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Abstract

This work explores the changes in vegetation coverage and submergence time of flood-

plains along the middle and lower reaches of the Yangtze River (i.e., the Jingjiang River)

and the relations between them. As the Three Gorges Dam has been operating for more

than 10 years, the original vegetative environment has been greatly altered in this region.

The two main aspects of these changes were discovered by analyzing year-end image data

from remote sensing satellites using a dimidiate pixel model, based on the normalized differ-

ence vegetation index, and by calculating water level and topographic data over a distance

of 360 km from 2003–2015. Given that the channels had adjusted laterally, thus exhibiting

deeper and broader geometries due to the Three Gorges Dam, 11 floodplains were classi-

fied into three groups with distinctive features. The evidence shows that, the floodplains with

high elevation have formed steady vegetation areas and could hardly be affected by runoff

and usually occupied by humans. The low elevation group has not met the minimal threshold

of submerging time for vegetation growth, and no plants were observed so far. Based on the

facts summed up from the floodplains with variable elevation, days needed to spot vegeta-

tion ranges from 70 to 120 days which happened typically near 2006 and between 2008 and

2010, respectively, and a negative correlation was detected between submergence time

and vegetation coverage within a certain range. Thus, floods optimized by the Three Gorges

Dam have directly influenced plant growth in the floodplains and may also affect our ability

to manage certain types of large floods. Our conclusions may provide a basis for establish-

ing flood criteria to manage the floodplain vegetation and evaluating possible increases in

resistance caused by high-flow flooding when these floodplains are submerged.

Introduction

Many large reservoirs have been constructed along major rivers across China for the purpose

of optimizing the national energy structure, including the Xiaolangdi Water Control Project

(2001), Danjiangkou Reservoir on the Hanjiang River (1973), and the Three Gorges Dam

(TGD, 2003). Abundant research has shown that reservoirs contribute the most directly to flu-

vial ecosystems, such as by changing runoff and sediment contents downstream [1, 2].
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Research on 4000 km of rivers in the United States has indicated that 60% of them are sedi-

ment-deficient, while only small parts of these rivers turn out to last sediment surplus [3]. The

major factor that controls the transformation of rivers is the imbalance between sediment sup-

plies and discharge.

Over the past 60 years, the Yellow River, which is the second-longest river in China, has lost

90% of its sediment load, particularly due to landscape engineering and terracing, as well as

the construction of dams and reservoirs, from the 1970s to the 1990s. As these rivers have the

most potential to widen, deepen, narrow, or shallow, depending upon the type and extent of

construction, challenges to fluvial dynamics can persist for months or even decades [4].

Another concern is that their ecosystems are also altered to some extent by these projects.

Past assessments of the impacts from six Andean dams showed that, due to the reduction of

sediment, phosphorus, and nitrogen from the Andes Mountains, the survival, phenology, and

growth of floodplain vegetation, as well as fish yields, were greatly altered. In 2005, Forsberg

et al. [5] found that the construction of hydroelectric dams in northern Brazil caused more sig-

nificant damage to tree community structures than expected and caused them to degrade rap-

idly in both structure and composition. Furthermore, the riparian forests of the Elwha River,

Washington, USA, have been shown to vary as a result of two dams. Shafroth et al. [6] pro-

posed that a dramatic reduction in sediment supply was responsible for the geomorphic

responses of channel and bottomlands, which eventually interfered with the patterns of ripar-

ian vegetation in river segments downstream of the dams.

From the perspective of hydrological discharge, the attenuation effect of dams tends to

reduce the frequency of massive flooding downstream. The model developed by Khaddor et al.

has proved that the Mechlawa dam of the Mghogha basin helped reduce a high peak discharge

and the volume of a reference flood on the 23rd of October,2008, therefore, prevented flooding

on the industrial zone near the downstream river [7]. Large volumes of sediment are

impounded as dead storage, causing a sharp decline in downstream sediment loads. Immedi-

ately after the construction of a dam, the morphology of the channel begins to readjust, yet dif-

ferent parts evolve in different ways. After the TGD began operating, the flood peak was

undercut, the dry season runoff was complemented, the sediment supply declined, and the riv-

erbed suffered a new round of erosion. According to annual terrain measurements, the river

channels have been scoured deeper, which has led to lower water levels under equal water dis-

charge [8]. However, abundant evidence from gauging stations has also indicated that under

high-flow conditions, water levels have failed to rise as expected, resulting in medium and low

discharge [8–10]. In general, flood capacity has not risen or declined significantly, based on

the geomorphic expansion of the high-flow section, and this has undoubtedly increased the

risk of an uncontrollable flood occurring in the future [11, 12].

The TGD was put into operation in 2003, reducing the reservoir outflow to 16,000 m3/s out

of 55,000 m3/s when a flood peak occurs. In 2010, the TGD sequentially intercepted floods

exceeding 50,000 m3/s three times and cumulatively retained over 26 billion tons of runoff in

storage. In 2012, the amount of water contained was 20.05 billion tons. The impoundment was

typically used to compensate for dry seasons (i.e., November to May of the following year),

allowing low-flow channels to respond. Correspondingly, flood sections are presumed to

remain under low bed-shaping effects. Floodplains are exposed to air more frequently, causing

both human-induced and natural occupancy, which raises the risk of uncontrollable flood

damage.

Affected by the closure of a large dam on the Sauce Grande River in Argentina, the funda-

mental discharge and water level were restricted; thus, channel capacity was reduced owing to

the encroachment of vegetation on the channel banks [13]. Additionally, El Niño events cause

anomalously low precipitation in this catchment, resulting in significantly lower Amazon
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River discharge and an extension of the plant growth period [14]. Similarly, such an altered

hydrological regime may also result in physical barriers to the dispersion of buoyant seeds dis-

tributed by water, fish, and other organisms. The near-permanent aquatic conditions at low

topographies downstream of this dam have hampered the reestablishment of the surrounding

igapó forest and resulted in large-scale habitat loss [15]. Given that erosion primarily occurs in

the dry sections of river channels, decreases in water levels caused by sediment migration have

out-distanced the elevation by riverbed armoring [16–18]. A continuously expanded wetted

perimeter followed the increase in discharge, the proportion of the water level decline caused

by scouring decreased gradually, and the increase in water level caused by enhanced floodplain

resistance gradually became prominent.

When an unforeseen flood caused by extreme precipitation or even a major, predictable

flood occurs, the flood control capacity of the river channel may be affected, and the risk of

accidents increases [18–20]. Therefore, it is necessary to analyze the occupancy of the top of

the main tidal flats after a reservoir begins operating, compare the development of vegetation

layers at each stage, and evaluate the possible impacts of flooding. The environment in which

plants grow is affected by numerous factors, including temperature, humidity, and soil mois-

ture [21, 22]. According to previous studies, one of the most direct factors affecting the opera-

tional changes imposed by a reservoir is the change in the frequency of submergence, through

which river hydrology helps control seedling germination and establishment [23]. Fluctuations

in water levels on the order of 16 m in the Amazon River and its tributaries have triggered

interannual flooding in the floodplains, which has driven phenological, morphological, and

physiological responses by different tree species, such as anaerobic root activity and defolia-

tion. Plant regeneration strategies have thus been affected, responding to seasonal and predict-

able changes in habitats. Trees in the Amazon River Basin seem to have adapted their

flowering times and outcomes to maximize individual competitiveness and make use of flood

cycles for pollination and seeding. Previous studies have clearly shown the performance of

local flora and that the Jingjiang River has already witnessed adaptation to plant life strategies,

yet few relevant studies or field investigations have been completed. The existent studies con-

cerning vegetation growth along the Yangtze River mainly concentrate on the water-level fluc-

tuation zone of the Three Gorges Reservoir and the Dongting and Poyang Lakes’ vegetation

zones and are conducted mainly by field surveys. You et al. found that as the TGD keeps regu-

lating the water-level of the reservoir, the vegetation of the water-level-fluctuation zone

responded strategically by altering adaptive species according to height and showed great

diversity with this range [24]. Another study shows that the annuals are taking the place of

perennials gradually, and shrub has lost the dominant role in the inundated zone and riparian

zone of the TGD [25]. Species diversity was proved to rise with elevation in the riparian zone

after damming. After the TGD was put into operation, the total vegetation area in East Dongt-

ing Lake increased. The reed and forest become dominant comparing to grass due to the

changes of submergence duration [26]. Researches on the plant communities of the Poyang

Lake shows that variables of both water-table depth and soil moisture are strongly affecting the

community distribution and thus resulted in a significant hydrological gradient [27]. Mangora

et al. found that submergence time as one of the main factors will affect the mangrove’s germi-

nation by restraining photosynthetic rates [28]. However, limited studies concerning the vege-

tation on the downstream floodplains have been conducted primarily due to the frequent

change of daily water level in space and time. As the transition zone linking the river and land,

bottomlands usually show high diversity and biological productivity. The community develop-

ment and partitioned mode are primarily decided by the moisture status of the soil, which

could be measured by water depth, duration, frequency, fluctuation rate, and flood frequency

[29]. The vegetation zoning pattern of bottomlands is likely to change year by year or season
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by season, making it difficult to predict the composition of vegetation communities distributed

along with the water depth [30]. The alternation of the soil moisture content will stimulate or

inhibit the germination of seeds, thereby changing the plant species of the local seed bank.

Brittin and Brock pointed that the germination rate of seeds in autumn and spring is most

affected by flooding and the lowest in summer, especially for those plants located along rivers

that have completed a life cycle before the flood and take the form of seeds to avoid adverse

conditions in the soil. Flood tolerance usually affects the germination of the seeds, while the

proliferation of the community is decided by the fluctuation of the submerged frequency and

the submerged depth in the later stage of growth [31].

In the long history, floodplains downstream of the Yangtze River have formed different

landscapes and are occupied by variable patterns which remain unclassified. Ibeje and

Ekwueme proposed a model framework, and the case study on the Anambra-Imo river basin

proved its homogeneity [32]. Previous studies chiefly concentrate on sediment transportation,

erosion adjustments, and the change of river sections. From the perspectives of floodplains,

morphological adjustments are mainly studied during different periods since the TGD was put

into operation, and intending to evaluate the influences of the TGD on the community distri-

bution and diversities, it is necessary to clarify the pattern of vegetation occupancy on the

floodplains as well as the quantitative indicators by which the inundation duration is affecting

the vegetation coverage.

In this study, the submergence characteristics of each floodplain are explored, and the

response patterns of vegetation coverage are concluded from the perspective of the interven-

tion of hydrodynamic factors after the TGD. The Jingjiang River was chosen for three reasons:

(i) eleven floodplains are separately distributed and make this segment the most complicated

along the Yangtze River, (ii) sufficient hydrological data are available from at least seven

hydrological stations, and (iii) Gholami & Baharlouii proves the effectiveness of the satellite

images and GIS in monitoring and identifying specific characteristics of mangrove boundaries

[33]. We applied the dimidiate pixel model based on NDVI using Landsat series satellite

images to describe and analyze the change of the vegetation on the floodplains, and the Jing-

jiang reach is thoroughly contained in one remote sensing satellite image that is not cut or

modified. We aimed to address two fundamental questions: (i) What are the interactions of

runoff on floodplains? (ii) How does floodplain vegetation react to altered river hydrology?

This study centers tightly within the Jingjiang River (riparian areas not included), where prior

geomorphic assessments have focused on sedimentation and hydraulic mechanisms. Firstly,

the measured topographic data and the waterfront lines along each year were used to calculate

the changes in the flooding days, and then satellite remote sensing data were used to calculate

the changes in vegetation coverage at the top of the bottomlands. Then three different patterns

by which the runoff process influences each floodplain were concluded. Finally, based on sta-

tistical analysis, the impacts of the altered hydrodynamics in this reach were evaluated with

two thresholds to describe the critical condition of vegetation growth. Conclusions draw by

this research not only could provide referential suggestions for decision-makers to control the

vegetation that has adverse effects on the unpredictable floods but also can help to consider the

roughness pattern for the floodplain surfaces with gradient vegetation coverage in the mathe-

matical models.

Materials and methods

Study area

The Yangtze River Basin (Figs 1 and 2) has an area of ~1.8 million km2, from 24˚30’–35˚45’N

and 90˚33’–122˚25’E, and is divided into upper, middle, and lower reaches by the Yichang and
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Hankou hydrological stations. The Yizhi Reach, which forms the transitional zone between the

mountain and plain rivers, is approximately 59 km in length and has a sandy cobble riverbed.

The 360-km Jingjiang Reach meanders from Zhichen to Chenlinji and is divided into upper

and lower sections. Since the operation of the TGD began in 2003, the downstream channel

has been scoured continuously, with the main scouring shifting from the Yizhi to the Jingjiang

reach [34], and still shows an accelerating tendency due to the sandy composition of the

riverbed.

Fig 1. Detailed study area with gauge stations. The map was generated in ArcGIS v. 10.6 (Esri, USA).

https://doi.org/10.1371/journal.pone.0251015.g001

Fig 2. Spatial distribution of 11 floodplains along the Jingjiang Reach. (a) Guanzhou, (b) Shuiluzhou, (c)

Liutiaozhou, (d) Huojianzhou, (e) Mayangzhou, (f) Sanbatan, (g) Jinchengzhou, (h) Tuqizhou, (i) Jiaoziyuan, (j)

Ouchikouxintan, and (k) Wuguizhou. This map was calculated and generated in ENVI v.5.3 (Harris Geospatial, USA)

using the OLI satellite images from Landsat-8 (paths: 124; rows: 39).

https://doi.org/10.1371/journal.pone.0251015.g002
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The Jingjiang River (or Reach) is considered to be one of the most challenging segments of

the Yangtze River due to the complexity of its tributaries, substantial bank collapse, rapid

changes between river sections, and interactions with Dongting Lake. The regulation of this

river directly determines both the capacities of flood control exceeding 18,000 km2 and shipping

demands downstream. There are eleven main floodplains along the Jingjiang Reach of the

Yangtze River named Guanzhou, Shuiluzhou, Liutiaozhou, Huojianzhou, and Mayangzhou,

Sanbatan, Jinchengzhou, Tuqizhou, Jiaoziyuan, Ouchikouxintan, and Wuguizhou (Fig 2). The

channel of the Yizhi Reach has been so fully armored that its riverbeds are mostly covered with

gravel bedload, where souring is restricted. However, the Jingjiang Reach has a sandy riverbed.

Thus, strong erosion occurs, and its three outfalls show no distinctive evidence of decline.

The amount of rainfall corresponds well to the temperatures across the Yangtze River Basin

under the control of the monsoonal climate. Many water facilities have been constructed in

recent years, including nearly 52,000 dams with a collective reservoir capacity >400 billion m3.

More than 19,000 hydropower stations have been built and provide an installed capacity of

>190 million kWh-1. There is no doubt that these facilities have provided great benefits in

terms of flood prevention, electricity generation, and improving shipping and water supplies.

However, these advantages have also changed the initial runoff processes of the affected water-

shed (i.e., discharge, water levels, and seasonal regimes).

The yearly amount of water from the Yichang Station in the Three Gorges Reservoir area

station exhibited no obvious fluctuations from 2003–2015, when compared to the period from

1955–2002, while the evidence suggests a 1.6 billion-m3 mean decline every year between 1991

and 2016 [34, 35]. However, runoff primarily depends on natural climatic conditions and the

flood processes within each year were evened by the presence of dams. Thus, changes mainly

occurred during the storage period, from September to November, following each flood sea-

son. Previous studies have shown that discharge was reduced by 29.6% from 2008–2016 com-

pared to 1878–1990, after each flood season and 40% in October. Meanwhile, the TGD

compensates for 23 billion m3 of water between January and May [35].

Due to both a decline in runoff and channel reshaping, the water levels observed at gauge

stations under the same flow regimes have shown a trend of decreasing after small- and mod-

erate-sized floods and rising after larger floods. The turning point has remained near the bank-

full discharge, where floods begin spreading shoreward and to the bottomlands. The volume

cut and river bed erosion can both lead to the water-level fall along downstream of the TGD.

In fact, only the Shashi and Xingchang stations have observed a decline of water-level exceed-

ing 1.5 m in 2014 relative to 2003. While most of the other gauge stations show their declines

within 1 m, indicating that riverbed erosion plays a more limited role in determining water

levels than declining runoff [16, 17].

Data collection

Hydrological data. The hydrological data used in this study included daily water levels

from the gauging stations, among which the Chenlinji Station provided data on the inflow into

the Yangtze River. The three outfalls were considered by using data from a hydrometrical sta-

tion on the river. The hydrological and terrain data were provided by the Changjiang Water

Resources Committee (CWRC) and the Changjiang Sediment Bulletins from 2003–2015.

Remote sensing data. Landsat 4-5TM, Landsat 7 ETM and Landsat-8 OLI satellite images

from paths 124 and 39 were freely available from the United States Geological Survey (USGS)

Earth Explorer website (http://earthexplorer.usgs.gov/). All image productions were systemati-

cally corrected to Level 1T for radiometric and geometric accuracy by the USGS EROS Data

Center in Sioux Falls, SD. Composite color images, combining 30m red and near-infrared
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bands were prepared using the ENVI program (Harris Geospatial, USA). Moreover the red

(R), green (G) and blue (B) bands are combined in ENVI to illustrate true color of surface con-

dition in Fig 5.

Analytical methods

Frequency of submergence. To simulate submergence times, we compared the water sur-

face line along the reach with the terrain measured each year. The water surface line was inter-

polated from the water levels at the nearest gauging station. With the aim of maximizing the

difference between submerging time classifications, we used natural discontinuities and

divided the results into eight groups, with breaks at 30, 70, 120, 160, 210, 260, 300, and 340

days, respectively.

Plant occupancy. Using ENVI v.5.3 (Harris Geospatial, USA), we first employed the nor-

malized difference vegetation index (NDVI) to distinguish between vegetation and water. A

dimidiate pixel model was then used to calculate vegetation coverage. We assumed that all pix-

els were composed of either vegetated or non-vegetated areas, as was the resulting spectrum.

Therefore, the ratios of each component should be the weights of the different cover type. We

defined S as each pixel, Sv as the vegetated component, Ss as the soil component, and fvc repre-

sented the vegetation coverage used in the study.

The dimidiate pixel model based on the NDVI can be expressed as:

S ¼ Ss þ Sv ð1Þ

Sv ¼ Sveg � fvc ð2Þ

Ss ¼ Ssoil � ð1 � fvcÞ ð3Þ

S ¼ Sveg � fvcþ Ssoil � ð1 � fvcÞ ð4Þ

fvc ¼
ðS � SsoilÞ

ðSveg � SsoilÞ
ð5Þ

Due to the linear relationship between vegetation growth and NDVI, the expression (5) can be

rewrote as:

fvc ¼
ðNDVI � NDVIsoilÞ
ðNDVIveg � NDVIsoilÞ

: ð6Þ

Where the Sveg represents the component of pure vegetation, Ssoil represents the component of

pure soil. NDVIveg and NDVIsoil are the normalized difference vegetation index of pure vegeta-

tion and soil respectively [36].

When calculating fvc, the NDVIsoil and NDVIveg determined the accuracy of the vegetation

coverage. To reduce error throughout the procedure, we set pixel values summed to 2% as the

minimum and 98% as the maximum and then assigned them separately to NDVIsoil and

NDVIveg. Because the NDVI varies depending upon the full coverage of different types of

plants, it is essential to classify the plants present in the study area. Therefore, we applied high-

resolution images from Google Earth [37] and true-color remote sensing images composed of

the red, green, and blue bands of the Landsat-8 OLI to sort different types of land cover. First,

we interpreted and highlighted the representative plant types and then a neural network-based

supervised classification scheme was used to extract additional information. Finally, outliers
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beyond the (0, 1) domain were eliminated before obtaining the final fvc results. Overall data

processing methods are illustrated as Fig 3.

Results

Submergence frequency of main bottomlands

All of the eleven bottomlands (floodplains) were divided into three groups, labeled as Group I,

Group II, and Group III, based on the primary relationships that characterized their elevations

and water levels. We considered areas that were exposed during the end of every year, from

mid-October to December, with the goal of maximizing the information derived from observ-

ing vegetation. When the water level exceeded the elevation of a floodplain, it was considered

to be inundated by flooding (i.e., submerged).

Group Ⅰ —high elevation. The floodplains representative of Group I were Liutiaozhou,

Huojianzhou, Mayangzhou, Ouchikouxintan, and Wuguizhou. This group contains bottom-

lands with relatively high-elevation terrain, making it difficult for floods to reach the top of the

Fig 3. Flowchart of the research methodology.

https://doi.org/10.1371/journal.pone.0251015.g003
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banks (Fig 4). Consequently, such lands are easily occupied for human activities, such as shel-

ters, agriculture, forest areas, and animal husbandry (Fig 5).

Figs 4E, 6E and 7 show that the top surface of Mayangzhou is broad and flat, with a gentle

slope, and water levels fluctuate within a limited range. In general, vegetation coverage is

mainly determined by natural succession throughout the year rather than by runoff. Judging

from Google Earth imagery (Fig 5E), many agricultural and forest lands are spread over the

top of this floodplain, with a tiny proportion of residential houses. The occupancy pattern is

shown in Fig 7, and the 85˚ edge surrounding Mayangzhou is shown to be an ideal place for

agriculture.

Similar to Mayangzhou, Liutiaozhou (Fig 6C) has a lower zone where the extent of flooding

varies, while the top remains isolated from runoff. Anthropic traces can be seen on the top,

with spreading residential areas (Fig 5C). Due to human activities, the plant community

depends mainly on certain crops. Along with other floodplains in Group Ⅰ, vegetation coverage

showed an evident decline after yearly harvesting while left a distinguishable boundary that

most likely represented ridges and tractor tracks. Based on the inundating days from 2003–

2015, the top of the bottomlands was flooded for <30 days each year (Fig 6). No obvious evi-

dence of uniform vegetation types was discovered, yet boundaries remained sharp and clear.

Group Ⅱ —low elevation. Group II included the low-elevation floodplains of Sanbatan

and Jinchengzhou. Fig 8 shows that the dominant submergence time was ~160–210 days and

may extend to 260 days on the edge area due to the low terrain. During the study period, apart

from minor areas near the heads of Sanbatan and Jinchengzhou in 2015, there was barely any

large-scale vegetation detected (Figs 5F and 5G and 8). Moreover, vegetation remained limited

(fvc<0.25) based on calculations in 2015. Thus, the inundation time failed to fully meet the

needs for plants to grow from seeds, and cover the floodplain.

Group Ⅲ —variable elevation. Unlike the bottomlands of groups I and II, those belong-

ing to Group Ⅲ exhibit strong correlations between plant occupancy and submergence time.

Tuqizhou, Shuiluzhou, Guanzhou, and Jiaoziyuan are in this group. Despite some small places

within them being similar to groups Ⅰ and Ⅱ, the majority of bottomlands in Group Ⅲ lie

Fig 4. Map of the range of water-level fluctuations for each floodplain. The overall geomorphology is illustrated and was

generated using Mike21 program (DHI, Denmark) based on terrain and hydrological data of 2013.

https://doi.org/10.1371/journal.pone.0251015.g004
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within the range of flood variability (Fig 4). The timeworn part of Tuqizhou (shown in red in

Fig 4) is high enough for human occupancy and thus provides the proper circumstances for

shelters and agriculture (Figs 4H and 5H). Meanwhile, the emergence time of newly formed

upriver areas framed in Fig 9H was sufficiently spread from 260 to within 30 days. The major-

ity of upriver areas were flooded for 30–210 days in 2013 and a total of up to 260 days closer to

the upstream edges. The colors shown in Fig 4 for the same place changed from green to blue

as a result of heavier flooding in 2014. However, in 2015, those inundated for 70–120 days in

2014 were flooded for just 0–30 days, similar to the older sections. Consequently, plant occu-

pancy extended and deepened.

For Shuiluzhou (Fig 9B), the exposed areas are separate, and the older parts minimally

engage with the stream (Fig 4B. However, plants have grown since 2013 in the middle portion

shown in Fig 9B despite the fact that the submergence time ranges from 70–120 days.

Although no vegetal expansion was observed by 2015, the plant density improved as a result of

the reduced inundation frequency, from 70–120 to 0–30 days.

The older part above the water-level fluctuation zone of Guanzhou (Fig 9A) appears the

same as those in Group Ⅰ. Based on the Google Earth images (Fig 5A) and fvc, the upriver sec-

tion in the frame of Fig 9A experienced a period of new plant growth from 2013–2015 as a con-

sequence of aerial longer. Notably, these new plants matched those areas that flooded for a

maximum of 70–120 days, while low concentrations of plants were observed near the edges of

Guanzhou. The remaining portion was underwater for 120–260 days, meaning that it did not

meet the prerequisites needed for plant growth.

For Jiaoziyuan, in which runoff flows from the right due to a steep slope (Fig 4I), the

boundary between the main channel and vegetation is clear and distinct (Fig 5I). Moreover,

the vegetated region area remained ~10 km2 within the zone of fluctuating water levels, thus

providing a convenient illustration of the fvc under the influence of runoff. In comparison

with 2013, greater flooding in 2014 led to a more extended period of submergence and

Fig 5. Views from Landsat 8OLI images of each floodplain on 2017/12/24 generated in ENVI 5.3 using optimized linear. These maps allowed us to

distinguish specific categories of land use and to examine the accuracy of supervised classifications during the calculation of fvc.

https://doi.org/10.1371/journal.pone.0251015.g005
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contributed to the decline of vegetation. As shown in Fig 9I, the color in the frame changed to

green from red and yellow, indicating that vegetation coverage was reduced and then returned

Fig 6. Change of submerging time (up) and vegetation coverage (below) of Group I. Black and gray parts the in fvc are the

water surface and bare lands.

https://doi.org/10.1371/journal.pone.0251015.g006

Fig 7. Surface slope of Mayangzhou (left) and map of the section marked A, B (right). The right graph shows the pattern of human occupancy upon the

upper bottomlands and the relationships between runoff and vegetation.

https://doi.org/10.1371/journal.pone.0251015.g007
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to red in 2015. Parts of some areas that emerged in less than 30 days then did so from 30–120

days, as time proceeded to the winter of 2014. In contrast, owing to the decreasing runoff in

2015, areas flooded for 0–30 days increased, as did the higher vegetation density of Jiaoziyuan.

Changes in vegetation coverage

To summarize the response of vegetation to inundation time, the vegetal density was illus-

trated from 0 to 1 (purple to red in figures). It was found that almost every red zone (of vegetal

density) existed where the submergence time was within 30 days (Table 1). However, the

opposite did not hold true, as there were bottomlands like Huojianzhou (Fig 5D) in Group Ⅰ,
which were instead occupied by human activities. Two exceptions to the overall trend included

Liutiaozhou and Wuguizhou, where the highest coverage appeared in the zones experiencing

30–70 days of inundation; both belonged to Group Ⅰ (Fig 6C and 6K).

Fig 8. Change of submerging time (up) and vegetation coverage (below) of Group Ⅱ.

https://doi.org/10.1371/journal.pone.0251015.g008
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As shown in Table 1, the maximum inundation time for low-density coverage was 70–120

days under natural conditions and accorded with the pattern observed in Group Ⅲ. Mean-

while, most cases in groups I and II shared the same threshold value of 0–30 days between the

maximum and minimum coverage. Hypothetically, this threshold could be predominately

determined by crop types on the bottomlands of Group Ⅰ, given that they were typically

exposed to the air. The curves in Fig 10 show the tendencies of both variables, where the peak

coverage values show the same trends as submergence times.

Fig 9. Change of submerging time (up) and vegetation coverage (below) of Group Ⅲ. The frames mark places where plants grew

within the range of fluctuating water levels. Other parts were either unvegetated or above the maximum water level in each year.

https://doi.org/10.1371/journal.pone.0251015.g009

Table 1. Specific ranges of submergence times in which most of the highest and lowest vegetal coverage appeared.

Group Bottomlands Submerging time (d)

Max. coverage Min. coverage

Ⅰ Liutiaozhou (c) 30–70 0–30

Ⅰ Huojianzhou (d) 0–30 0–30

Ⅰ Mayangzhou (e) 0–30 0–30

Ⅰ Ouchikouxintan (j) 0–30 0–30

Ⅰ Wuguizhou (k) 30–70 30–70

Ⅱ Sanbatan (f) 0–30 0–30

Ⅱ Jinchengzhou (g) 0–30 0–30

Ⅲ Tuqizhou (h) 0–30 70–120

Ⅲ Jiaoziyuan (i) 0–30 70–120

Ⅲ Guanzhou (a) 0–30 70–120

Ⅲ Shuiluzhou (b) 0–30 70–120

https://doi.org/10.1371/journal.pone.0251015.t001
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The result above has clarified the three patterns of submergence of all the research areas.

Thus we took representative samples from each group and calculated the inundation duration

and vegetation area chronologically, as shown in Fig 11. The area of Huojianzhou and

Mayangzhou remain basically unchanged as it has reached the maximum of the surface and

has been highly occupied by humans before the dam construction. Due to the extremely low

submerging time (<5 days), the submergence curve was not plotted. For Guanzhou,

Fig 10. Grading curves of submergence time and fvc from 2013–2015 at Jiaoziyuan. Runoff in 2014 increased the likelihood inundation and thus resulted

in more areas with low fvc values (in the range of 0–0.65); 2013 and 2015 exhibited the same patterns.

https://doi.org/10.1371/journal.pone.0251015.g010

Fig 11. Vegetation area change of Huojianzhou and Mayangzhou, Guanzhou, Jiaoziyuan and Tuqizhou.

https://doi.org/10.1371/journal.pone.0251015.g011
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Jiaoziyuan, and Tuqizhou, we choose the variable places inside the framed places in Fig 9 and

found that both Guanzhou and Jiaoziyuan had the minimum vegetation area around 2004,

and then the vegetation started expanding. Moreover, before 2010 the plants on Guanzhou

and Tuqizhou kept low coverage and a small portion of the whole surface, and the turning

point appeared within 2008 to 2010. There was a slight decline in Guanzhou in 2014, consis-

tent with the increased submerging time from 93 days in 2013 to 111 days in 2014. Due to the

relatively lower elevation of Jiaoziyuan, vegetation started the expansion earlier in 2006 when

encountering the exceptionally low water discharge [38].

In addition to the annual change of vegetation, the scatter graph of observed plant area cor-

responding to submerging time within a year was illustrated as Fig 12. These values were

extracted from the water-fluctuation places on Guanzhou, Jiaoziyuan and Tuqizhou.

When submerging time is longer than 120 days, vegetation area keeps under 0.05 km2,

and vegetation coverage is low. This indicates 120 days as a threshold for triggering the veg-

etation occupancy, and this is consistent with the result in Table 1. Referring to the turning

points in Fig 11, the corresponding inundating time is 116 days for Guanzhou and 108 days

for Tuqizhou in 2010, respectively. Meanwhile, the submerging time for Jiaoziyuan keeps

under 98 days, and plants continued expanding even though submergence may fluctuate

within a small range. Thus the maximal vegetation area was decided mainly by sediment

erosion and river section adjustment. Also, competitions among different species are likely

to disturb the vegetation coverage yet to a small extent when an unusual flood interferes

with the previously-formed community. As inundating time decreases into 70–120 days,

the vegetation cover enters a high rate of the increasing stage. Notably, the points in the

high zone become scattered due to the upper area limit of sampling places. In other words,

Fig 12. Vegetation cover area plotted as a function of flood duration in a year. The nonlinear fitting curve was

calculated and R = 0.74(p<0.05).

https://doi.org/10.1371/journal.pone.0251015.g012
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the vegetation will keep expanding to the maximum area of the range, which is flooded for

less than 120 days.

Discussion

This study was concentrated on the Jingjiang Reach in the middle of the Yangtze River (Figs 1

and 2). After the TGD was put into operation, the original balance of sediment erosion and

deposition was destroyed [34, 39]. As regulations have been continuously adjusted, a strategy

of allowing medium and small floods was enacted in 2010 [40]. As was recorded, there were

only 21 days during which the maximum discharge exceeded 45,000 m3/s at the Yichang

gauge station. Previous research has shown that discharge between 2009 ab 2014 was far from

that intended.

The construction of the TGD has, to some extent, ensured the safety of lowland communi-

ties during flood seasons since 2003, yet it also remained unknown whether or not channels in

the lower reaches are capable of bearing inevitable heavy flooding. Therefore, we selected 2003

to 2015 to study stream dynamics in the middle of this vital watershed [41]. Substantial

research has demonstrated that water levels have risen instead of declined under the high dis-

charges recorded at gauge stations, despite the deeper thalweg and channel readjustments via

new erosion. A flood that occurred in 2011 in the Mississippi River, USA, resulted in a higher

water level than in floods occurring in 1927 and 1973 owing to the presence of dense vegeta-

tion on its floodplains [42]. Similar risks might arise in China as the living environment is

influenced by the TGD, and there is no doubt that the medium and small flood-induced water

levels have fallen.

There are many concerns surrounding the potential risks brought by continuously deepen-

ing channels in Jingjiang. With a deeper and wider channel, the Yangtze River is supposed to

carry more floodwaters. Based on the statistics available from gauge stations, declines in water

levels under the medium- and small-scale flooding have been observed since the TGD was put

into operation. Possible causes that have been proposed to explain this include the lack of

large-scale changes in sections of high discharge, more obstructive bank geometries, or higher

roughness when floods reach the bottomlands [43, 44]. Taking the floodplains that are likely to

be more exposed to the air into consideration, roughness above the maximum water-level

tends to increase [42], thereby contributing to higher flood risks. Past studies have contributed

much to our understanding of fluvial hydraulics related to vegetation, and most have been

conducted using indoor channel experiments or numerical models of small-scale rivers. Com-

paratively, few studies have been conducted for large natural rivers, like the Yangtze, yet most

support the backwater areas [45] and are able to raise water levels during massive floods. Here,

we aimed to analyze this presumption and add field observations via remote sensing data from

October to December from 2003–2015. Year-end images were chosen to minimize the errors

due to cloud cover and standardize vegetal growing states to the same phase before low tem-

peratures affected their coverage. Nevertheless, we were not able to capture the entire whole

growth process, such as from July to September, when plant life flourishes.

When making the specific criterion for flow and sediment regimes and river bed morphol-

ogy, different levels of requirements need to be evaluated. Ćosić-Flajsig et al. Established a

holistic approach to defining the environmental flow, and the case study on Sutla River Basin

uses the flow characteristics to meet the spawning of the Barbus balcanicus [46]. The conclu-

sions drawn in this study revealed the overall influence of current hydrological conditions and

the responses of plants to different runoff processes. Policymakers and researchers may use

this study as a reference to control vegetal growth in floodplains and to impose boundary con-

ditions in numerical models, where higher roughness on floodplains must be taken into
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consideration. Our results indicate that areas inundated for more than 120 days were barely

covered by vegetation, meaning that the duration of exposure should not have met the growing

requirements of local plant life. The threshold value that appeared within 70–120 days in

Guanzhou and Shuiluzhou implied that submergence for more than 120 days restrained vege-

tal growth, although very little (fvc< 0.1875) vegetation was observed in minor areas of Sanba-

tan or elsewhere.

Additionally, submergence times of<120 days could not ensure vegetal coverage based on

the findings in Jinchengzhou, where qualified fields were small and seed transmission, as well

as a growth strategy, were likely affected. Ouchikouxintan disobeyed this pattern due to armor-

ing of the riverbed and consequently led to changes in the land surface. There are also human-

modified zones in Guanzhou where plants were detected despite being inundated for more

than 120 days. Thus, particular circumstances demand independent consideration.

Here, we revealed how vegetation coverage changes with submergence time and found that

plants grow more densely when flooded for shorter periods (within 120 days). The threshold

value lies within 70 and 120 days, which could be explained by the specific types of bottomland

plants. The plant cover area, which shows strong correlations to submergence of the flood-

plains in Group Ⅲ, remained low before 2006 or between 2003 and 2006. The dam construc-

tion in 2003 helped reallocate the flood resource, and the following riverbed adjustment

happened mostly in low terrain [18], including the Group Ⅲ which explains the low cover

before 2006. As the impoundment level was increased to 175 m after 2008 [8] and the flood

peak was reduced, leading the hydrodynamic conditions to meet the thresholds, the plants

started increasing at a high rate. Also, on the conditions that submerging time approaches

towards the threshold of 120 days, vegetation cover tends to decrease significantly. Jager et al.

found 40% of the whole growing season (around 70 days) as the threshold when the diversities

of both under and overstory communities start decreasing on the Upper Mississippi River

[47]. Furthermore, this value has consistency with the duration range of 70–120 days that we

concluded based on the Yangtze River, considering that the vegetation we observe probably

has a longer growing period. Moreover, the dominant tree species like Acer saccharinum on

the floodplains in northeast North America showed their flood-dependence in being sub-

merged for 4.5–95 days in a year and, longer inundating duration would lead to the replace-

ment of flood-tolerant species by native shrub swamp species [48].

From the current data, the seed bank of typical bottomlands in the study area includes

Mazus japonicus, Saluia plebeian, Phalaris arun dinacea, Phragmites australis, and Cyperus dif-
formis. All of these can be divided into submerged aquatic, emergent, and amphibious vegeta-

tion. According to the researches of Chen et al., Phragmites australis is dominant on the

floodplains all along the Yangtze River [49] and is capable of developing new plants all over

the year. The simulation results of the Kootenai River by R.Benjankar et al. show that once the

original environment gets interfered by dam construction or grazing, Phragmites australis and

grass usually become the major species [50]. However, the slight decrease of plants in Jiao-

ziyuan in 2011 indicates that when an arid year led to a sharp decrease in submerging time

(from 79 to 19 days), original dominant communities would be disturbed and thus resulted in

the area decrease. After the dam construction, the two gauge stations downstream of the

Sabine River represent different changes in the runoff, and the lower floodplains, which get

longer flooding duration showed similar vegetation community composition [51]. Thus, dam

operations could indirectly trigger certain seeds to burgeon to some extent. This is consistent

with the trends seen in the Elwha River and Sauce Grande River under the influence of large

dams [52]. However, research concerning the Yangtze River has been chiefly focused on

Dongting Lake and Poyang Lake rather than on the floodplains.
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Apart from natural occupancy, some bottomlands have been reclaimed for agriculture,

including Liutiaozhou, Mayangzhou, Huojianzhou, and the higher portions of the rest of those

studied. Farmers use geometric shapes to manage crops, which leave visible ribbing on satellite

images as evidence of human activities. The color denoting submergence times is normally red,

meaning that these fields are flooded for fewer than 30 days. Therefore, vegetation coverage is

surely in-line with crop types and the degree of human activities. If it is a goal of decision-makers

to reduce vegetation cover to improve the capacity for the flood [53], then it is essential to under-

stand what the most effective indicators are and adapt the methods based on different types of

vegetation and occupancy patterns. For floodplains of high elevations, guiding the flooding pro-

cess upon them is far from practical. Thus, in order to manage the activities of farmers that can

impact the watershed, compulsory policies are necessary. As for low-elevation floodplains, cur-

rent runoff has prevented the plants from rooting and growing but still needs observation on the

submergence time as the flood volume changes. From Fig 11, we found that plants have grown

since the inundation duration decreased into proper range (<120 days) and been developed

abundantly under the suitable circumstance in Guanzhou, Jiaoziyuan, and Tuqizhou. Those

places still remain within the water fluctuation range, which makes it possible to either promote

the sediment erosion to lower the elevation or raise the flood volume to lengthen the submerging

time [48]. Throughout all the floodplains that have the characteristics of Group Ⅲ like Jiao-

ziyuan, many have formed a unique land view [49], and dominant vegetation has emerged due

to the consistent and steady hydrodynamic conditions. By field surveys, it is realistic to summa-

rize the adaptations for the dominant species. Therefore, more detailed indicators could be

explored and established in such places from more effective perspectives [54].

Managing the floodplain vegetation is a complex project, including muti-objectives like

river adjustment and vegetation growth characteristics. Our study provides insights into the

bond-to-submergence time and vegetation coverage from a hydrodynamical viewpoint while

other factors were not taken into consideration, such as temperature and humidity. To under-

stand how large-scale vegetation influences large floods, vegetal types must be identified as

submerged aquatic, emergent, or amphibious vegetation. Once the respective mechanisms are

confirmed, the roughness caused by these plants may be accounted for in numerical models to

improve flood predictions and reservoir management.
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