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Introduction: Assessment of impaired vitamin D metabolism is limited by lack of functional measures.

CYP24A1-mediated vitamin D clearance, calculated as the ratio of serum 24,25-dihydroxyvitamin D3 to

25-hydroxyvitamin D3 (the vitamin D metabolic ratio, VDMR), is induced by 1,25-dihydroxyvitamin D and

may assess tissue-level activity. We tested associations of the VDMRwith risks of death and progression to

end-stage renal disease (ESRD) in patients with chronic kidney disease (CKD).

Methods: We studied participants from the Chronic Renal Insufficiency Cohort (CRIC), which included a

random subset of 1080 CRIC participants plus additional participants who experienced ESRD or died (case

cohort study design). Serum 24,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3 was measured 1 year

after enrollment. The primary outcomes included death and progression to ESRD. Using inverse proba-

bility weighting, we tested associations of VDMR (24,25[OH]2D3/25[OH]D3) with risks of death and ESRD,

adjusting for demographics, comorbidity, and kidney function (estimated glomerular filtration rate [eGFR]

and urine protein-to-creatinine ratio [PCR]).

Results: There were a total of 708 ESRD events and 650 deaths events over mean (SD) follow-up periods of

4.9 (2.9) years and 6.5 (2.5) years, respectively. Lower VDMR was associated with increased risk of ESRD

prior to adjusting for kidney function (hazard ratio [HR], 1.80 per 20 pg/ng lower VDMR; 95% confidence

interval [CI], 1.56–2.08), but not with adjustment for kidney function (HR, 0.94 per 20 pg/ng; 95% CI, 0.81–

1.10). Lower VDMR was associated with modestly increased mortality risk, including adjustment for kidney

function (HR, 1.18 per 20 pg/ng; 95% CI, 1.02–1.36).

Conclusion: Lower VDMR, a measure of CYP24A1-mediated vitamin D clearance, was significantly asso-

ciated with all-cause mortality but not with progression to ESRD in patients with CKD.
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I
n CKD, production of circulating 1,25-
dihydroxyvitamin D3 (1,25[OH]2D3, calcitriol)1–5 is

impaired, resulting in systemic effects such as bone dis-
ease and secondary hyperparathyroidism. 1,25(OH)2D3

deficiency also may contribute to progression to ESRD,
cardiovascular disease, and premature death. Despite
the attention devoted to treating 1,25(OH)2D3 deficiency
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and its consequences, clinical decision making is limited
by the lack of an effective measurement of functional
1,25(OH)2D3 deficiency; 25-hydroxyvitamin D3 (25[OH]
D3) is a relatively inactive substrate form of vitamin D,
circulating 1,25(OH)2D3 concentration is tightly regulated
and poorly reflects tissue levels, and circulating parathy-
roid hormone reflects functional 1,25(OH)2D3 deficiency
at only one of many relevant biological sites.6–8

Vitamin D clearance may offer a valuable new tool to
guide clinical diagnosis and treatment of vitamin D
deficiency in persons with CKD.9 The CYP24A1 enzyme
is normally responsible for the majority of vitamin D
clearance. CYP24A1 expression is used as a readout of
tissue-level 1,25(OH)2D3 activity in animal studies
because 1,25(OH)2D3 potently induces this enzyme,10

and 24,25-dihydroxyvitamin D3 (24,25[OH]2D3) is the
predominant initial product of 25(OH)D3 clearance by
CYP24A1. Therefore, the ratio of 24,25(OH)2D3 to
25(OH)D3 (the VDMR) is used as a measure of CYP24A1-
mediated vitamin D clearance that may reflect tissue-
level 1,25(OH)2D3 activity.

11,12

Previous studies have shown that lower GFR and
black race are associated with lower circulating con-
centrations of 24,25(OH)2D3, independent of 25(OH)
D3.

11,13–15 In addition, low circulating 24,25(OH)2D3

was independently associated with increased risks of
secondary hyperparathyroidism and death.16 However,
these previous studies were limited by a relatively
small number of participants with CKD, single mea-
sures of vitamin D metabolites, and limited numbers of
important clinical outcomes. Therefore, in this study,
we tested associations of baseline and time-updated
VDMR with risk of progression to ESRD and death in
a large, well-characterized cohort of people with CKD.

METHODS

Study Population

This study was a prospective ancillary study of the
CRIC, an ongoing multicenter prospective cohort study
of persons with CKD recruited from 7 clinical centers
(with 13 enrolling sites).17,18 The CRIC study initially
enrolled patients with CKD who had an eGFR of 20 to
70 ml/min per 1.73 m2 by the Modification of Diet in
Renal Disease study equation. Exclusion criteria
included New York Heart Association class III or IV
heart failure. Institutional Review Board approval was
obtained from all participating institutions, and written
informed consent to participate in CRIC was obtained
from all subjects.

This study utilized a case-cohort study design
(Figure 1). The cohort consisted of randomly selected
participants in the CRIC Mineral Metabolism Subcohort
(N ¼ 1527)19–21 who attended the 1-year study visit
Kidney International Reports (2019) 4, 1598–1607
and also had serum available for measurements (N ¼
1080). We also sampled 444 additional participants who
progressed to ESRD and 413 additional participants
who died between year 1 and March 31, 2013, to in-
crease power to test associations with ESRD and death.

Exposure

We measured serum vitamin D metabolites at CRIC study
years 1 and 4 to evaluate the association of baseline and
time-updated measures of vitamin D metabolites with
our outcomes of interest. All measurements were per-
formed at the University of Washington using a multi-
plex high-performance liquid chromatography mass
spectrometry assay that simultaneously measures
24,25(OH)2D3, 25(OH)D3, 25(OH)D2, 1,25(OH)2D3, and
1,25(OH)2D2 on a Xevo TQ spectrometer (Waters Corp.,
Milford, MA) using immunoaffinity extraction and
deuterated internal standards.22 The interassay co-
efficients of variation of the 5 vitamin D metabolites
ranged from 3.9% to 16.1% over several different con-
centrations. Our primary exposure was the ratio of serum
24,25(OH)2D3 to 25(OH)D3, (in pg/ng) or VDMR, which
was interpreted as a measure of CYP24A1-mediated
25(OH)D clearance. We calculated total serum 25(OH)D
as the sum 25(OH)D2 and 25(OH)D3 and total 1,25(OH)2D
as the sum 1,25(OH)2D2 and 1,25(OH)2D3.

Outcomes

Our primary outcomes included progression to ESRD and
all-cause mortality. ESRD was identified through partici-
pant self-report, medical records review, and data from
the United States Renal Data System. Deaths were iden-
tified from report from next of kin, retrieval of death
certificates or obituaries, review of hospital or outpatient
records, and search of Social Security death vital status
and state death certificate files, if available. For the present
study, follow-up was through March 31, 2013.

Covariates

Covariates were assessed concurrently with vitamin D
metabolites. Participants provided information on
their sociodemographic characteristics, medical his-
tory, medication usage, and lifestyle behaviors. Race/
ethnicity was categorized as non-Hispanic white,
non-Hispanic black, Hispanic, or other. Comorbid
diseases and medication use was ascertained by
detailed participant questionnaires. Diabetes mellitus
was defined as a fasting glucose >126 mg/dl, a non-
fasting glucose >200 mg/dl, or use of insulin or
another antidiabetic medication. Anthropometric
measurements and blood pressure were assessed using
standard protocols.23 Serum creatinine concentration
was measured using an enzymatic method on a Vitros
950 Chemistry Analyzer (Ortho-Clinical Diagnostics,
1599
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Figure 1. Cohort assembly. CRIC, Chronic Renal Insufficiency Cohort; ESRD, end-stage renal disease.
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Raritan, NJ) at the CRIC Central Laboratory and stan-
dardized to isotope dilution mass spectrometry–traceable
values.24–26 Estimated GFR was calculated from serum
creatinine and cystatin C using a CRIC Study equa-
tion.26 Additional assays included serum phosphorus,
24-hour urine total protein, C-terminal fibroblast
growth factor-23 (FGF-23), and total parathyroid hor-
mone (PTH).20,21

Statistical Approach

Using the random subcohort, we first described
characteristics of participants overall and across
categories of VDMR. We then evaluated the correla-
tions of VDMR with other vitamin D metabolites,
PTH, and FGF-23 using the Spearman correlation. We
generated scatterplots of VDMR versus eGFR and
urine PCR. We then reported associations of partici-
pant characteristics with VDMR using multivariable
linear regression, including age, sex, race, diabetes,
prevalent cardiovascular disease, smoking status,
body mass index, eGFR, urine PCR, PTH, FGF-23, and
medication use (calciferols, vitamin D receptor acti-
vators, and cinacalcet). Models were adjusted for age
(continuous), sex, race/ethnicity (4 categories), dia-
betes (yes/no), and eGFR (continuous). We then
described the change in VDMR from year 1 to year 4
in the subcohort. We examined the association of
baseline participants’ characteristics with change in
1600
VDMR using linear regression, adjusting for age, sex,
race/ethnicity, diabetes, and eGFR.

We reported incident rates of our primary outcomes
(death and ESRD) in the subcohort. We generated
Kaplan-Meier curves to evaluate survival and ESRD-free
survival among participants in the random subcohort
across categories of 24,25(OH)2D3/25(OH)D3.

With use of inverse probability weighting to account
for the case-cohort study design,27 we then tested the
association of VDMR with risks of death and ESRD.
VDMR was modeled continuously (per 20 pg/ng decre-
ment, approximately 1 SD) and in thirds. In secondary
analyses, we modeled the association of time-updated
VDMR with risk of death and ESRD. We performed
nested models, adjusting for covariates ascertained con-
current with vitamin D metabolites. In model 1, we
adjusted for demographics, diabetes, systolic blood
pressure, number of hypertension medication classes,
prevalent cardiovascular disease (which included heart
failure, myocardial infarction, stroke, and peripheral
artery disease), smoking status, use of renin-angiotensin-
aldosterone inhibitors, use of statins, and use of calcif-
erols and vitamin D receptor activators. Model 2 adjusted
for covariates in model 1 plus eGFR and urine PCR.
Finally, because vitamin D metabolism, PTH, and FGF-23
are interrelated through complex endocrine feedback
loops, model 3 was a mediation model, in which we
additionally adjusted for FGF-23 and PTH.
Kidney International Reports (2019) 4, 1598–1607
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We tested for interactions by black versus non-black
race because prior data have suggested that the asso-
ciation of vitamin D metabolites with clinical outcomes
may differ by race.28

In a sensitivity analysis, we tested the association of
24,25(OH)2D3 with risk of ESRD and death, adjusting
for 25(OH)D3 (rather than the VDMR).

The following software was used for the analyses:
IBM SPSS Statistics for Windows, version 24.0 (IBM
Corp., Armonk, NY); Stata 13 Statistical Software (Sta-
taCorp., College Station, TX); and R: a language and
environment for statistical computing (R Foundation for
Table 1. Characteristics of a subcohort of CRIC study participants by cat

Characteristic Total

24,25(OH)2D3:25(OH)D3 range (pg/ng)

N 1080

24,25(OH)2D3, ng/ml, mean (SD) 0.78 (0.69)

25(OH)D3, ng/ml, mean (SD) 18.6 (10.4)

Demographics

Age, yr, mean (SD) 59 (11)

Female, N (%) 464 (43)

Race/ethnicity, N (%)

Non-Hispanic white 463 (43)

Non-Hispanic black 457 (42)

Hispanic 124 (12)

Other 36 (3)

Medical history, N (%)

Diabetes 534 (49)

Current smoker 113 (11)

Prevalent cardiovascular disease 362 (34)

Prevalent heart failure 98 (9)

Prevalent myocardial infarction 242 (22)

Prevalent stroke 108 (10)

Prevalent peripheral arterial disease 69 (6)

Hypertension 960 (89)

Medications, N (%)

Calciferols 132 (12)

Vitamin D receptor agonists 69 (6)

Cinacalcet 2 (0.2)

Phosphate binders

Calcium-based 68 (6)

Non–calcium-based 2 (0.2)

Physical examination, mean (SD)

Body mass index, kg/m2 32.3 (8.1)

Systolic blood pressure, mm Hg 126 (21)

Diastolic blood pressure, mm Hg 70 (14)

Laboratory data

eGFR CKD-EPI, ml/min per 1.73 m2, mean (SD) 43 (16)

Proteinuria, median [IQR] g/24 hr 0.13 [0.05–0.72]

Calcium, mg/dl, mean (SD) 9.3 (0.5)

Phosphate, mg/dl, mean (SD) 3.69 (0.64)

FGF-23, pg/ml, median [IQR] 128 [85–217]

Total 25(OH)D, ng/ml, mean (SD) 20.6 (10.7)

Total 1,25(OH)D, pg/ml, mean (SD) 32.0 (14.5)

Intact PTH, pg/ml, median [IQR] 62 [41–99]

CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration; CRIC, Chronic Renal Insufficienc
IQR, interquartile range; PTH, parathyroid hormone.

Kidney International Reports (2019) 4, 1598–1607
Statistical Computing, Vienna, Austria; https://www.R-
project.org/).
RESULTS

Study Population

Among the 1080 participants in the subcohort, mean
age at the first annual CRIC study visit was 59 years,
42% were black, and 43% were female. Approximately
half the study population had diabetes, and 31% had
prevalent cardiovascular disease (Table 1). Only 12%
were taking calciferols, and 6% were taking vitamin D
egories of vitamin D metabolic ratio (24,25[OH]2D3:25[OH]D3)
24,25(OH)2D3/25(OH)D3 (pg/ng)

T1 T2 T3

0.00–26.47 26.48–43.16 43.17–136.97

348 365 367

0.26 (0.20) 0.65 (0.37) 1.41 (0.75)

13.5 (8.1) 18.6 (9.9) 23.5 (10.6)

58 (11) 61 (10) 58 (10)

151 (43) 152 (42) 161 (44)

99 (28) 148 (41) 216 (59)

197 (57) 152 (42) 108 (29)

44 (13) 51 (14) 29 (8)

8 (2) 14 (4) 14 (4)

203 (58) 205 (56) 126 (34)

53 (15) 30 (8) 30 (8)

123 (35) 142 (39) 97 (26)

33 (10) 37 (10) 28 (8)

85 (24) 85 (23) 72 (20)

38 (11) 43 (12) 27 (7)

21 (6) 35 (10) 13 (4)

325 (93) 339 (93) 296 (81)

28 (8) 37 (10) 67 (18)

36 (10) 29 (8) 4 (1)

2 (0.6) 0 (0) 0 (0)

35 (10) 10 (3) 23 (6)

1 (0.3) 0 (0) 1 (0.3)

34.0 (9.4) 32.7 (7.7) 30.2 (6.5)

129 (22) 129 (22) 121 (19)

71 (13) 69 (14) 70 (13)

35 (14) 41 (14) 52 (14)

0.28 [0.08–1.11] 0.13 [0.05–0.66] 0.08 [0.04–0.34]

9.2 (0.6) 9.3 (0.5) 9.4 (0.4)

3.75 (0.69) 3.75 (0.66) 3.57 (0.55)

166 [107–308] 137 [86–217] 101 [69–153]

15.0 (8.7) 20.8 (10.3) 25.7 (10.2)

32.4 (15.0) 31.1 (13.8) 32.4 (14.6)

93 [64–161] 65 [45–96] 44 [29–62]

y Cohort; eGFR, estimated glomerular filtration rate; FGF-23, fibroblast growth factor-23;
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receptor agonists. Participants in the lowest tertile of
VDMR were more likely to be black, be current
smokers, take vitamin D receptor agonists, and have a
lower eGFR, higher urine PCR, higher FGF-23, lower
total 25(OH)D, and lower urinary calcium excretion
(Table 1).

Correlates of Serum VDMR Ratio

The VDMR ratio was most strongly correlated with
eGFR (correlation coefficient 0.49), PTH (–0.53), and
FGF-23 (–0.36) and weaker with urine PCR (correlation
coefficient –0.28; Table 2 and Supplementary
Figure S1). In models adjusted for age, sex, race/
ethnicity, diabetes, and eGFR, the following charac-
teristics were significantly associated with lower
VDMR: younger age, black race, diabetes, tobacco use,
higher body mass index, lower eGFR, and higher PTH
(Supplementary Table S1).

Change in Serum VDMR Ratio

Overall, the median (interquartile range) absolute
change in VDMR from year 1 to year 4 was a median
[interquartile range] decline of 1.11 [–10.30, 7.23] pg/ng
(Supplementary Figure S2). The unadjusted absolute
change in VDMR from year 1 to year 4 was greatest in
participants who were older; male; Hispanic; diabetic;
had cardiovascular disease; were smokers; were taking
calciferol; were not taking vitamin D receptor agonists,
cinacalcet, or phosphate binders; and had higher body
mass index and lower eGFR. In adjusted models, higher
baseline urine PCR and higher baseline PTH were
significantly associated with a greater decline in VDMR
(Supplementary Table S2). Initiation of a calciferol
supplement between years 1 and 4 was associated with
an increase in VDMR (Supplementary Table S3).

End-Stage Renal Disease

A total of 708 ESRD events occurred over a mean (SD)
follow-up period of 4.9 (2.9) years. The unadjusted
incidence rate of ESRD was highest among participants
in the lowest tertile of VDMR (Figure 2a and Table 3).
In models adjusted for demographics, comorbidity, and
pertinent medication use, participants in the lowest
Table 2. Correlation matrix of vitamin D metabolites and other mineral m
Measure of vitamin D metabolite or kidney function 24,25(OH)2D3 25(OH)D3

24,25(OH)2D3 1.00 0.87a

25(OH)D3 1.00

24,25(OH)2D3/25(OH)D3

eGFR

PCR

FGF-23

PTH

eGFR, estimated glomerular filtration rate; FGF-23, fibroblast growth factor-23; PTH, parathyroi
aCorrelation significant at the 0.01 level.

1602
tertile of VDMR had a greater risk of ESRD compared
with those in the highest tertile. However, with addi-
tional adjustment for eGFR and urine PCR, the associ-
ation between VDMR and risk of ESRD was attenuated
and no longer statistically significant (Table 3). There
was no significant heterogeneity by race.

In unadjusted models with time-updated
24,25(OH)2D3/25(OH)D3, the association of VDMR
with risk of ESRD was even stronger than that
observed with baseline VDMR (HR, 2.26; 95% CI,
2.01–2.54 per every 20 pg/ng decrement). Similarly to
that seen with the baseline VDMR models, the associ-
ation of time-updated VDMR with risk of ESRD was
attenuated with adjustment for eGFR and urine PCR
and no longer statistically significant (Supplementary
Table S4).

In a sensitivity analysis, we examined the associa-
tion of 24,25(OH)2D3 with risk of ESRD, also adjusting
for 25(OH)D3. The results of this analysis were similar
to results of the primary analysis (Supplementary
Table S5).

Mortality

There were 650 deaths over a mean (SD) follow-up
period of 6.5 (2.5) years. When VDMR was modeled
continuously, a significant association was found be-
tween VDMR and risk of mortality in model 1, which
adjusted for potential confounders (HR, 1.18; 95% CI,
1.02–1.36 per every 20 pg/ng decrement in 24,25
[OH]2D3/25[OH]D3). This association was attenuated
but remained statistically significant after adjustment
for eGFR and urine PCR (HR, 1.17; 95% CI, 1.01–1.36
per every 20 pg/ng decrement in 24,25[OH]2D3/25[OH]
D3). Little change occurred in the risk estimate with
further adjustment for possible mediators PTH and
FGF-23 (Table 3). There was no significant heteroge-
neity by race.

In models with time-updated 24,25(OH)2D3/25(OH)D3,
the association of VDMR with risk of death was similar
to that observed for baseline VDMR (Supplementary
Table S4).

In a sensitivity analysis, we examined the associa-
tion of 24,25(OH)2D3 with risk of death, also adjusting
etabolism and kidney function measures in subcohort
24,25(OH)2D3/25(OH)D3 eGFR PCR FGF-23 PTH

0.83a 0.35a –0.30a –0.28a –0.52a

0.46a 0.11a –0.24a –0.17a –0.36a

1.00 0.49a –0.27a –0.31a –0.53a

1.00 –0.39 –0.52a –0.53a

1.00 –0.33a 0.36a

1.00 0.36a

1.00

d hormone.

Kidney International Reports (2019) 4, 1598–1607



Figure 2. Kaplan-Meier curves for (a) end-stage renal disease (ESRD)–free survival and (b) overall survival across categories of vitamin D
metabolic ratio (24,25[OH]2D3/25[OH]D3) in the subcohort.
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for 25(OH)D3. The results of this analysis were similar
to results of the primary analysis (Supplementary
Table S5).
DISCUSSION

In this longitudinal study of participants with preva-
lent CKD, we found that lower baseline serum
24,25(OH)2D3/25(OH)D3, reflecting reduced CYP24A1-
mediated vitamin D clearance, was modestly but
significantly associated with all-cause mortality. Lower
eGFR and higher urine PCR were strongly associated
with lower VDMR in cross-sectional analyses, but
VDMR was not associated with risk of ESRD after
adjustment for eGFR and urine PCR. These data suggest
that reduced vitamin D clearance, as measured by
serum 24,25(OH)2D3/25(OH)D3, is a consequence but
not a cause of progressive CKD. Furthermore, these data
suggest that reduced vitamin D clearance (or related
Table 3. Associations of vitamin D metabolic ratio (24,25[OH]2D3/25[OH]D3

24,25(OH)2D3/25(OH)D3 ratio No. of events Incidence rate (%/yr)a

ESRD

Tertile 1 371 7.00

Tertile 2 225 4.42

Tertile 3 112 1.32

Per 20 pg/ng (1 SD) decrement

Death

Tertile 1 278 4.80

Tertile 2 227 3.26

Tertile 3 145 1.49

Per 20 pg/ng (1 SD) decrement

CI, confidence interval; ESRD, end-stage renal disease; HR, hazard ratio; Ref, reference.
aIncidence rate is based on the subcohort only.
Model 1: Adjusted for age, sex, race, diabetes, systolic blood pressure, number of antihype
angiotensin-aldosterone inhibitors, statin use, calciferol use, and vitamin D receptor activators
Model 2: Model 1 þ estimated glomerular filtration rate and urine protein-to-creatinine ratio.
Model 3: Model 2 þ parathyroid hormone and fibroblast growth factor-23.

Kidney International Reports (2019) 4, 1598–1607
abnormalities in vitamin D metabolism) may be a
mortality risk factor in persons with CKD.

The strong cross-sectional correlation of eGFR with
serum 24,25(OH)2D3/25(OH)D3, which has been pre-
viously observed,11,13–15,29 probably largely reflects
reduced renal production of serum 24,25(OH)2D3 in
CKD. Vitamin D metabolites bound to vitamin D
binding globulin are filtered and reabsorbed into
proximal tubular cells via megalin and cubilin,30 and
flux through this pathway likely decreases with
reduced glomerular filtration. In a study of anephric
pigs that were given cholecalciferol, the rise in
circulating 24,25(OH)2D3 concentration was delayed
and concentrations were lower than in control pigs.31

In addition, a study of humans found a 22% lower
metabolic clearance rate of 1,25(OH)D, which is also
cleared by CYP24A1, in persons who had CKD
compared with normal control subjects.32 In this
study, we also noted a significant inverse correlation
) with risk of ESRD and death in case cohort
HR (95% CI)

model 1
HR (95% CI)

model 2
HR (95% CI)

model 3 (mediation)

3.20 (2.41–4.27) 0.88 (0.63–1.23) 0.79 (0.55–1.16)

1.90 (1.43–2.52) 0.89 (0.64–1.26) 0.75 (0.51–1.09)

Ref Ref Ref

1.80 (1.56–2.08) 0.94 (0.81–1.10) 0.86 (0.72–1.02)

1.10 (0.80–1.51) 1.09 (0.79–1.50) 1.06 (0.72–1.56)

1.19 (0.89–1.58) 1.15 (0.86–1.54) 1.10 (0.78–1.55)

Ref Ref Ref

1.18 (1.02–1.36) 1.17 (1.01–1.36) 1.18 (0.99–1.41)

rtensive medication classes, prevalent cardiovascular disease, smoking status, renin-
.
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of urine PCR with serum 24,25(OH)2D3. It is possible
that proteinuria impairs recovery or metabolism of
filtered vitamin D metabolites. Instead of or in addi-
tion to CKD causing low serum VDMR through
reduced renal production, lower serum 24,25(OH)2D3

may reflect decreased vitamin D clearance in non-
kidney tissues as a result of systemic 1,25(OH)2D
deficiency. Either way, it is likely that low serum
VDMR is an overall marker of impaired CKD-related
vitamin D metabolism.

Contrary to our hypothesis, we did not find evi-
dence that impaired CKD-related vitamin D metabolism,
manifest as low serum 24,25(OH)2D3/25(OH)D3, was
independently associated with progression to ESRD.
Animal studies have demonstrated that impaired
1,25(OH)2D signaling promotes kidney injury.33–35

Epidemiologic studies have observed that low circu-
lating concentrations of 25(OH)D and 1,25(OH)2D are
associated with increased risks of albuminuria and CKD
progression,36–39 and 1,25(OH)2D analogues reduced
proteinuria in clinical trials.34,40,41 However, our find-
ings suggest that, whereas CKD is strongly associated
with low 24,25(OH)2D3/25(OH)D3, low VDMR is not a
risk factor for CKD progression, independent of base-
line eGFR and urine PCR. It is plausible that other
confounders such as variability of vitamin D metabo-
lites and use of other therapies (e.g., renin-angiotensin-
aldosterone inhibitors) may have influenced our
findings.

We found that lower VDMR was significantly asso-
ciated with greater risk of all-cause mortality. From
experimental work, pleiotropic actions of impaired
vitamin D are well recognized.42–47 These actions
include broad effects on cell differentiation and pro-
liferation, immune cell function, and the renin-
angiotensin system. Epidemiologic studies in persons
with CKD and non-CKD populations suggest that low
circulating concentrations of 25(OH)D and 1,25(OH)2D
are associated with increased risks of heart failure,
atherosclerotic cardiovascular disease events, and
death.15,16,37,38,48–55 Thus our study provides further
evidence that impaired CKD-related vitamin D meta-
bolism may have adverse clinical consequences.

Serum VDMR ultimately could serve as a clinically
useful biomarker. Compared with circulating concen-
trations of 25(OH)D (which is relatively inactive),
1,25(OH)2D3 (which is tightly regulated), and PTH
(which is variable and influenced by many factors),
serum VDMR may reflect a more useful aspect of CKD-
related impaired vitamin D metabolism or tissue-level
1,25(OH)2D deficiency. To this point, one recent
study of older adults found that lower VDMR was
associated with higher risk of hip fracture; however, no
association was seen with 25(OH)D.56
1604
Ideally, clinically useful biomarkers should be modi-
fiable and identify which patients derive clinical benefit
from available therapeutic interventions, such as vitamin
D supplementation. We and other investigators have
shown that cholecalciferol, ergocalciferol, 1,25(OH)2D3,
or paricalcitol each increase the circulating VDMR ra-
tio.57–60 The increase in serum VDMR ratio observed in
this study among CRIC participants who initiated
cholecalciferol between study year 1 and 4 is consistent
with this literature. However, no available biomarker has
been shown to identify patient subsets who are likely to
derive clinical benefits from vitamin D–related in-
terventions; this subject requires further study.

There are well-known differences by race in vitamin
D metabolites. Blacks have lower levels of 25(OH)D
because the melanin-rich skin reduces absorption of
ultraviolet B light needed for vitamin D synthesis.61

We and other investigators have reported that blacks
had significantly lower VDMR compared with whites,
suggesting that reduced vitamin D clearance may help
compensate for reduced vitamin D production.28,62 In
the present study, black participants had lower VDMR
than did whites, but we did not note significant in-
teractions by race of VDMR with study outcomes.

Our study had several strengths. We studied a large,
well-characterized cohort of patients who had CKD
with longitudinal follow-up. Vitamin D metabolites
were measured longitudinally using an established and
precise mass spectrometry assay. We were able to
consider a broad range of potential confounders in our
analysis. We recognize some limitations as well. We
cannot be certain that VDMR accurately assesses
vitamin D clearance. Although we could adjust for use
of vitamin D supplementation, doses and duration of
therapies were not known. Finally, this study was
observational, and we cannot determine whether the
association of VDMR with mortality is causal in nature.

In conclusion, our data suggest that impaired
CYP24A1-mediated vitamin D clearance, measured as low
serum 24,25(OH)2D3/25(OH)D3, is a consequence of CKD
but not a risk factor for progression of established CKD.
Moreover, lower VDMR was significantly associated
with all-cause mortality, providing further evidence that
impaired vitamin D metabolism may be an important
pathway through which CKD increases cardiovascular
risk. Further studies are needed to determine whether
circulating VDMR may be a clinically actionable measure
of impaired vitamin D metabolism in CKD.
APPENDIX

CRIC Study Investigators

CRIC Study Investigators include Lawrence J. Appel,
Harold I. Feldman, Alan S. Go, Jiang He, John W.
Kidney International Reports (2019) 4, 1598–1607
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