little during their lifetime. In contrast, the development of other risk fac-
tors, such as LDL-C, blood pressure, and BMI, is predominantly a feature
of middle age and beyond.33 These conventional risk factors often de-
velop with aging and are subject to the influence of behaviour, diet, and
concomitant disease. In the case of Lp(a), raised levels are detectable
and fixed much earlier in life34,35 and the circulating concentration
remains relatively stable as a person ages. The adverse effects of raised
Lp(a) on disease risk are therefore present from an earlier stage in life
than many other risk factors. Thus, earlier intervention to lower Lp(a)
before the accumulation of additional risk later in life may offer greater
benefit for prevention. Evidence suggests that the relationship of ele-
vated Lp(a) with risk of recurrent CVD events may not be equivalent to
that with risk of first CVD events.36–38 However, as discussed below,
clinical trials are underway to provide deeper insights into those
relationships.

Our understanding of the relevance of Lp(a) in many manifestations of
CVD comes from observational studies, population genetic studies, and
a few interventional trials. Observational studies, particularly those with
longitudinal information on incident disease provide important epidemi-
ological insights about the relationship between higher Lp(a) and higher
risk of CV events, but do not permit causal inference. Genetic studies
that evaluate associations of genetic variants at the LPA locus with Lp(a)
concentrations enable causal inference using the Mendelian randomiza-
tion paradigm39 and have been instrumental in elucidating the potential
for Lp(a) lowering as a promising therapeutic strategy in CVD.40–42

Finally, randomized trials of lipid-modifying agents, such as statins
and PCSK9 inhibitors with some effect on Lp(a) have offered some lim-
ited information on the value of Lp(a) lowering, although interpretation
of these data is limited by the lack of specificity of the drugs tested for an
effect on Lp(a).43–45

3.2 Coronary heart disease
The relationship between raised Lp(a) and risk of coronary heart disease
(CHD) events is strongly supported by multiple observational studies.
A large meta-analysis of longitudinal observational studies reported a
risk ratio of 1.16 [95% confidence interval (95% CI) 1.11–1.22] for CHD
for each 1 standard deviation higher Lp(a), which was equivalent to
3.5-fold higher Lp(a) in the population studied.3 This strong relationship
was confirmed in a large Danish cohort with participants with
Lp(a)>_20 mg/dL (�300 nmol/L)—representing the 95th centile—
demonstrating a 20% higher 10-year absolute risk of MI in female
patients and 35% higher in males over 60 years in age who smoked and
had hypertension.2

Genetic studies have supported a causal association underlying these
observational estimates of the relationship between Lp(a) and CHD.
Although circulating Lp(a) levels may differ markedly between ancestral
groups,46 the Lp(a)–CHD risk association is observed in multiple popula-
tions.29 Genome-wide association studies (GWASs) have identified the
LPA locus as strongly associated with risk of coronary disease. Two var-
iants (rs10455872 and rs3798220) are both highly associated with

1220 D.I. Swerdlow et al.
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increased plasma Lp(a), reduced LPA copy number (i.e. reduced KIV2
repeats), and smaller Lp(a) lipoprotein size—associated with an odds ra-
tio for coronary artery disease of 1.5 for one variant and 2.57 for two or
more variants.40 Mendelian randomization studies show a genetically de-
termined doubling of Lp(a) plasma levels results in a 22% increased risk
of MI during a maximum of 16 years of follow-up, consistent with a causal
relationship between lifelong elevation in Lp(a) and MI.41 Two Mendelian
randomization studies have sought to quantify the likely magnitude of
Lp(a) reduction in a clinical trial equivalent to lower LDL-C by 1 mmol/L
(38.67 mg/dL) with respect to CHD risk reduction.47,48 The estimates of
the equivalent Lp(a) reduction ranged from a 65.7 mg/dL affording
�22% relative risk reduction,48 to 101.5 mg/dL affording �24% CHD
relative risk reduction.47 These estimates rest on the assumption that
lifelong genetically determined circulating LDL-C and Lp(a) levels have
approximately equivalent effects on CHD risks. While this assumption is
supported by epidemiological data, it suggests that even large Lp(a)
reductions in Lp(a) may confer only modest CHD risk reduction.
However, the data used to generate these estimates came from general
population samples with relatively low median baseline Lp(a) (range:
11–43.3 mg/dL). The potential for benefit in patients at the higher end of
the skewed Lp(a) distribution (i.e. >50 mg/dL) may be greater.
Furthermore, the findings of Mendelian randomization analyses reflect
lifelong effects of genetic variants, which may differ in magnitude from
the effects of drug treatment which is, in general, of relatively shorter du-
ration and greater potency.

3.3 Aortic valve stenosis
Lp(a) shows a strong positive relationship with aortic stenosis (AS) in ob-
servational and genetic studies.49,50 Elevated Lp(a) and OxPL-apoB are
independently associated with more rapid progression of stenosis in
patients with mild-moderate AS, with patients in the top tertile of Lp(a)
or OxPL-apoB exhibiting increased valvular calcification activity—mea-
sured by 18F-NaF PET/CT—compared with those in the lower tertiles,
and a higher risk of aortic valve replacement (AVR) or cardiac death.49,51

Notably, the relationship between Lp(a) and OxPL levels with rate of AS
progression appears to be linear rather than a threshold association.51 In
a post hoc, exploratory analysis of the FOURIER trial of the PCSK9 inhibi-
tor evolocumab, higher Lp(a), but not higher LDL-C, was associated
with greater likelihood of new AS diagnoses or AS worsening over �2
years of follow-up.52 Genetic data also implicate Lp(a) as a key mediator
in the pathogenesis and development of AS. A GWAS of aortic valve cal-
cium burden detected by CT imaging identified a variant in LPA
(rs10455872) 40 that was associated with approximately a two-fold in-
crease in odds of aortic valve calcification. The same variant was signifi-
cantly associated with incident AS.53 Using a Mendelian randomization
approach, the same study identified a relationship between genetically
determined higher Lp(a) levels and higher likelihood of the presence of
aortic valve calcification. The association between this and other LPA var-
iants, serum Lp(a) levels and AS has been replicated by other studies,54

including those employing a prospective Mendelian randomization de-
sign.55 Recent Mendelian randomization analyses have suggested a causal
role for Lp(a) in other lesions of the aortic and mitral valves.42

3.4 Other manifestations of CVD
Beyond the two major disease associations described above, Lp(a) plays
an important role in the risk of several other CVDs. Higher circulating
Lp(a) levels associate with higher risk of ischaemic stroke in cohorts
across ancestral groups.56–58 Notably, the association with ischaemic

stroke was observed in individuals without atrial fibrillation (AF) but not
in those with AF,59 which may suggest Lp(a) promotes an atheroembolic
mechanism of cerebral infarction rather than a cardioembolic aetiology.
Genetic studies also support a causal relationship between Lp(a) levels
and ischaemic stroke risk.60 PAD associates strongly with higher Lp(a)
levels, as does greater likelihood of peripheral revascularization in people
with established PAD, suggesting Lp(a) has a role in not only the onset of
disease, but also its progression.6,53,61,62 The role for Lp(a) in the epide-
miological relationship with PAD is also supported by genetic studies. In
a large GWAS of PAD risk, a single nucleotide polymorphism (SNP) in
LPA was the variant most strongly associated with PAD risk.63 Heart fail-
ure is a disease phenotype closely related to CHD and AS and displays
an observational relationship with Lp(a).64,65 Large-scale genetic studies
support this relationship66 but the association between LPA genotype
and heart failure is attenuated after adjustment for accompanying CHD,
suggesting that the role of Lp(a) in heart failure is largely mediated
through coronary atherothrombotic disease. LPA genotype and elevated
Lp(a) were associated with younger age at death of participants’ parents
in a large GWAS study, with the same genetic variant associated with
higher Lp(a) levels and higher CHD risk.67

Taken together, the diseases in which Lp(a) plays an important causal
role make a compelling case for the potential benefit to individual and
population health of specific, safe, and effective Lp(a)-lowering therapy.

3.5 Lp(a) and familial
hypercholesterolaemia
Familial hypercholesterolaemia (FH) is a collection of disorders charac-
terized by very high circulating LDL-C levels largely caused by mutations
at the LDLR, PCSK9, and APOB genetic loci. While high LDL-C in many
patients with FH can be managed effectively with pharmacological and
lifestyle measures, raised Lp(a) can confer a sizable burden of additional
risk.68 In patients with heterozygous FH, median Lp(a) has been reported
to be up to almost two-fold higher than the general population,68 al-
though published findings on this subject vary,22,69,70 and raised Lp(a) is
an independent predictor of CVD risk in patients with FH.70 These find-
ings have led to recommendations to incorporate Lp(a) measurement in
the systematic cascade screening of patients with molecularly defined
FH, identifying 1 new case for every 2.4 screened.71 Patients with FH
therefore carry two potent, genetically determined drivers of CVD
risk,72 including risk of both CHD73 and AS.74 Patients with FH are there-
fore a group who may benefit from novel Lp(a)-lowering therapies.

4. Current options for management
of Lp(a)-mediated CV risk

As summarized in Table 1, the effects of established lipid-modifying
agents on Lp(a) are both modest and variable, with only trials of the
monoclonal antibody PCSK9 inhibitors reporting a potentially clinically
meaningful reduction in Lp(a). While PSCK9 inhibitors demonstrate
some Lp(a)-lowering effect, the magnitude of the effect is likely insuffi-
cient to adequately reduce Lp(a)-mediated CVD risk in the popula-
tion.47,48 The CETP inhibitors anacetrapib and evacetrapib reduced
Lp(a) by 25% and 40%, respectively.75,76 These drugs did not demon-
strate an overall benefit for CVD risk reduction but, importantly, were
evaluated in trials that did not enrol patients on the basis of elevated
Lp(a).

RNA interference therapeutics for treatment of lipoprotein(a)-mediated cardiovascular disease 1221
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..Lipoprotein apheresis offers an effective means of lowering apoB-con-
taining lipoproteins, including LDL and Lp(a).77 Apheresis is an intensive
treatment modality that requires patients to attend a specialist centre at
1–2 weekly intervals for treatment sessions lasting between 90 min and
4 h. Apheresis is successful in reducing both Lp(a) and LDL-C from base-
line by �70% and 65%, respectively, although the reduction in Lp(a) fol-
lows a saw-tooth pattern with modest time-averaged reductions.78

Apheresis is recommended by clinical guidelines in only a small number
of countries including Germany. In general, apheresis is offered to
patients in the context of high Lp(a) (e.g. >60 mg/dL in Germany) with
evidence of progressive CVD or recurrent CVD events despite optimal
management. Apheresis has additional benefits beyond lipoprotein re-
duction, including lowering plasma viscosity79 and removal of pro-inflam-
matory mediators.80 While definitive data from randomized trials of
apheresis in CVD event prevention are not available, prospective non-
randomized studies, such as Pro(a)LiFe, which included 170 patients
treated with apheresis, have suggested substantial reductions in event
rates.78 In addition to the inconvenience for patients, apheresis carries
some risk of adverse events. The majority of these are related to vascular
access, and transient haemodynamic effects of extracorporeal circula-
tion, such as dizziness.78,79

In addition to the treatment effects on Lp(a) reported in randomized
trials of lipid-lowering drugs, these trials have shown interactions be-
tween baseline circulating Lp(a) levels and the effects of treatment on
CV risk. In the JUPITER study, Lp(a) levels were associated with residual
risk of CVD in participants treated with rosuvastatin, independently of
LDL-C lowering.4 The ODYSSEY-OUTCOMES study reported that the
effect of alirocumab mediated by Lp(a) reduction reduced major adverse
cardiovascular events following an acute coronary syndrome indepen-
dent of the effect mediated by LDL-C lowering.81 While encouraging,
these post hoc findings from a trial of a drug principally targeting LDL-C
will benefit from dedicated investigation in trials of specific Lp(a)-lower-
ing agents. Pharmacogenetic analyses in statin RCTs have demonstrated
an effect of genotype at the LPA locus (and for the rs10455872 variant in
particular). In the CARDS and PROSPER studies, Lp(a)-raising alleles of
the rs10455872 SNP were associated with a smaller reduction of LDL-C
on atorvastatin treatment; in CARDS, however, there was no evidence

of interaction between genotype and CVD end points.82 A similar finding
was observed with simvastatin treatment in the Heart Protection
Study,83 with rosuvastatin in the JUPITER study84 and in a population-
based observational study in Scotland.85 Importantly, these observations
may be confounded by the methods used to measure LDL-C, the results
of which likely incorporate the cholesterol content of both LDL and
Lp(a) particles (constituting �30–45% of the latter) and therefore do
not entirely reflect the specific influence of LPA genotype on LDL-C.83 In
a population-based GWAS of CHD events in individuals receiving statin
treatment, the LPA rs10455872 SNP was the variant most significantly as-
sociated with higher CHD risk in statin-treated participants, an associa-
tion that was independent of statin-induced LDL-C reduction.86

Risk for AS merits particular mention given the important role Lp(a)
appears to play in the development and progression of this valve disor-
der. No pharmacotherapy is currently available to slow or reverse the
progression of AS. Currently, the only option available for patients with
severe symptomatic AS is surgical or transcatheter aortic valve replace-
ment.87 In the stages of AS before disease progression necessitates AVR,
the management of AS comprises longitudinal surveillance of valve func-
tion, management of left ventricular dysfunction and modification of
CHD risk which often coexists with AS.88 RCTs investigating the effects
of statin therapy in AS have not demonstrated improvements in aortic
valve pressure gradient, jet velocity or valve area, or progression to valve
replacement.89

Effective management of a lifelong risk factor, such as Lp(a) requires
an intervention that is safe for long-term use, effective, and acceptable to
the patients who will likely require many years of treatment. For existing
oral lipid-modifying therapies administered daily, treatment adherence
and persistence can be challenging for many patients. Available observa-
tional data suggest that lower treatment adherence and persistence has
a strong association with higher risk of CV events.90–92 Monoclonal anti-
body PCSK9 inhibitors can potentially address this challenge through
longer dosing intervals of 2–4 weeks.93,94 Long-term drug therapy must
also take account of the risk of adverse effects. For statins, the risk of
muscle pain and weakness95 and new-onset type 2 diabetes96 remains a
concern to many patients and prescribers. The ideal specific Lp(a)-low-
ering therapy would have as benign a safety profile as possible and its

..............................................................................................................................................................................................................................

Table 1 Effects of established lipid-modifying agents on Lp(a)

Drug or drug class Effect on Lp(a)

Statins Substantial heterogeneity between statin drugs in a meta-analysis of RCTs. Effects ranged from 13% reduction

(95% CI 10–15%) for atorvastatin in the CARDS study82 to 15% increase (95% CI 13–17%) for simvastatin

in the 4S study.131 No overall effect when data meta-analysed leading to uncertainty of the effect of

statins.43

Ezetimibe No significant effect in a meta-analysis of RCTs.44

Niacin Reduced by 22.9% (95% CI 18.5–22.9%) in a meta-analysis of RCTs.132 Effect was not dose-dependent.

Fibrates No significant effect in a meta-analysis of RCTs.133

Bempedoic acid No significant effect on Lp(a) in phase 2 study.134

PCSK9 inhibitor monoclonal antibodies Median Lp(a) reduction with evolocumab was 26.9% [interquartile range (IQR) 6.2–46.7%) in the FOURIER

study.5 Median reduction with alirocumab was 25.6% (IQR 7.2–42.7%) in pooled phase 3 trial data.135 This

was confirmed in a pooled analysis.45

Inclisiran 18.6% reduction from baseline in the phase 3 ORION-11 study.136

Mipomersen Median Lp(a) reduction in pooled phase 3 trials was 26.4% (IQR 5.4–42.8%).137

CETP inhibitors Evacetrapib reduced Lp(a) by up to 40% in a phase 2 study.76 Anacetrapib reduced Lp(a) by 34.1% in a small

phase 2 study.138

1222 D.I. Swerdlow et al.
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administration would place the minimum burden on the patient. A major
factor in determining that burden is the frequency of administration.
Lp(a)-lowering therapy with a RNA interference (RNAi) agent [e.g. small
interfering RNA (siRNA)] offers an opportunity for a particularly durable
and effective therapy.

5. Current clinical guidance on
management of raised Lp(a)

Recent revisions of clinical guidelines for CVD risk management and lipid
modification in Europe, the USA, Canada, and the UK have addressed
the issue of Lp(a) as a risk factor. Notably, the focus of these guidelines is
chiefly atherosclerotic and atherothrombotic disease, while aortic valve
disease is not directly addressed. The joint American Heart Association/
American College of Cardiology Task Force guidelines in 2018 identify
circulating Lp(a) over 50 mg/dL (124 nmol/L) as a ‘risk enhancer’ for ath-
erosclerotic CVD (ASCVD), which should be measured particularly if a
patient has a family history of premature ASCVD.97 The Canadian
Cardiovascular Society 2016 guidelines take a similar position, noting
that elevated Lp(a) may be of particular value for risk modification in
younger patients for whom Lp(a) represents an important lifetime risk
factor but might not meet standard risk criteria for treatment.98 The
Japanese Atherosclerosis Society 2017 guidelines for ASCVD prevention
acknowledge Lp(a) as a CVD risk factor but do not include specific rec-
ommendations for Lp(a) measurement or the management of risk in
people with raised Lp(a).99 The European Society of Cardiology (ESC)/
European Atherosclerosis Society (EAS) 2019 guidelines acknowledge
the promise of RNA-based therapeutics for Lp(a)-lowering and recom-
mend that a single measurement of Lp(a) may help to identify people
with very high inherited levels who may have a substantial lifetime risk of
ASCVD. A high Lp(a) plasma level may also be helpful in further risk
stratification of patients at high risk of ASCVD, in patients with a family
history of premature CVD, and to determine treatment strategies in
people whose estimated risk falls on the border of risk categories.100

Since Lp(a) remains stable throughout adulthood, a single measurement
is adequate for screening and therefore the burden on patients and
health services of undertaking screening is minimal. Heart UK, a charity
supporting patients with hyperlipidaemia in the UK, released a position
statement on Lp(a) in 2019.101 The statement is broadly in line with the
recommendations of the ESC/EAS guidelines and also advocates mea-
surement of Lp(a) in patients with calcific AS and those with equivocal
but <15% 10-year risk of CVD events. Further, Heart UK recommend
overall reduction of CVD risk including non-HDL-C lowering and con-
sideration of apheresis for the management of patients with elevated
Lp(a) levels. The National Lipid Association (NLA) in the USA released a
similar position paper in 2019.21 The NLA statement makes the impor-
tant observation that measurement methods for Lp(a) are not yet stan-
dardized and that more evidence is needed to support Lp(a) thresholds
for determining higher CVD risk in subpopulations defined by age, sex,
ancestry, and comorbidity.

6. RNAi as an emerging treatment
modality for lowering Lp(a)

RNAi is an emerging treatment modality with the potential to address
Lp(a)-mediated disease risk. Several RNAi drugs, including siRNAs and
antisense oligonucleotides (ASOs), against other therapeutic targets

have demonstrated effectiveness in clinical studies and a few have re-
ceived regulatory approval, such as the two Alnylam siRNA therapeutic
agents Onpattro (patisiran; targeting hereditary ATTR amyloidosis, for-
mulated as lipid nanoparticles) and Givlaari (givosiran; targeting acute he-
patic porphyria, a GalNAc-conjugated siRNA, see below).

6.1 RNAi therapies: mechanism of action
and utility in lipid-modifying therapy
Oligonucleotide therapeutics (OT) is a term that by now covers a broad
range of modalities, most of which are synthetic oligonucleotides con-
taining sequences of native and modified RNA and DNA nucleosides
with phosphorothioate (PS) or modified internucleotide linkages. RNAi
drugs, a subset of OT, exploit natural mechanisms for regulating gene ex-
pression in human cells.102,103 Unlike gene therapy (e.g. Luxturna for
inherited retinal dystrophy104) which permanently modifies the patient’s
genome, RNAi results in temporary and reversible down-regulation of
gene expression. ASOs are single-stranded sequences of native and
modified nucleotide molecules that bind to their target complementary
RNA sequence via Watson–Crick base pairing. This binding leads to
RNA degradation through RNase H enzyme activity, resulting in reduced
protein production. Early generation ASOs were beset by challenges to
their safety and effectiveness, including susceptibility to degradation by
nucleases, poor tissue specific delivery, and a narrow therapeutic range
due to class effect toxicities. Some of these challenges have been suc-
cessfully overcome through chemical modifications to the oligonucleo-
tide molecules and several ASO drugs have been successful in clinical
trials. These include mipomersen105 for treatment of FH, volanesorsen
for treatment of familial chylomicronaemia syndrome106 and notably an
Lp(a)-lowering ASO, AKCEA-APO(a)-LRx.

107

By contrast, siRNA drugs are double-stranded RNA molecules
(Figures 1 and 2). Once inside the cell, the two RNA strands dissociate
into sense and antisense strands by the action of the Argonaute 2
(AGO2) and the antisense strand gets inserted into, and ready to exert
mRNA degrading activity in, RNA-induced silencing complex (RISC).
The sense strand degrades and the antisense strand binds to its target
mRNA sequence again using Watson–Crick base pairing. This binding
induces cleavage of the target mRNA by AGO2 and degradation by exo-
nucleases, resulting in reduced synthesis of its cognate protein.
Regardless of whether the RNAi agent is a single-stranded ASO or a
double-stranded siRNA, stretches of native RNA and DNA are quickly
degraded in the circulation and inside cells, and much effort has been
done to improve extra- and intracellular RNAi agent stability with
retained or improved activity and safety profile. For siRNA, it has been
clearly demonstrated that unless the siRNA is delivered encapsulated in
a nanoparticle formulation, chemical modification of the siRNA se-
quence is required to avoid extracellular degradation and excessive renal
clearance before the drug reaches its intended cell or tissue.103

RNAi molecules need to overcome several barriers in order to be ef-
ficacious drugs. First, they need to be stable enough in circulation not to
get degraded before they reach their target cell/tissues, second, they
need to reach, and be endocytosed into, their target cell/tissue, and third,
they need to escape the vesicles of the endo/lysosomal pathway in order
to reach their final location—cytosol or nucleus, depending on modality.
ASOs, in particular, ASOs stabilized with a PS ‘backbone’, can enter
many cells and tissues relatively freely due to cell surface protein binding
followed by endocytosis.108,109 In contrast, the larger, double stranded
siRNA molecules have a size and charge that strongly reduces non-spe-
cific, or unassisted, uptake in target cells and tissues. Different

RNA interference therapeutics for treatment of lipoprotein(a)-mediated cardiovascular disease 1223



Figure 1 Mechanism of action of Lp(a)-lowering siRNA therapy, and potential clinical benefits. GalNAc–siRNA drugs lower circulating Lp(a) concentra-
tions via the mechanisms described in more detail in Figure 2. Evidence from observational and genetic epidemiological studies supports a role for Lp(a) low-
ering as a means of reducing the risk of several types of cardiovascular disease, including atherosclerotic in the coronary and peripheral circulations, valvular
disease and heart failure. siRNA, small interfering RNA; ASGPR, asialoglycoprotein receptor; LPA, apolipoprotein(a) gene; Lp(a), lipoprotein(a).

Figure 2 A detailed overview of GalNAc–siRNA mechanism of action in the hepatocyte. A GalNAc–siRNA drug is administered subcutaneously and the
GalNAc moiety binds the ASGPR on the hepatocyte cell membrane. The drug conjugate enters the cell via an endosomal mechanism, following which it
escapes into the cytosol and the ASGPR recycles to the cell surface. The siRNA sense and antisense strands dissociate, and the antisense strand binds its tar-
get sequence in the LPA gene mRNA. Binding of the antisense strand induces degradation of LPA mRNA, preventing its translation into apo(a) and thereby
reducing the synthesis of Lp(a). GalNAc, N-acetyl-galactosamine; ASGPR, asialoglycoprotein receptor; RISC, RNA-induced silencing complex; RNAi, RNA
interference; AAA, gene transcript.

1224 D.I. Swerdlow et al.
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nanoparticle formulations, such as used in Onpattro, will increase siRNA
uptake and activity for instance in liver. However, over the last 5–6 years
focus has shifted to using direct conjugation of siRNA and ASOs to tar-
geting moieties designed for binding to and internalization through cell-
specific receptors The most successful and broadly used conjugation
strategy to date, and delivery method pertinent to lipid modification, is
conjugation of siRNA or ASO molecule to a cluster of sugars, N-acetyl-
galactosamines, or GalNAc. GalNAc is a ligand for the asialoglycoprotein
receptors, which are found in large concentrations on the surface of hep-
atocytes with a high degree of cell- type specificity.110 Conjugation of an
RNAi drug molecule to GalNAc clusters therefore directs the oligonu-
cleotide near-exclusively to the hepatocytes where it can exert its gene
silencing activity without incurring risks of doing so in other, unintended
cell types. Recent examples of clinically successful GalNAc–siRNAs are
givosiran (Givlaari), approved for the treatment of acute hepatic por-
phyria111 and fitusiran for treatment of haemophilia A & B,112 with
GalNAc-conjugated ASOs also in development.

6.2 Safety of GalNAc–RNAi therapy
Given the central role for the liver in lipid metabolism, GalNAc-conju-
gated siRNAs present a valuable opportunity for treating dyslipidaemia.
Inclisiran, a GalNAc-conjugated siRNA inhibitor of PCSK9 is under con-
sideration for approval in several countries following successful phase 3
trials.113 Hepatocyte specificity is just one of the features of GalNAc–
siRNA drugs that make them attractive candidates for long-term Lp(a)-
lowering therapy. The GalNAc–siRNA drugs evaluated in clinical trials
to date have demonstrated reassuring safety profiles. Inclisiran demon-
strated a modest increase in injection site reactions compared with pla-
cebo in two Phase-3 trials that included 1561 participants,113 but no
excess adverse events in either of these trials or a Phase-2 trial in 482
patients with FH.114 A similar safety profile was observed in a Phase-1
trial of givosiran.111 Critical to these safety profiles are the chemical
modifications to the siRNA molecule. These modifications not only help
the drug to avoid premature degradation but also reduce the risk of acti-
vating an innate immune response leading to adverse effects related to
systemic inflammation.115 Risk of off-target binding and interference in
the expression of unintended target genes remains a potential concern
with RNAi drugs. This risk is mitigated through a careful in silico design
process during which sequence similarity to off-target genes guide chem-
ical modifications optimized to reduce risk of off-target effects.116 These
features have overcome many of the difficulties faced by earlier genera-
tion RNAi drugs and help establish siRNAs as promising approach suit-
able for long-term use.

6.3 Durability of RNAi treatment effects
A prominent feature of treatment with inclisiran during clinical develop-
ment is its long duration of action. In the Phase 3 ORION-10 and
ORION-11 studies, inclisiran was administered on day 1, day 90, and ev-
ery 6 months thereafter, resulting in reductions in LDL-C of�50% main-
tained at 17 months of follow-up.113 Prolonged treatment durations
were also observed with givosiran111 and fitusiran,112 although the
effects were not as durable as observed with inclisiran. Although the
pharmacodynamic effect of GalNAc–siRNA drugs persist for weeks or
months, these drugs are rapidly cleared from the plasma compartment,
chiefly by renal elimination such that circulating levels can be undetect-
able 24 h after dosing.117 The long, or very long, duration of action after
single injections of GalNAc-conjugated siRNAs appears to at least in
part be explained by chemical modifications leading to increased stability

under acidic conditions.118 As mentioned above, RNAi molecules must
undergo endocytosis followed by release from endo/lysosomal compart-
ments in order to achieve their pharmacological effect. It has been dem-
onstrated that chemical modifications that lead to increased siRNA
stability under acidic conditions (such as in late endosomes) are con-
nected with increased duration of action in animal studies.118,119 One
possible explanation is that increased siRNA stability in an acidic vesicu-
lar compartment leads to formation of an intracellular depot from which
a small amount of siRNA is released over time—a hypothesis supported
by evidence that chemical modifications leading to a more stable siRNA
molecule has no effect on RNAi activity, compared to a less stable ver-
sion of the same siRNA, once the antisense strand has been inserted in
the RISC complex.118

This extended duration of action represents an ideal profile for long-
term CVD risk reduction. Adherence and persistence are major chal-
lenges in optimizing the benefit for CVD risk-modifying drugs. In the case
of subcutaneously administered monoclonal antibody inhibitors of
PSCK9, dosed at 2- or 4-weekly intervals, adherence has been shown in
real-world datasets to be �70–80%,94,120 while for statins adherence
has been reported as low as 17.8%.121 It is anticipated that adherence to
long-acting RNAi lipid-modifying drugs, administered less frequently,
may be higher than for monoclonal antibodies, resulting in greater clinical
benefits. The long duration of action may also provide logistical and fi-
nancial benefits to healthcare systems derived from the need for less fre-
quent dosing.

7. Potential risks of Lp(a)-lowering
therapy

The anticipated benefits of reducing Lp(a) are considerable, however,
few treatments are without safety concerns. Available clinical studies of
Lp(a)-lowering therapies have provided some insights into the potential
risks of Lp(a) reduction. However, insufficient person-years of treatment
have accumulated to provide a full understanding of the potential ad-
verse effects of lowering Lp(a). Theoretical risks related to the sequence
homology with plasminogen exist and thrombosis-related adverse
events will require carefully monitored in clinical studies of Lp(a)-lower-
ing agents. Large-scale genetic studies have utility in identifying target-re-
lated adverse effects in the same way that they can highlight beneficial
therapeutic effects.122 A large phenome-wide association study exam-
ined the associations between variants at the LPA locus and risk of a
range of diseases and related biomarkers.123 This study confirmed the
predicted risk-lowering effects for CHD, AS, heart failure, and PAD. It
also identified no associations with potential adverse effects on risk of 28
other disease phenotypes including gastrointestinal, endocrine, neuro-
logical, musculoskeletal, respiratory, and neoplastic disease. The analysis
also examined relationships between LPA genotype and several bio-
markers of cardiometabolic disease, demonstrating effects on circulating
lipids while detecting no effects on blood pressure, or markers of adipos-
ity or glycaemic control. Interestingly, there was a strong association be-
tween Lp(a)-lowering variants and higher estimated glomerular filtration
rate, accompanied by a modest association with lower risk of chronic
kidney disease. In an Icelandic study that included individuals homozy-
gous for loss-of-function LPA mutations and therefore very low circulat-
ing Lp(a) concentrations, such variants were associated with a modestly
increased risk of type 2 diabetes. While this association merits careful
monitoring clinical trials of Lp(a)-lowering drugs, the weight of evidence
from observational and genetic epidemiological studies suggests that, as

RNA interference therapeutics for treatment of lipoprotein(a)-mediated cardiovascular disease 1225
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for statins,124,125 the CV benefits Lp(a)-lowering are likely to outweigh
any potential risks related to diabetes.

8. Emerging Lp(a)-reducing RNAi
therapeutics

Novel, specific, RNAi-based Lp(a)-lowering therapies have entered clini-
cal development in recent years. These include pelacarsen [formerly
TQJ230 and AKCEA-APO(a)-LRx], an ASO targeting LPA originally de-
veloped by Akcea Therapeutics now being developed by Novartis under
licence; olpasiran (formerly AMG890 and ARC-LPA), a GalNAc-conju-
gated siRNA originally developed by Arrowhead Pharmaceuticals now
being developed by Amgen; and, SLN360, a GalNAc-conjugated siRNA
being developed by Silence Therapeutics. The current status of these
three molecules is summarized in Table 2.

All three molecules display reductions in Lp(a) that are likely to be
clinically meaningful. The duration of effect appears to be substantially
greater for the siRNA molecules than the ASO—data from the Phase-1
study of olpasiran show Lp(a) reduction of over 90%126 compared with
reduction of up to 80% with pelacarsen in a Phase-2 study.107 Findings
with inclisiran in a population of patients similar to those likely to be eligi-
ble for Lp(a)-lowering therapy suggest GalNAc-conjugated siRNAs are
likely to perform well from a safety perspective. Injection site reactions
were the most commonly reported adverse effect of pelacarsen in a
Phase-2 study, while these were very rare in the Phase-1 study of olpa-
siran. If the subcutaneously delivered siRNA drugs, AMG890 and
SLN360 prove both safe and effective in the ongoing and planned clinical
studies, they stand to offer attractive options for CVD risk modification
in patients with raised Lp(a).

9. Opportunities for precision
medicine in managing raised Lp(a)

The evidence discussed above strongly suggests that reducing circulating
Lp(a) is likely to have a beneficial impact on the onset and progression of
CVD and risk of CVD events. Emerging drugs have shown promise in
achieving safe and effective Lp(a) reduction. For these new medicines to
be effective, they must be prescribed for patients most likely to gain the
greatest clinical benefit.

Management of Lp(a)-mediated disease presents an opportunity for
precision medicine on a large scale. Since circulating Lp(a) levels are
largely determined by genotype and only modestly influenced by other
modifiable factors, patients eligible for Lp(a)-lowering therapy can be
identified in early adulthood. This information may be valuable as a prog-
nostic indicator for CVD. However, like LDL-C, the utility of Lp(a) for
risk prediction may differ between first and subsequent CVD events.
Identification can be accomplished with a single blood test, as recom-
mended by the ESC/EAS 2019 guidelines100 or through genotyping to
identify variants at the LPA locus known to be associated with elevated
Lp(a) levels. The utility of genetic data as a tool for predicting an individu-
al’s future disease risk is an area of active research and debate.127,128 As
genetic data, including LPA genotype, becomes more readily available to
patients and clinicians, it may provide incremental information to supple-
ment what can be offered from circulating Lp(a) measurement in the as-
sessment of lifetime CVD risk. This genetic approach nonetheless needs
close evaluation before being employed in clinical practice in order to
ensure the most informative genetic variants are used, their impact on

Lp(a) concentration and isoform size is well understood and such a test
is applicable to all ancestral groups.129 In the nearer term, genetic infor-
mation could prove valuable for evaluating pharmacogenetic interactions
of RNAi therapeutics, and for identifying likely responder patients for in-
clusion in clinical trials.

10. Conclusion

Lp(a) is a well-identified risk factor for a range of CVDs. It has a potent
causal effect on the onset and development of atherosclerotic, athero-
thrombotic, myocardial, and valvular disease, yet no specific and potent
means of reducing Lp(a) is currently available for patients. Existing lipid-
modifying therapies exert modest and variable effects on circulating
Lp(a), while behavioural and dietary interventions130 are ineffective.
RNAi therapeutics have considerable promise for treatment of long-
term conditions with at least three experimental medicines for reducing
circulating Lp(a). Preclinical and early clinical studies suggest that these
emerging drugs may provide effective management of Lp(a)-mediated
disease in a safe and acceptable manner. Although Lp(a) has previously
been under-recognized as a CV risk factors, the work of investigators
and of patient advocacy groups, such as the Lipoprotein(a) Association
(www.familylipoproteina.org), the FH Foundation (www.thefhfounation.
org), Heart UK (www.heartuk.org.uk), and FH Europe (www.fheurope.
org) is ensuring that patients with raised Lp(a) are aware of their risk sta-
tus and potential treatment options. If the novel Lp(a)-lowering agents
prove safe and effective, they hold the potential to have an important
beneficial impact on the health of patients, their families and of the wider
population.
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Ward J, Pell JP, Meade T, Christophersen IE, Maitland-van der Zee AH, Baranova
EV, Young R, Ford I, Campbell A, Padmanabhan S, Bots ML, Grobbee DE, Froguel
P, Thuillier D, Roussel R, Bonnefond A, Cariou B, Smart M, Bao Y, Kumari M,
Mahajan A, Hopewell JC, Seshadri S, Dale C, Costa RPE, Ridker PM, Chasman DI,
Reiner AP, Ritchie MD, Lange LA, Cornish AJ, Dobbins SE, Hemminki K, Kinnersley
B, Sanson M, Labreche K, Simon M, Bondy M, Law P, Speedy H, Allan J, Li N, Went
M, Weinhold N, Morgan G, Sonneveld P, Nilsson B, Goldschmidt H, Sud A, Engert
A, Hansson M, Hemingway H, Asselbergs FW, Patel RS, Keating BJ, Sattar N,
Houlston R, Casas JP, Hingorani AD; METASTROKE Consortium of the ISGC.
Phenome-wide association analysis of LDL-cholesterol lowering genetic variants in
PCSK9. BMC Cardiovasc Disord 2019;19:240.

123. Emdin CA, Khera AV, Natarajan P, Klarin D, Won H-H, Peloso GM, Stitziel NO,
Nomura A, Zekavat SM, Bick AG, Gupta N, Asselta R, Duga S, Merlini PA, Correa
A, Kessler T, Wilson JG, Bown MJ, Hall AS, Braund PS, Samani NJ, Schunkert H,

Marrugat J, Elosua R, McPherson R, Farrall M, Watkins H, Willer C, Abecasis GR,
Felix JF, Vasan RS, Lander E, Rader DJ, Danesh J, Ardissino D, Gabriel S, Saleheen
D, Kathiresan S; CARDIoGRAM Exome Consortium. Phenotypic characterization
of genetically lowered human lipoprotein(a) levels. J Am Coll Cardiol 2016;68:
2761–2772.

124. Ridker PM, Pradhan A, MacFadyen JG, Libby P, Glynn RJ. Cardiovascular benefits
and diabetes risks of statin therapy in primary prevention: an analysis from the
JUPITER trial. Lancet Lond Engl 2012;380:565–571.

125. Swerdlow DI, Preiss D. Genetic insights into statin-associated diabetes risk. Curr
Opin Lipidol 2016;27:125–130.

126. Koren MJ, Moriarty PM, Neutel J, Baum Seth J, Hernandez-Illas M, Weintraub HS,
Hellawell J, Varrieur T, Sohn W, Wang H, Elliott-Davey M, Kassahun H, Watts GF.
Abstract 13951: safety, tolerability and efficacy of single-dose Amg 890, a novel
Sirna targeting Lp(a), in healthy subjects and subjects with elevated Lp(a). Circulation
2020;142:A13951.

127. Inouye M, Abraham G, Nelson CP, Wood AM, Sweeting MJ, Dudbridge F, Lai FY,
Kaptoge S, Brozynska M, Wang T, Ye S, Webb TR, Rutter MK, Tzoulaki I, Patel RS,
Loos RJF, Keavney B, Hemingway H, Thompson J, Watkins H, Deloukas P, Di
Angelantonio E, Butterworth AS, Danesh J, Samani NJ; UK Biobank
CardioMetabolic Consortium CHD Working Group. Genomic risk prediction of
coronary artery disease in 480,000 adults: implications for primary prevention. J Am
Coll Cardiol 2018;72:1883–1893.

128. Mosley JD, Gupta DK, Tan J, Yao J, Wells QS, Shaffer CM, Kundu S, Robinson-
Cohen C, Psaty BM, Rich SS, Post WS, Guo X, Rotter JI, Roden DM, Gerszten RE,
Wang TJ. Predictive accuracy of a polygenic risk score compared with a clinical risk
score for incident coronary heart disease. JAMA 2020;323:627–635.

129. Kronenberg F. Prediction of cardiovascular risk by Lp(a) concentrations or genetic
variants within the LPA gene region. Clin Res Cardiol Suppl 2019;14:5–12.
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