Efficacy Evaluation of Subtotal and Total Gastrectomies in Robotic Surgery for Gastric Cancer Compared with that in Open and Laparoscopic Resections: A Meta-Analysis

Liang Zong¹⁹, Yasuyuki Seto^{1*9}, Susumu Aikou¹, Takamasa Takahashi²

1 Department of Gastrointestinal Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan, 2 Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan

Abstract

Purposes: Robotic gastrectomy (RG), as an innovation of minimally invasive surgical method, is developing rapidly for gastric cancer. But there is still no consensus on its comparative merit in either subtotal or total gastrectomy compared with laparoscopic and open resections.

Methods: Literature searches of PubMed, Embase and Cochrane Library were performed. We combined the data of four studies for RG *versus* open gastrectomy (OG), and 11 studies for robotic RG *versus* laparoscopic gastrectomy (LG). Moreover, subgroup analyses of subtotal and total gastrectomies were performed in both RG *vs.* OG and RG *vs.* LG.

Results: Totally 12 studies involving 8493 patients met the criteria. RG, similar with LG, significantly reduced the intraoperative blood loss than OG. But the duration of surgery is longer in RG than in both OG and LG. The number of lymph nodes retrieved in RG was close to that in OG and LG (WMD = -0.78 and 95% CI, -2.15-0.59; WMD = 0.63 and 95% CI, -2.24-3.51). And RG did not increase morbidity and mortality in comparison with OG and LG (OR = 0.92 and 95% CI, 0.69-1.23; OR = 0.72 and 95% CI, 0.25-2.06) and (OR = 1.06 and 95% CI, 0.84-1.34; OR = 1.55 and 95% CI, 0.49-4.94). Moreover, subgroup analysis of subtotal and total gastrectomies in both RG vs. OG and RG vs. LG revealed that the scope of surgical dissection was not a positive factor to influence the comparative results of RG vs. OG or LG in surgery time, blood loss, hospital stay, lymph node harvest, morbidity, and mortality.

Conclusions: This meta-analysis highlights that robotic gastrectomy may be a technically feasible alternative for gastric cancer because of its affirmative role in both subtotal and total gastrectomies compared with laparoscopic and open resections.

Citation: Zong L, Seto Y, Aikou S, Takahashi T (2014) Efficacy Evaluation of Subtotal and Total Gastrectomies in Robotic Surgery for Gastric Cancer Compared with that in Open and Laparoscopic Resections: A Meta-Analysis. PLoS ONE 9(7): e103312. doi:10.1371/journal.pone.0103312

Editor: Jose Luis Hernández, Clínica Universidad de Navarra, Spain

Received March 25, 2014; Accepted April 16, 2014; Published July 28, 2014

Copyright: © 2014 Zong et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. The data are in Table 2 and Table 3 in the manuscript.

Funding: The authors have no funding or support to report.

Competing Interests: The authors have declared that no competing interests exist.

* Email: seto-tky@umin.ac.jp

• These authors contributed equally to this work.

Introduction

Gastric cancer is the fourth most common malignancy and second leading cause of cancer death in the world [1]. Surgical resection remains the only curative treatment option and open gastrectomy with lymphadenectomy took a leading position in the treatment of gastric cancer for a long time. Kitano *et al.* firstly reported the laparoscopy-assisted distal gastrectomy for gastric cancer in 1994 [2]. Since then, LG has been gradually spread worldwide [3–5].

Minimally invasive surgery represents a developing trend for its unique characteristics. However, conventional laparoscopic surgery itself, accompanied by some limitations such as instrument movement, amplification of hand tremor, two-dimensional imaging, and ergonomic discomfort for the surgeons. Robotic surgery, an emerging technology, was invented to overcome the disadvantages of conventional laparoscopic surgery in 1997 [6]. For robotic surgery, several robotic devices have been developed, but only the Da Vinci Surgical System was widely used [7]. To date, robotic surgery has been maturely adopted in many fields of advanced surgical procedures worldwide, especially for prostate cancer [8]. In the field of gastric cancer, robotic gastrectomy (RG) has been reported to be beneficial for patients, with less injury and also with compatible short-term oncologic outcomes to open gastrectomy (OG) or laparoscopic gastrectomy (LG) [9–20]. However, sample size, a single institution design and different appraise system of complications limited these studies to conclude objective result. To overcome these limitations, a meta-analysis of RG vs. OG or LG for gastric cancer was performed to determine the relative merits of RG for gastric cancer.

Methods

Publication Search

Three electronic databases (PubMed, EMBASE, and Cochrane Library) were searched (last search was updated on 01 June 2013, using the search terms: robotics OR robot PLUS gastrectomy PLUS cancer OR carcinoma OR adenocarcinoma OR malignancy PLUS open OR laparoscope). Article language was limited to English. All eligible studies were retrieved, and their bibliographies were checked for other relevant publications. Review articles and bibliographies of other relevant studies identified were hand-searched to identify additional eligible studies. Only published studies with full-text articles were included. When the same patient population was included in several publications, only the most recent or complete study was used in this meta-analysis.

Inclusion Criteria

The inclusion criteria were as follows: (a) controlled studies of RG vs. LG or RG vs. OG for gastric cancer; (b) report on at least one of the outcome measures mentioned below; and (c) sufficient published data to estimate an odds ratio (OR) with 95% confidence interval (CI).

Exclusion criteria

Abstracts, letters, editorials and expert opinions, reviews without original data, case reports and studies lacking control groups were excluded. The following studies or data were also excluded: (1) they reported on gastric surgery for benign lesions and gastrointestinal stromal tumor (GIST) and did not contain a distinct group of patients with gastric cancer, (2) the outcomes and parameters of patients were not clearly reported; (3) it was impossible to extract the appropriate data from the published results; and (4) there was overlap between authors or centers in the published literature.

Quality Assessment

The methodological quality of the studies included was assessed. Jadad Scale and MINORS were usually used to assess the quality of RCTs and non-RCTs, respectively [21,22].

Data Extraction

Information was carefully extracted from all eligible studies by two of the authors (Zong L and Seto Y), according to the inclusion criteria listed above. The following information were collected from each study: first author's surname, publication date, district, resection extent, reconstruction method, BMI index, TNM stage, study type, and total number of patients in RG group and OG group or LG group, respectively. We did not define a minimum number of patients for inclusion in our meta-analysis.

Statistical Analysis

Odd ratios with 95% CI were used for the comparisons of dichotomous variables (e.g., morbidity, and mortality) between surgical methods according to the method of Woolf. Heterogeneity assumption was confirmed by the X^2 -based Q-test. A P-value greater than 0.10 for the Q-test indicated a lack of heterogeneity among the studies, therefore, the OR estimate for each study was calculated by the fixed-effects model (the Mantel-Haenszel

method). Otherwise, the random-effects model (the DerSimonian and Laird method) was used. The significance of the pooled OR was determined by the Z-test and P>0.05 was considered statistically significant. Weighted mean difference (WMD) with 95% confidence intervals (95% CI) was calculated for continuous variables (e.g., operation time, and blood loss). WMD was pooled by using the inverse variance model. Sensitivity analyses were carried out to determine if modification of the inclusion criteria for this meta-analysis affected the final results. An estimate of potential publication bias was carried out using the funnel plot, in which the OR for each study was plotted against its log (OR). An asymmetric plot suggested possible publication bias. Funnel plot asymmetry was assessed using Egger's linear regression test, a linear regression approach to measure funnel plot asymmetry on the natural logarithm scale of the OR. The significance of the intercept was determined by the t-test, as suggested by Egger (P<0.05 was considered representative of statistically significant publication bias). All statistical tests were performed with Review Manager Version 5.0 (The Cochrane Collaboration, Oxford, England).

Results

Study Characteristics

Of the 14 published pieces of literature [9–20,23], 12 studies were eligible in this meta-analysis. Two studies published by the same team from the same institute within the same study interval were regarded as 1 trial, but both studies were included and shared the same study number because some separately published data was complementary [17,23]. Hence, a total of 12 studies including 8493 patients were used in the pooled analyses. Table 1 lists the studies identified and their main characteristics. Of the 12 groups, sample size ranged from 39 to 5839 (Figure 1).

Robotic gastrectomy versus open gastrectomy

The mean operation time of RG was 68.47 minutes longer than OG, but intraoperative blood loss and hospital stay were significantly reduced by RG (WMD = 68.47 and 95% CI, 63.40-73.54; WMD = -106.63 and 95% CI, -163.13--50.13; WMD = -2.49 and 95% CI, -3.72--1.27). The difference of lymph node harvest between RG and OG was not statistically significant (WMD = -0.78 and 95% CI, -2.15-0.59). Moreover, Meta-analyses on morbidity and mortality indicated that there was no significant differences between RG and OG (OR = 0.92 and 95% CI, 0.69-1.23; OR = 0.72 and 95% CI, 0.25-2.06). Also, specifically for anastomotic leakage, no difference was observed between two groups (OR = 1.72 and 95% CI, 0.97-3.07). Subgroup analysis of subtotal gastrectomy, and subtotal and total gastrectomies for above parameters all showed a similar trend with the combined results (Table 2) (Figure 2).

Robotic gastrectomy versus Laparoscopic gastrectomy

Operation time was significantly longer in RG compared with LG (WMD = 57.15 and 95% CI, 42.26-72.05). Both as the minimally invasive surgery, RG did not showed a priority in intraoperative blood loss (WMD = -28.59 and 95% CI, -56.57--0.62). As for postoperative hospital stay, there was no significant difference (WMD = -0.16 and 95% CI, -0.87-0.55). In analysis of lymph node harvest, it did not attain statistical significance between RG and LG (WMD = 0.63 and 95% CI, -2.24-3.51). Further analysis revealed that RG did not carry additional postoperative morbidity, as well as anastomotic leakage, and mortality when compared with LG (OR = 1.06 and 95% CI, 0.84-1.34; OR = 1.10 and 95% CI, 0.66-1.82; OR = 1.55 and 95% CI, 0.49-4.94) (Table 3) (Figure 3). However, Meta-analysis

meta-analysis.
the
.⊆
included
studies
all
of
characteristics
in
Š
-
 Table

Study	Study Period	District	Size	Study Group	Resection extent	Reconstruction method	BMI	Stage	Study type
Caruso <i>et al</i>	2011	Italy	149	RG/OG	Total/Subtotal 12/17;37/83	NA	27±3/28±4	NA	Controlled
Eom <i>et al</i>	2012	Korea	92	RG/LG	Subtotal 30;62	NA	24.2/24.1	81/9/2	Controlled
Huang <i>et al</i>	2012	Taiwan	689	RG/LG/OG	Total/Subtotal 7/32;7/57; 179/407	B-l/B-ll/Roux-en-Y	24.2±3.7/24. ±3.3/23±3.6	282/122/285	Controlled
Hyun <i>et al</i>	2012	Korea	121	RG/LG	Total/Subtotal 9/29; 18/65	B-I/B-II/Roux-en-Y	23.8±2.6/23.8±2.9	97/14/10	Controlled
Kang <i>et al</i>	2012	Korea	382	RG/LG	Total/Subtotal 16/84;37/245	B-I/B-II/Roux-en-Y	23.7±3.7/23.6±3.5	NA	Controlled
Kim <i>et al</i>	2010	Korea	39	RG/LG/OG	Subtotal 12;11;16	NA	$21.3 \pm 3.4/25.3 \pm 2.5/25.2 \pm 1.9$	27/9/3	Controlled
Kim <i>et al</i>	2012	Korea	5839	RG/LG/OG	Total/Subtotal 109/158/1232; 327/703/3309	B-l/B-ll/Roux-en-Y	23.6±3.1/23.5±2.8/23.3±8.0	AN	Controlled
Park <i>et al</i>	2012	Korea	150	RG/LG	Subtotal 30;120	NA	NA	NA	Controlled
Pugliese <i>et al</i>	2010	Italy	64	RG/LG	Subtotal 16;48	NA	NA	NA	Controlled
Song <i>et al</i>	2009	Korea	40	RG/LG	Subtotal 20;20	NA	$23.4 \pm 2.1/22.4 \pm 2.1$	39/1/0	Controlled
Woo et al	2011	Korea	827	RG/LG	Total/Subtotal 62/172; 108/481	B-I/B-II/Roux-en-Y	23.5±3/23.5±3	NA	Controlled
Yoon et al	2012	Korea	101	RG/LG	Total 36;65	NA	23.2±2.5/23.6±3.4	84/14/3	Controlled
doi:10.1371/jour	rnal.pone.01033	12.t001							

Figure 1. Flow chart of literature selection. doi:10.1371/journal.pone.0103312.g001

on another surgical outcome evaluation system with Clavien-Dindo grades also did not show significant differences in any subdivided grade. Subgroup analysis of subtotal gastrectomy, total gastrectomy, and subtotal and total gastrectomies was also performed for above parameters and no single subgroup showed a heterogeneous result with the combined one (Table 3) (Figure 4).

Publication Bias

Begg's funnel plot was performed to assess publication bias. The heterogeneity tests for comparing the 12 combined studies showed heterogeneity in some analyses such as operation time, blood loss and so on; however, when significant heterogeneity occurred among the studies, random-effects model was used.

Discussion

Radical gastrectomy with lymphadenectomy has been widely applied in open surgery as standard surgical treatment for gastric cancer. Although minimally invasive surgery improves quality of life, it should be ensured that this technique does not increase morbidity and mortality [24]. With the developing of technique, minimally invasive surgery has gained a revolutionized application in general surgery from last century. But for gastric cancer, minimally invasive surgery experienced a controversy focusing on morbidity and mortality for a long time. Laparoscopic gastrectomy with limited lymphadenectomy is rapidly increasing and quickly admitted in early gastric cancer because of the mass and individual screening in Japan [25]. But the data was still incomplete to support the widespread use of laparoscopic gastrectomy for advanced gastric cancer in last decade [26].

Open gastrectomy with D2 lymphadenectomy is a technically demanding operation for advanced gastric cancer compared with D1, although there is the potential for appreciable morbidity and mortality [27,28]. Therefore, the assessment in favor of D2 lymphadenectomy makes it an integral part of laparoscopic surgery for advanced gastric cancer. Recently strong evidence from a multi-center retrospective study of laparoscopic surgery over open surgery confirmed the therapeutic role of Laparoscopic gastrectomy in advanced gastric cancer [29].

Robotic surgery, as an innovation of laparoscopic surgery, might be a simpler way to expand the indications of minimally invasive surgery for gastric cancer. However, controlled prospective studies are needed to evaluate the role of robotics in the management of gastric cancer. Some studies have demonstrated that robotic total and subtotal gastrectomies with D2-lymphade-nectomy are technically feasible and safe, with acceptable surgical and oncological short-term results [15,30–32]. It is particularly notable that only a few reports have examined the technical feasibility of robotic surgery for gastric cancer till 2011 [9,14,17–19], and the number of patients included in these studies was too

Parameters	Studies	Sample Size		Heterogeneity	OR or WMD	Effect 95% Cl	٩
Operation time	m	481	4674	$P = 0.74$, $I^2 = 0\%$	68.47	63.40-73.54	P<0.00001
Subgroup of SG	-	16	12	NA	77.20	54.75-99.65	P<0.00001
Subgroup of SG and TG	2	465	4662	$P = 1.00, 1^2 = 0\%$	68.00	62.79-73.21	P<0.00001
Intraoperative blood loss	3	481	4674	$P = 0.003$, $I^2 = 83\%$	- 106.63	-163.13 - 50.13	P = 0.0002
Subgroup of SG	-	16	12	NA	-48.50	-91.07 - 5.93	P = 0.03
Subgroup of SG and TG	2	465	4662	$P = 0.04$, $ ^2 = 77\%$	-139.05	-217.08 - 61.02	P = 0.0005
Hospital stay	£	481	4674	$P = 0.06$, $I^2 = 64\%$	-2.49	-3.721.27	P<0.0001
Subgroup of SG	-	16	12	NA	- 1.60	-2.410.79	P<0.0001
Subgroup of SG and TG	2	465	4662	$P = 0.34$, $I^2 = 0\%$	-3.07	-4.142.01	P<0.00001
Lymph node harvest	4	520	5260	$P = 0.55$, $I^2 = 0\%$	-0.78	-2.15-0.59	P = 0.27
Subgroup of SG	-	16	12	NA	-2.20	-10.15 - 5.75	P = 0.59
Subgroup of SG and TG	S	504	5248	$P = 0.37$, $I^2 = 0\%$	-0.73	-2.13 - 0.66	P = 0.30
Anastomotic leakage	4	520	5260	$P = 0.53$, $I^2 = 0\%$	1.72	0.97 - 3.07	P = 0.06
Subgroup of SG	-	16	12	NA	NE	NE	NA
Subgroup of SG and TG	£	504	5248	$P = 0.53$, $I^2 = 0\%$	1.72	0.97 - 3.07	P = 0.06
Morbidity	4	520	5260	$P = 0.65$, $I^2 = 0\%$	0.92	0.69-1.23	P = 0.59
Subgroup of SG	1	16	12	NA	0.13	0.01 - 2.92	P = 0.20
Subgroup of SG and TG	ĸ	504	5248	$P = 0.97$, $I^2 = 0\%$	0.95	0.71 – 1.27	P = 0.72
Mortality	4	520	5260	$P = 0.52$, $I^2 = 0\%$	0.72	0.25-2.06	P = 0.54
Subgroup of SG	1	16	12	NA	0.13	0.01 - 2.92	P = 0.20
Subgroup of SG and TG	З	504	5248	$P = 0.72$, $I^2 = 0\%$	0.98	0.32-2.96	P = 0.97

Table 2. Meta-analyses results for robotic gastrectomy vs. open gastrectomy.

1.1.1 Subtotal group Kim 2010	Mean SD	Total	Mean	SD To	otal Weight	Mean Difference IV, Fixed, 95%	Mean Difference
Subtotal (95% Cl) Heterogeneity: Not ap Test for overall effect:	203.9 36.4 plicable Z = 6.74 (P < 0	16 16 0.00001)	126.7 2	24.1	12 5.1% 12 5.1%	77.20 (54.75, 99. 77.20 (54.75, 99.)	65]
1.1.2 Subtotal and to Caruso 2011 Kim 2012 Subtotal (95% CI) Heterogeneity: Chi [≠] = Test for overall effect:	tal group 290 67 226 54 0.00, df = 1 (P Z = 25.60 (P <	29 436 465 = 1.00); 0.0000	222 158 1 ² = 0%	94 1 52 45 46	120 2.9% 542 92.0% 562 94.9%	68.00 [38.38, 97. 68.00 [62.71, 73. 68.00 [62.79, 73.	62) 29] 21]
Total (95% Cl) Heterogeneity: Chi [≢] = Test for overall effect: Test for subgroup diff	0.61, df = 2 (P Z = 26.46 (P < 'erences: Chi ²	481 = 0.74); 0.0000 = 0.61, 0	; I≊ = 0% 1) 3f = 1 (P =	46 = 0.43),	674 100.0%	68.47 [63.40, 73.	54] + -100 -50 0 50 100 Favours experimental Favours control
в	Robotic tea	m	Open te	eam		Mean Difference	Mean Difference
Study or Subgroup 1.2.1 Subtotal group Kim 2010 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect: 2	Mean SD 30.3 15.1 blicable 2 = 2.23 (P = 0.0)	Total M 16 16 03)	78.8 74	5D Tota 1 1 1	al Weight 2 34.4% 2 34.4%	IV, Random, 9 -48.50 [-91.07, - -48.50 [-91.07, -	5% Cl IV, Random, 95% Cl 5.93]
1.2.2 Subtotal and tota Caruso 2011 Kim 2012 Subtotal (95% CI) Heterogeneity: Tau ^a = 1 Test for overall effect: 2	al group 197.6 202.1 85 160 2545.45; Chi ^a = Z = 3.49 (P = 0.0	29 3 436 465 4.28, df 0005)	386.1 95 192 19 = 1 (P = 0	.5 12 33 454 466 0.04); ⊫	0 24.2% 2 41.3% 2 65.6% = 77%	-188.50 [-264.01, -11 -107.00 [-123.03, -9 - 139.05 [-217.08 , -6	2.99] ◀ 0.97] ← 1.02] ━
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2	1943.25; Chi ^a = Z = 3.70 (P = 0.0	481 11.46, c 0002)	if= 2 (P =	467 0.003);	4 100.0% I ^a = 83%	-106.63 [-163.13, -5	-100 -50 0 50 100 Favours experimental Favours control
C Study or Subgroup	Robotic te Mean SD	am Total	Open Mean	team SD To	tal Weight	Mean Difference IV, Random, 95%	Mean Difference CI IV, Random, 95% CI
1.3.1 Subtotal group Kim 2010 Subtotal (95% CI) Heterogeneity: Not ap Test for overall effect:	5.1 0.3 oplicable Z = 3.89 (P < 1	16 16 0.0001)	6.7	1.4	12 42.9% 12 42.9%	-1.60 [-2.41, -0.7 - 1.60 [-2.41, -0.7	'9] 9] I
1.3.2 Subtotal and to Caruso 2011 Kim 2012 Subtotal (95% CI) Heterogeneity: Tau ^s = Test for overall effect:	tal group 9.6 2.8 7.5 13.7 0.00; Chi ² = 0 Z = 5.65 (P < 0	29 436 465 92, df = 0.00001	13.4 10.2 1 (P = 0	8.5 1 8.5 45 46 .34);I [≥] =	20 24.2% 542 32.9% 562 57.1% = 0%	-3.80 [-5.63, -1.9 -2.70 [-4.01, -1.3 - 3.07 [-4.14, -2.0	97] 99] 11] (
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: –	0.74; Chi ² = 5 Z = 4.00 (P < 0	481 59, df= 0.0001)	2 (P = 0	46 .06); I ² =	674 100.0% ⊧64%	-2.49 [-3.72, -1.2	77 -100 -50 0 50 100 Favours experimental Favours control
D Study or Subgroup	Robotic te Mean SD	am <u>Total</u>	Open <u>Mean</u>	team SD To	otal Weigh	Mean Difference t IV, Fixed, 95%	Mean Difference CI IV, Fixed, 95% CI
1.4.1 Subtotal group Kim 2010 Subtotal (95% Cl) Heterogeneity: Not ap Test for overall effect:	41.1 10.9 oplicable Z = 0.54 (P = 0	16 16 0.59)	43.3 1	10.4	12 3.09 12 3.09	6 -2.20 [-10.15, 5.7 5 -2.20 [-10.15, 5.7	5) 5)
1.4.2 Subtotal and to Caruso 2011 Huang 2012 Kim 2012 Subtotal (95% Cl) Heterogeneity: Chi ² = Test for overall effect:	tal group 28 11.2 32 13.7 40.2 15.5 2.00, df = 2 (P Z = 1.04 (P = 1	29 39 436 504 = 0.37); 0.30)	31.7 1 34 1 40.5 1 ; l ^a = 0%	15.6 14.8 16.6 4 5	120 7.7% 586 9.4% 542 79.9% 2 48 97.0 %	6 -3.70 [-8.64, 1.2 6 -2.00 [-6.46, 2.4 6 -0.30 [-1.83, 1.2 6 - 0.73 [-2.13, 0.6	24]
Total (95% CI) Heterogeneity: Chi [≥] = Test for overall effect: Test for subgroup diff	2.13, df = 3 (P Z = 1.11 (P = (erences: Chi ²	520 = 0.55); 0.27) = 0.13, 0	; I ² = 0% df = 1 (P :	52 = 0.72).	260 100.0%	6 - 0.78 [-2.15, 0.5	9] -100 -50 0 50 100 Favours experimental Favours control
E	Robotic te	am	Open te	am	Mainles B	Odds Ratio	Odds Ratio
1.5.1 Subtal group Kim 2010 Subtotal (95% CI) Total events Heterogeneity: Not a	0 0 opplicable	16 16 16	0	12 12 12	overgrit in	Not estimable Not estimable	M-H, FIZEL, 55% CI
Test for overall effec	t: Not applical	ble					
Caruso 2011 Huang 2012 Kim 2012 Subtotal (95% CI) Total events Heterogeneity: Chi ^p :	1 3 10 14 = 1.28, df = 2 t 7 = 1.85 (P =	29 39 436 504 (P = 0.5	7 27 51	120 586 4542 5248	18.2% 21.5% 60.3% 100.0 %	0.58 [0.07, 4.88] 1.73 [0.50, 5.96] 2.07 [1.04, 4.10] 1.72 [0.97, 3.07]	
		= 0.06	i3); I ² = 0	%			
Total (95% CI) Total events Heterogeneity: Chi ² Test for overall effec Test for subgroup di	14 = 1.28, df = 2 t: Z = 1.85 (P ifferences: No	= 0.06) 520 (P = 0.5 = 0.06) t applic	63); I ² = 0 85 63); I ² = 0 able	% 5260 %	100.0%	1.72 (0.97, 3.07) F	0.001 0.1 10 1000 avours experimental Favours control
Total (95% CI) Total events Heterogeneity: Chi≭ Test for overall effec Test for subgroup di	14 = 1.28, df = 2 t: Z = 1.85 (P fferences: No Robotic te	= 0.06) 520 (P = 0.5 = 0.06) it applic am	33); I ² = 0 85 33); I ² = 0 able Opente	% 5260 % am	100.0%	1.72 [0.97, 3.07] F	0.001 0.1 10 1000 avours experimental Favours control Odds Ratio
Total (95% CI) Total events Heterogeneity: Chi ² - Test for overall effec Test for subaroup di F <u>Study or Subgroup</u> 1.6.1 Subtal group Kim 2010 Subtotal (95% CI) Total events	14 = 1.28, df = 2 t: Z = 1.85 (P = fferences: No Robotic te Events 0 0	= 0.06) 520 (P = 0.5 = 0.06) it applic am <u>Total 1</u> 16 16	33; I ² = 0 85 33; I ² = 0 able Open te <u>Events</u> 2 2	% 5260 % am <u>Total</u> 12 12	100.0% Weight N 2.8% 2.8%	1.72 [0.97, 3.07] F Odds Ratio 1.H, Fixed, 95% CI 0.13 [0.01, 2.92] 0.13 [0.01, 2.92]	0.001 0.1 10 1000 avours experimental Favours control Odds Ratio M-H, Fixed, 95% Cl
Total events Total events Heterogeneity: Chi ¹¹ Test for overall effec Test for subgroup di F Study or Subgroup 1.6.1 Subtal group Kim 2010 Subtotal (95% CD) Total events Heterogeneity: Nota Test for overall effec	14 = 1.28, df = 2 t Z = 1.85 (P + fiferences: No Robotic te Events 0 0 o ppplicable t Z = 1.29 (P + al group	= 0.06) 520 (P = 0.5 = 0.06) it applic am <u>Total 1</u> 16 16 16 = 0.20)	85 (3); ² = 0 (3); ² = 0 (3); ² = 0 (3); ² = 0 (3); ² = 0 (4);]]]]]]]]]]]]]	% 5260 % am <u>Total</u> 12 12	100.0% Weight M 2.8% 2.8%	1.72 [0.97, 3.07] F Odds Ratio 1-H, Fixed, 95% CI 0.13 [0.01, 2.92] 0.13 [0.01, 2.92]	0.001 0.1 1 10 1000 avours experimental Favours control Odds Ratio M-H, Fixed, 95% CI
Total events Total events Heterogeneity: Chi ² Testfor overall effec Testfor subaroup di F Study or Subgroup Aim 2010 Subtotal (95% Ch) Total events Heterogeneity: Nota Test for overall effec Total events Heterogeneity: Chi ² Total events Heterogeneity: Chi ²	$\begin{array}{c} 14\\ = 1.28, df = 2\\ t, Z = 1.85 (P)\\ merences: No\\ merences: No\\ \hline Robotic te \\ \hline Events\\ 0\\ 0\\ 0\\ pplicable\\ t, Z = 1.29 (P)\\ al group\\ 12\\ 6\\ 42\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	= 0.06) 520 (P = 0.5 = 0.06) it applic am Total 1 16 16 = 0.20) 29 39 436 504 (P = 0.9	33); ² = 0 85 (33); ² = 0 able Open te <u>Events</u> 2 2 2 51 86 466 466 77); ² = 0	% 5260 % <u>Total</u> 12 12 12 120 5862 5248 %	100.0% <u>Weight N</u> 2.8% 2.8% 12.0% 9.3% 75.9% 97.2%	1.72 [0.97, 3.07] F Odds Ratio 1.H, Fixed, 95% CI 0.13 [0.01, 2.92] 0.13 [0.01, 2.92] 1.06 [0.42, 2.17] 1.06 [0.43, 2.60] 0.93 [0.67, 1.30] 0.95 [0.71, 1.27]	0.001 0 ¹ 1 10 1000 avours experimental Favours control Odds Ratio M-H, Fixed, 95% CI
Total events Total events Heterogeneity: Chi ² Test for oxbaroup di F Study or Subgroup 1.6.1 Subtal group Sim 2010 Total events Heterogeneity: Not a Cariso 2011 Huang 2012 Kim 2012 Subtoal (95% Ct) Total events Heterogeneity: Chi ² Test for overall effec Cariso 2011 Huang 2012 Kim 2012 Subtoal (95% Ct) Total events Heterogeneity: Chi ² Total events Heterogeneity: Chi ²	$\begin{array}{c} 1.4\\ = 1.2, 0, df = 2\\ 1.2 = 1.36 (r), fferences: No \\ \hline \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	= 0.06) 520 $(P = 0.5 = 0.06)$ it applic am 16 16 16 16 16 29 39 436 504 $(P = 0.9 = 0.72)$ 520 $(P = 0.6 = 0.72)$	33); ² = 0 85 33); ² = 0 able Open te Events 2 2 2 51 86 466 603 17); ² = 0 55; ² = 0	% 5260 % am <u>Total</u> 12 120 5862 5248 % 5260 %	100.0% Weight R 2.8% 2.8% 12.0% 9.3% 75.9% 97.2%	1.72 [0.97, 3.07] Odds Ratio 1.14, Fixed, 95% CI 0.13 [0.01, 2.92] 0.13 [0.01, 2.92] 0.96 [0.42, 2.17] 1.06 [0.42, 2.17] 1.06 [0.42, 2.17] 0.96 [0.71, 1.20] 0.95 [0.71, 1.21] 0.95 [0.71, 1.23]	0.001 0/1 10 1000 avours experimental Favours control M-H, Fixed, 95% CI
Total events Total events Heterogeneity: Chi ⁺ Test for overall effec Test for subgroup di F Study or Subgroup 1.6.1 Subtal group Mim 2010 Subtotal (95% Cl) Total events Heterogeneity: Nota Test for overall effec Carriso 2012 Subtotal (95% Cl) Total events Heterogeneity: Chi ⁺ Test for overall effec Total events Heterogeneity: Chi ⁺ Test for overall effec Test for subgroup di	$ \begin{array}{c} 1.4 \\ = 1.26, df = 2 \\ 1.2 \\ = 1.36 (df = 2 \\ 1.2 \\ = 1.36 (df = 2 \\ 1.2 \\ 1$		i3); ² = 0 i3); ² = 0 able Open te <u>Events</u> 2 2 2 51 86 466 603 17); ² = 0 50; ² = 0 605 5); ² = 0	% 5260 % am Total 12 120 586 586 586 586 586 586 586 586 586 586	100.0% Weight N 2.8% 2.8% 9.3% 9.3% 97.2% 100.0%	1.72 [0.97, 3.07] Odds Ratio 144, Fixed, 95% CI 0.13 [0.01, 2.92] 0.13 [0.01, 2.92] 0.96 [0.42, 2.17] 1.06 [0.43, 2.60] 0.93 [0.67, 1.30] 0.95 [0.71, 1.27] 0.92 [0.69, 1.23]	Odds Ratio M.H. Fixed, 95% CI
Total events Total events Heterogeneik: Chi ² Test for overall effect Test for subgroup di F Study or Subgroup 1.6.1 Subtal group Kim 2010 Subtotal (95% CI) Total events Heterogeneik: Nota Test for overall effect Caruso 2011 Huang 2012 Subtotal (95% CI) Total events Heterogeneik: Chi ² Test for overall effect Total (95% CI) Total events Heterogeneik: Chi ² Test for overall effect Total events Heterogeneik: Chi ² Test for overall effect Test for subgroup di G Study or Subgroup	14 = 1.28, df = 2 ± Z = 1.36 (%) fferences: No Poplicable 12 = 0.07, df = 2 ± Z = 0.37 (%) = 0.07, df = 2 ± Z = 0.37 (%) = 0.07, df = 2 ± Z = 0.37 (%) fferences: No Robotic te Events		33); ^P = 0 35); ^P = 0 36); ^P = 0 36) 37); ^P = 0 36) 466 466 466 466 466 466 466 50; ^P = 0 50; ^P = 0 305 50; ^P = 0 405 50; ^P = 0 40;	% 5260 % am Total 12 120 5248 % 5260 % am Total	100.0% <u>VVeight N</u> 2.9% 2.8% 12.0% 9.3% 97.2% 100.0%	1.72 [0.97, 3.07] Odds Ratio 1.4, Fixed, 95% C1 0.13 [0.01, 2.92] 0.13 [0.01, 2.92] 0.13 [0.01, 2.92] 0.93 [0.67, 1.30] 0.93 [0.67, 1.30] 0.93 [0.67, 1.30] 0.93 [0.69, 1.23] F Odds Ratio	Odds Ratio M-H, Fixed, 95% CI
Total events Total events Heterogenetic: Ch ² Testfor subaroup di F Study or Subgroup Subdroal (96% Ch Tast or overall offec Testfor overall offec Caruso 2011 Heterogenetic: Ch ² Testfor overall offec Subdroal (96% Ch Total events Heterogenetic: Ch ² Testfor subaroup di Subdroal (95% Ch Total (95% Ch Total (95% Ch) Total events Heterogenetic: Ch ² Testfor subaroup di Subdroal (95% Ch) Total (95% Ch) T	$\begin{array}{c} 14 \\ = 1.26, qf = 2 \\ 1.2 \\ = 1.36 (qf = 2 \\ 1.2 \\ = 1.36 (qf = 2 \\ 1.2$	$ \begin{array}{l} = 0.08) \\ 520 \\ (P = 0.5) \\ = 0.06) \\ = 0.06) \\ am \\ \hline 16 \\ 16 \\ = 0.20) \\ 16 \\ 16 \\ = 0.20) \\ 29 \\ 39 \\ 436 \\ 504 \\ (P = 0.9 \\ 504 \\ (P = 0.9 \\ - 0.59) \\ 16 \\ 16 \\ = 0.20) \\ \end{array} $	(3), ² = 0 (3), ² = 0 (3), ² = 0 (4), ² = 0 (4),	% 5260 % 12 12 12 5260 % 5260 % m Total	100.0% 2.8% 2.8% 12.0% 5.3% 75.3% 97.2% 100.0% Weight N 30.1% 30.1%	1.72 [0.97, 3.07] P Odds Ratio 1.H, Fixed, 95% CI 0.13 [0.01, 2.92] 0.13 [0.01, 2.92] 0.13 [0.01, 2.92] 0.96 [0.42, 2.17] 1.06 [0.42, 2.17] 1.08 [0.42, 2.17] 1.08 [0.42, 2.17] 1.09 [0.43, 2.62] 0.92 [0.69, 1.23] 0.92 [0.69, 1.23] P Odds Ratio 1.H, Fixed, 95% CI 0.13 [0.01, 2.92] 0.13 [0.01, 2.92]	Odds Ratio M-H, Fixed, 95% CI
Total events Total events Heterogeneity: Ch ² Testfor subaroup di F Study or Subgroup 1.6.1 Subtal group Subtotal (96% C) Testfor overail effec 1.6.2 Subtal and tot Caruso 2011 Heterogeneity: Ch ² Testfor overail effec Subtotal (96% C) Total events Heterogeneity: Ch ² Testfor subaroup di Subtotal (96% C) Total events Heterogeneity: Ch ² Testfor subaroup di Subtotal (96% C) Total events Heterogeneity: Ch ² Testfor subaroup di Subtotal (96% C) Total (96% C) Total events Heterogeneity: Ch ² Testfor subaroup di Subtotal (96% C) Total (96% C) Total events Heterogeneity: Ch ² Testfor subaroup di Subtotal (96% C) Total (96% C) Total (96% C) Total events Heterogeneity: Ch ² Testfor overail effec Subaroup di Subtotal group Kim 2010 Subtotal group Kim 2010 Subtotal group Heterogeneity: Notal Testfor overail effec 1.7.2 Subtotal and ti	$\begin{array}{c} 14 \\ = 1.26, qf = 2 \\ 1.2 \\ = 1.36 (qf = 2 \\ 1.2 \\ = 1.36 (qf = 2 \\ 1.2$		(3), ² = 0 (3), ² = 0 (3), ² = 0 (4), ² = 0 (4),	% 5260 % am Total 12 12 12 12 5248 % 5260 % am Total 12 12 12 12 12 12 12 12 12 12	100.0% 2.8% 2.8% 12.0% 97.2% 100.0% Weight N 30.1% 30.1%	1.72 [0.97, 3.07] P Odds Ratio 1.H, Fixed, 95% CI 0.13 [0.01, 2.92] 0.13 [0.01, 2.92] 0.13 [0.01, 2.92] 0.96 [0.42, 2.17] 1.08 [0.42, 2.17] 1.08 [0.42, 2.17] 1.09 [0.43, 2.60] 0.96 [0.42, 2.17] 1.09 [0.43, 2.62] 0.92 [0.69, 1.23] 0.92 [0.69, 1.23] P Odds Ratio 1.H, Fixed, 95% CI 0.13 [0.01, 2.92] 0.13 [0.01, 2.92]	Odds Ratio M-H, Fixed, 95% CI
Total events Heterogeneity: Chi ² Test for vsubaroup di F Study or Subgroup Heterogeneity: Chi ² Test for vsubaroup di F Study or Subgroup Heterogeneity: Not a Test for vsubarou Caruso 2011 Huang 2012 Stitutoal (05% C) Total events Heterogeneity: Chi ² Test for vsubarouf Heterogeneity: Chi ² Test for vsubarouf Co Subtotal (05% C) Total events Heterogeneity: Not a Test for vsubarouf Co Subtotal (05% C) Total events Heterogeneity: Not a Test for vsubarouf Subtotal (05% C) Total events Heterogeneity: Chi ²	$\begin{array}{c} 14\\ = 1.28, df = 2\\ tZ = 1.82 (0, ff = 2\\ tZ = 1.82 (0, ff = 2\\ tZ = 1.23 (0, ff = 2\\ tZ = 1.23 (0, ff = 2\\ tZ = 1.23 (0, ff = 2\\ tZ = 0.37, df = 2\\ tZ = 0.37, df = 2\\ tZ = 0.37, df = 2\\ tZ = 0.57, df = 2\\ tZ = 0.57$	$ \begin{array}{l} = 0.060 \\ 520 \\ 520 \\ = 0.060 \\ amm \\ \hline 16 \\ 16 \\ = 0.200 \\ 16 \\ 504 \\ 504 \\ 504 \\ 504 \\ 504 \\ 504 \\ 504 \\ 504 \\ 504 \\ 504 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 504 \\ 6 \\ 504 \\ 6 \\ 504 \\ 16 \\ 16 \\ 16 \\ 504 \\ 16 \\ 16 \\ 504 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 1$	(3), $F = 0$ (3), $F = 0$ (3), $F = 0$ (4) (5), $F = 0$ (5), $F = 0$ (6) (6), $F = 0$ (7),	% 5260 % 121 121 120 5862 55248 % 5260 % 30 120 120 586 45428 5248 %	100.0% Veight t 2.8% 2.8% 9.3% 9.3% 9.7.2% 100.0% 100.0% 100.0% 10.0% 10.5% 40.1% 69.9%	1.72 [0.97, 3.07] F Ordds Ratio 1.14, Fixed, 95% CI 0.13 [0.01, 2.92] 0.13 [0.01, 2.92] 0.13 [0.01, 2.92] 0.93 [0.67, 1.30] 0.99 [0.71, 1.27] 0.92 [0.69, 1.23] F Ordds Ratio 1.14, Fixed, 95% CI 0.13 [0.01, 2.92] 0.13 [0.01, 2.92] 0.14 [0.02, 8.30] 0.99 [0.23, 4.26] 0.98 [0.32, 2.96]	Odds Ratio M-H, Fixed, 95% CI
Total events Heterogeneils: Chi ² Test for vsubaroup di F Study or Subgroup I.1.5 Subtal group Subtotal (95% C)) Total events Heterogeneils: Chi ² Test for vsubaroup di Subtotal (95% C)) Total events Heterogeneils: Chi ² Test for vsubaroup di Reformanti effect Total events Heterogeneils: Chi ² Test for subaroup di Caruso 2011 Ruang 2012 Subtotal (95% C)) Total events Heterogeneils: Chi ² Test for subaroup di Caruso 2011 Ruang 2012 Subtotal (95% C)) Total events Heterogeneils: Chi ² Test for subaroup di Caruso 2011 Ruang 2012 Subtotal (95% C)) Total events Heterogeneils: Not a Test for vsubaroup di Caruso 2011 Ruang 2012 Subtotal (95% C)) Total events Heterogeneils: Not a Test for vsubaroup di Caruso 2011 Ruang 2012 Subtotal (95% C))	$\begin{array}{c} 14\\ = 1.28, df = 2\\ tZ = 1.85 (r)\\ fferences: No \\ \hline \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$		(3), $r^{2} = 0$ (3), $r^{2} = 0$ able Open te Second (4) (5) (4) (5) (5) (7), $r^{2} = 0$ (6) (7) (7) (7) (7) (7) (7) (7) (7	% 5260 % am Total 12 12 120 5248 % 6260 % am Total 12 12 120 5260 % am 122 5248 % 5260 %	100.0% Veight A 2.8% 2.8% 12.0% 9.3% 97.2% 100.0% Veight A 30.1% 30.1% 10.5% 40.1% 69.9% 100.0%	1.72 [0.97, 3.07] P Oridis Ratio 1.14, Fixed, 95% CI 0.13 [0.01, 2.92] 0.13 [0.01, 2.92] 0.13 [0.01, 2.92] 0.33 [0.61, 2.92] 0.39 [0.71, 30] 0.95 [0.71, 1.27] 0.95 [0.71, 1.27] 0.92 [0.69, 1.23] 0.92 [0.69, 1.23] 0.13 [0.01, 2.92] 0.13 [0.01, 2.92] 0.13 [0.01, 2.92] 0.13 [0.01, 2.92] 0.13 [0.01, 2.92] 0.13 [0.01, 2.92] 0.13 [0.01, 2.92] 0.44 [0.02, 8.38] 0.99 [0.23, 4.26] 0.99 [0.32, 2.96]	Odds Ratio M-H, Fixed, 95% Cl

Figure 2. RG *vs.* OG: a) Operation time; b) Intraoperative blood loss; c) Hospital stay; d) Lymph node harvest; e) Anastomotic leakage; f) Morbidity; g) Mortality. doi:10.1371/journal.pone.0103312.g002

arameters	Studies	Sample Size		Heterogeneity	OR or WMD	Effect 95% Cl	٩
peration time	8	898	1961	P<0.00001, I ²⁼ 88%	57.15	42.26-72.05	P<0.00001
Subgroup of SG	£	52	79	$P = 0.03$, $l^2 = 72\%$	86.73	56.61-116.84	P<0.00001
Subgroup of TG	1	36	65	NA	95.60	55.26-135.94	P<0.00001
Subgroup of SG and TG	4	810	1817	$P = 0.0002$, $I^2 = 85\%$	38.09	25.44-50.74	P<0.00001
traoperative blood loss	7	862	1896	P<0.00001, l ²⁼ 92%	-28.59	-56.570.62	P = 0.05
Subgroup of SG	£	52	79	$P = 0.0007$, $I^2 = 86\%$	-11.00	-61.25-39.26	P=0.67
Subgroup of SG and TG	4	810	1817	P<0.00001, I ²⁼ 95%	- 39.54	- 79.71 - 0.63	P = 0.05
ospital stay	7	882	1950	$P = 0.59$, $I^2 = 0\%$	-0.16	-0.87 - 0.55	P = 0.65
Subgroup of SG	2	36	68	$P = 0.65, I^2 = 0\%$	-0.29	-1.36-0.79	P = 0.60
Subgroup of TG	-	36	65	NA	-1.50	-4.34-1.34	P = 0.30
Subgroup of SG and TG	4	810	1817	$P = 0.35$, $I^2 = 8\%$	-0.11	-0.89-1.11	P = 0.83
mph node harvest	8	837	1743	P<0.0001, I ^{2 =} 78%	0.63	-2.24-3.51	P = 0.67
Subgroup of SG	£	52	79	$P = 0.07$, $I^2 = 62\%$	-3.77	-9.63-2.09	P = 0.21
Subgroup of TG	L	36	65	NA	3.40	-1.87 - 8.67	P = 0.21
Subgroup of SG and TG	4	749	1599	$P = 0.39$, $l^2 = 0\%$	2.33	1.05-3.62	P = 0.0004
lastomotic leakage	11	266	2207	$P = 0.96$, $l^2 = 0\%$	1.10	0.66-1.82	P = 0.71
Subgroup of SG	5	112	261	NA	2.03	0.18-23.22	P = 0.57
Subgroup of TG	-	36	65	NA	0.24	0.01-4.87	P = 0.36
Subgroup of SG and TG	5	849	1881	$P = 0.99$, $l^2 = 0\%$	1.16	0.68-1.96	P = 0.59
orbidity	11	266	2207	$P = 0.65$, $l^2 = 0\%$	1.06	0.84-1.34	P = 0.60
Subgroup of SG	S	112	261	$P = 0.37$, $I^2 = 7\%$	1.29	0.61 - 2.72	P = 0.51
Subgroup of TG	-	36	65	NA	1.10	0.36-3.32	P = 0.87
Subgroup of SG and TG	5	849	1881	$P = 0.57$, $I^2 = 0\%$	1.04	0.81 - 1.34	P = 0.76
ortality	11	266	2207	$P = 0.96$, $I^2 = 0\%$	1.55	0.49-4.94	P = 0.45
Subgroup of SG	S	112	261	NA	3.13	0.18-53.21	P = 0.43
Subgroup of TG	-	36	65	NA	NE	NE	NA
Subgroup of SG and TG	5	849	1881	$P = 0.99, I^2 = 0\%$	1.36	0.38-4.88	P = 0.63
avien-Dindo grade							
	6	965	2148	$P = 0.22$, $I^2 = 26\%$	1.15	0.86-1.53	P = 0.35
Subgroup of SG	£	80	202	$P = 0.50$, $I^2 = 0\%$	1.77	0.69-4.54	P = 0.23
Subgroup of TG	-	36	65	NA	2.46	0.62-9.82	P = 0.20
Subgroup of SG and TG	5	849	1881	$P = 0.13$, $l^2 = 43\%$	1.06	0.77-1.44	P = 0.73
	6	965	2148	$P = 0.82$, $I^2 = 0\%$	1.07	0.72-1.60	P = 0.73
Subgroup of SG	3	80	202	$P = 0.99$, $I^2 = 0\%$	2.07	0.33-13.01	P = 0.44
Subgroup of TG	-	36	65	NA	0.28	0.03 - 2.43	P = 0.25

July 2014 | Volume 9 | Issue 7 | e103312

Table 3. Cont.							
Parameters	Studies	Sample Size		Heterogeneity	OR or WMD	Effect 95% Cl	۵.
Subgroup of SG and TG	5	849	1881	$P = 0.81$, $I^2 = 0\%$	1.12	0.74-1.70	P = 0.60
2	6	965	2148	$P = 0.85$, $I^2 = 0\%$	0.70	0.34-1.43	P = 0.32
Subgroup of SG	З	80	202	NA	NE	NE	NA
Subgroup of TG	1	36	65	NA	NE	NE	NA
Subgroup of SG and TG	5	849	1881	$P = 0.85$, $I^2 = 0\%$	0.70	0.34-1.43	P = 0.32
>	6	965	2148	$P = 0.99$, $I^2 = 0\%$	1.36	0.38-4.88	P = 0.63
Subgroup of SG	c	80	202	NA	NE	NE	NA
Subgroup of TG	1	36	65	NA	NE	NE	NA
Subgroup of SG and TG	5	849	1881	$P = 0.99$, $I^2 = 0\%$	1.36	0.38-4.88	P = 0.63
SG, subtotal gastrectomy; TG, total gastrect	tomy; NA, not applicabl	e; NE, not estima	able; OR, odds r	atio; WED, weighted mean difference;	Cl, confidence interval.		

Robotic Gastrectomy in Gastric Cancer

small to generalize its application for gastric cancer [14,17,18]. Recently some large sized studies have been conducted to evaluate the efficacy and safety of robotic gastrectomy for gastric cancer [11,13,15,19]. But single comparison and conflict results limited them to conclude persuasible conclusions. However, those examined in the present study allowed meta-analyses to be performed, providing a better view of the safety and efficacy of RG in gastric cancer. In reality, it is difficult to conduct a high-quality RCT to evaluate a new surgical intervention because of some obstacles such as learning curve effects, ethical and culture resistance, and urgent or unexpected conditions during operation in surgical treatment. For these reasons, to include non-RCTs is an appropriate strategy to extend the source of evidence [33].

In the first part of RG versus OG, our analyses highlighted the advantage of RG in minimal injury because less intraoperative blood loss and shorter postoperative hospital stay were observed. But its complication in technique correspondently brought RG significantly longer operation time than OG. Further analyses of lymph node harvest, anastomotic leakage, morbidity, and mortality between RG and OG did not show significant differences. Although no controlled study for single total gastrectomy was included in subgroup analysis, we deduced that RG was feasible and safe in either subtotal gastrectomy or total gastrectomy compared with OG by similar evidences in subtotal and total mixed group and subtotal single group.

Continually, in comparison of RG and LG, we found it was similar in surgical injury for these two methods because of no significant difference in intraoperative blood loss. The disadvantage of longer surgical duration was also observed in RG, although significant heterogeneity existed. The heterogeneity might be caused by surgeons' experience. However, it is important to stress that surgeons had got considerable experience of LG before RG, which helped them adapt quickly to the robotic procedure. Therefore, the effect of learning curve was limited in RG. Also, higher BMI might be another important factor to increase operation time and several reports described the association between gender and BMI as increased operation time [34,35]. But Park *et al* thought that this factor could be overcome by surgeon's expertise [36]. To explore the influence of BMI to our study, we made comparisons of BMI among three groups and no significant difference was observed (data not shown). Importantly, for analyses of lymph node harvest, anastomotic leakage, morbidity, and mortality, similar results were achieved between RG and LG in either subtotal gastrectomy or total gastrectomy. We also make a pooled analyses using Clavien-Dindo (C-D) classification. Still, no significant difference was observed. What's far more important to limit the application of RG is the higher cost compared with LG. Due to the limited published study, meta-analysis for cost evaluation was not performed. But nevertheless, recent study by Park et al showed the total cost for RG was significantly higher than LG with a difference of \in 3189 [16].

In summary, we found that Robotic subtotal and total gastrectomies combined with lymphadenectomy are technically feasible and safe for gastric cancer, and can produce satisfying short-term postoperative outcomes. However, a weakness of present study was lack of randomized controlled studies included and significant heterogeneity was observed in operative time, intraoperative blood loss, length of hospital stay and lymph node harvest. In addition, total and subtotal gastrectomy was pooled together in most of included studies, which limited us to make a more precise conclusion. Also, economic value and long-term survival outcome are the mandatory appraisal index. Importantly, high-quality randomized controlled studies should be conducted to evaluate the role of robotic surgery for gastric cancer in future.

A Study or Subgroup	Robot Mean	tic team SD	Total	Laparos Mean	copic te SD	ram Total	Weight	Mean Difference IV, Random, 95%	Mean Difference CI IV, Random, 95% CI
Kim 2010 Fugliese 2009 Song 2009 Subtotal (95% CI) Heterogeneity: Tau* = 5 Test for overall effect: Z	259.2 344 230 08.84; C = 5.64 (38.9 62 34.9 hi# = 7.1 P < 0.000	16 16 20 52 6, df = 001)	203.9 235 134.1 = 2 (P = 0.0	36.4 23 40 3); I# = 3	11 48 20 79	10.3% 9.7% 11.9% 32.0%	55.30 [26.56, 84 109.00 [77.93, 140 95.90 [72.63, 119 86.73 [56.61, 116.	04) 07] 17] 184]
2.1.2 Total group Yoon 2012 Subtotal (95% Ch) Heterogeneity: Not app Test for overall effect: 2	305.8 licable := 4.64 (l	115.8 P = 0.001	36 36 001)	210.2	67.7	65 65	7.5% 7.5%	95.60 (55.26, 135 95.60 (55.26, 135.	
2.1.3 Sutal and total gr Hyun 2012 Kang 2012 Kim 2012 Woo 2011 Subtotal (95% CI) Heterogeneity: Tau ^z = 1 Test for overall effect. 2	234.4 202.05 226 219.5 31.67; C = 5.90 0	49 52.31 54 46.8 hi [#] = 19. P < 0.000	38 100 436 236 810 .46, df	220 173.45 176 170.7 (P = 0.	60.6 51.2 63 55.8 0002); I	83 282 861 591 1817 *= 85%	12.9% 15.2% 16.3% 16.1% 60.5%	14.40 [-5.67, 34 28.60 [16.73, 40 50.00 [43.41, 56 48.80 [41.32, 56 30.09 [25.44, 50	471 471 501 201 741
Total (95% Cl) Heterogeneity: Tau [#] = 3 Test for overall effect: Z	43.66; C = 7.52 (hi# = 58. P < 0.001	898 .06, df 001)	f=7 (P ≺ 0.	00001);	1961 I*= 88	100.0% %	57.15 [42.26, 72.	Favours experimental Favours control
B Sturbe or Subaroun	Robot	ic team	otal	Laparosc	opic te	Total	Mainht	Mean Difference	Mean Difference
2.2.1 Subtotal group Kim 2010 Pugliese 2009 Song 2009 Subtotal (95% Cl) Heterogeneity: Tau ^a = 1 Test for overall effect <i>Z</i>	30.3 90 94.6 1 637.06; = 0.43 0	15.1 48 21.5 Chi ^p = 1 P = 0.67	16 16 20 52 4.47, 0	44.7 148 39.5 df= 2 (P = 1	37.1 63 27.7 0.0007)	11 48 20 79 1* = 86	14.9% 14.3% 10.2% 39.4%	-14.40 [-37.54, 8 -58.00 [-85.89, -30 55.30 [0.68, 109 -11.00 [-61.25, 39.	741 111 26]
2.2.3 Subtotal and tota Hyun 2012 Kang 2012 Kim 2012 Woo 2011 Subtotal (95% CI) Heterogeneity: Tau ^e = 1 Teet for general effect.	d group 131.3 93.25 85 91.6 1 560.34;	10.1 14.59 160 52.6 Chi# = 5	38 100 436 236 810 9.80, 4	130.48 173.45 14 112 147.9 df= 3 (P < 1	17.8 15.19 229 269	83 282 861 591 1817); I ^e = 9	16.5% 14.9% 15.1% 14.1% 60.6% 5%	0.82 [-4.18, 5 80.20 [-103.91, -56 -27.00 [-48.44, -5 -56.30 [-85.44, -27 -39.54 [-79.71, 0	82] 49] 56] 53] 53]
Total (95% Cl) Heterogeneity: Tau* = 1 Test for overall effect: Z	225.24;	Chi# = 7 P = 0.05	862 8.55, (df=6 (P ≺)	0.00001	1896); I* = 9	100.0% 2%	-28.59 [-56.57, -0.	62] -100 -50 0 50 100 Favours experimental Favours control
C	Robe	otic tear		Laparo	scopic	team		Mean Difference	Mean Difference
Study or Subgroup 2.3.1 Subtotal group Pugliese 2009 Song 2009 Subtotal (95% Cl) Heterogeneity: Chi [#] = 1 Toot for overall offect	Mean 10 5.7 0.20, df:	3 1 = 1 (P =	16 20 36 0.65)	10 6.2	2.6 3.1	4 2 6	8 18.7% 0 24.8% 8 43.5%	IV, Fixed, 95% (0.00 [-1.64, 1.6 -0.50 [-1.93, 0.9 -0.29 [-1.36, 0.7)	1 IV, Fixed, 95% Cl
2.3.2 Total group Yoon 2012 Subtotal (95% Cl) Heterogeneity: Not ap Test for overall effect.	8.8 plicable Z = 1.04	3.3 (P = 0.3	36 36 30)	10.3	10.8	6	5 6.3% 5 6.3%	-1.50 [-4.34, 1.3 -1.50 [-4.34, 1.3	8 •
2.3.3 Subtotal and tot Hyun 2012 Kang 2012 Kim 2012 Woo 2011 Subtotal (95% Cb	al group 10.5 9.81 7.5 7.7	5.9 12.16 13.7 17.2	38 100 436 236 810	11.9 8.11 7.8 7	10.3 4.1 8.5 5.7	8 28 86 59 181	3 6.0% 2 8.6% 1 25.6% 1 10.1% 7 50.2%	-1.40 [-4.30, 1.5 1.70 [-0.73, 4.1 -0.30 [-1.71, 1.1 0.70 [-1.54, 2.9 0,11 [-0.89, 1.1'	
Heterogeneity: Chi [#] = Test for overall effect : Total (95% Ct) Heterogeneity: Chi [#] =	3.28, df= Z = 0.21 4.66, df=	= 3 (P = (P = 0.8	0.35) 13) 882 0.59)	I* = 8%		195	0 100.0%	-0.16 [-0.87, 0.5	
Test for overall effect: Test for subgroup diffe	Z = 0.45 erences: Robot	(P = 0.6 Chi ^p = 1	1.19, (df = 2 (P =	0.55), P :opic te	am	Moight	Mean Difference	Favours experimental Favours control Mean Difference D. D. Bandom 95% Cl
2.4.1 Subtotal group Kim 2010 Publices 2000	41.1	10.9	16	37.4	10	11	7.7%	3.70 (-4.27, 11.6	7]
Song 2009 Subtotal (95% CI) Heterogeneity: Tau* = Test for overall effect 2 2.4.2 Total group	35.3 16.72; C Z = 1.26	10.5 hi* = 5.3 (P = 0.2	20 52 31, df	42.7 = 2 (P = 0.1	14.9 07); I* =	20 79 62%	7.7%	-7.40 [-15.39.0.5 -3.77 [-9.63, 2.09	
Yoon 2012 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect 2 2.4.3 Subtotal and total	42.8 plicable Z = 1.26 al group	12.7 (P = 0.2	36 36	39.4	13.4	65	11.5%	3.40 [-1.87, 8.6 3.40 [-1.87, 8.6	
Huang 2012 Hyun 2012 Kim 2012 Wioo 2011 Subtotal (95% Cl) Heterogeneity: Tau ^e = Test for overall effect :	32 32.8 40.2 39 0.00; Ch	13.7 13.8 15.5 15.2 # = 3.00	39 38 436 236 749 0, df =	26 32.6 37.6 37.4 3 (P = 0.3)	12.4 13.3 13.9 14.2 $0; I^{\mu} = 0$	64 83 861 591 1599	11.6% 11.6% 17.7% 16.9% 57.7%	6.00 [0.74, 11.2 0.20 [-5.04, 5.4 2.60 [0.87, 4.3 1.60 [-0.65, 3.8 2.33 [1.05, 3.6]	
Total (95% Cl) Heterogeneity: Tau [#] = Test for overall effect ;	11.39; C Z = 0.43	hi [#] = 31 (P = 0.6	837 .41, d	f = 7 (P < 0	.0001);	1743 I ^a = 78	100.0% %	0.63 [-2.24, 3.5	n -500 -250 0 250 500
F	Pabat	ic to an		aparosco	pic to a			Odde Patio	Odds Patio
Study or Subgroup 2.5.1 Subtotal group 5 cm 2012	Event	s Tot	20	Events	т	otal V	Veight N	I-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
Eom 2012 Kim 2010 Park 2012 Pugliese 2009 Song 2009 Subtotal (95% CI) Total events Heterogeneity: Not ap Text for overall effect	oplicable	0 1 0 1 1	16 30 16 20 12	00200 2		11 120 48 20 261	2.7% 2.7% :	Not estimable 2.03 [0.18, 23.22] Not estimable Not estimable 2.03 [0.18, 23.22]	
2.5.2 Total group Yoon 2012 Subtotal (95% CI) Total events Heterogeneity: Not ap Test for overall effect:	plicable $Z = 0.93$	0	36 36 .36)	3		65 65	8.8% 8.8%	0.24 [0.01, 4.87] 0.24 [0.01, 4.87]	
2.5.3 Subtotal and to Huang 2012	tal grou	р 3 :	39	3		64	7.4%	1.69 [0.32, 8.84]	
Hyun 2012 Kang 2012 Kim 2012 Woo 2011 Subtotal (95% CI) Total events	1	3 10 2 10 4 23 4 23 84 2	38 00 36 36 49	6 5 18 9 41	1	83 282 861 591 881	12.3% 9.1% 41.8% 17.9% 88.5%	1.10 [0.26, 4.65] 1.13 [0.22, 5.92] 1.10 [0.50, 2.40] 1.11 [0.34, 3.66] 1.16 [0.68, 1.96]	
Heterogeneity: Chi [#] = Test for overall effect: Total (95% Cl) Total events	0.23, df Z = 0.54	f = 4 (P = 0. 4 (P = 0. 99	= 0.99 .59) 97	46	2	207 1	100.0%	1.10 [0.66, 1.82]	
Test for overall effect. Test for subgroup diff	Z = 0.33 ferences Robot	7 (P = 0 s: Not an	.71) pplica	aparosco	pic tea	m		F Odds Ratio	0.01 0.1 1 10 100 avours experimental Favours control Odds Ratio
2.6.1 Subtotal group Eom 2012	Event	<u>s Tot</u>	30	Events 4	т	62 62	1.6%	2.23 [0.52, 9.62]	M-H, Fixed, 95% Cl
Kim 2010 Park 2012 Pugliese 2009 Subtotal (95% CI) Total events Heterogeneity: Chi≇ = Test for overall effect:	1 4.31, dt Z = 0.6	0 5 1 1 f = 4 (P = 6 (P = 0	16 30 16 20 12 = 0.37 .51)	1 9 6 2 7); I ^a = 7%		11 120 48 20 261	1.2% 2.2% 2.0% 1.4% 8.5%	0.21 [0.01, 5.71] 2.47 [0.76, 8.00] 0.47 [0.05, 4.20] 0.47 [0.04, 5.69] 1.29 [0.61, 2.72]	•
2.6.2 Total group Yoon 2012 Subtotal (95% CI) Total events Heterogeneity: Not ap Test for overall effect	plicable $Z = 0.1$	6 6 7 (P = 0	36 36	10 10		65 65	4.3% 4.3%	1.10 [0.36, 3.32] 1.10 [0.36, 3.32]	-
2.6.3 Subtotal and to Huang 2012 Hyun 2012 Kang 2012 Kim 2012	tal grou	10 6 8 4 11 4 4	39 38 00 36	10 32 29 81		64 83 282 861	4.7% 7.7% 9.5% 35.5%	0.98 [0.33, 2.95] 1.43 [0.66, 3.11] 1.42 [0.72, 2.81] 1.08 [0.73, 1.60]	
Woo 2011 Subtotal (95% Cl) Total events Heterogeneity: Chi [#] = Test for overall effect	2 10 2.95, dt Z = 0.3	6 2: 84 6 = 4 (P = 1 (P = 0	36 49 = 0.57 .76)	81 233 7); I [#] = 0%	1	591 881	29.9% 87.2%	0.78 (0.49, 1.25) 1.04 (0.81, 1.34)	-
Total (95% Cl) Total events Heterogeneity: Chi ^a = Test for overall effect Test for subgroup diff	12 7.79, dt Z= 0.5 ferences	91 5 f = 10 (F 2 (P = 0 s: Not a	97 P = 0.6 .60) pplics	265 55); I ^e = 09 able	6	207	100.0%	1.06 [0.84, 1.34]	0.01 0.1 10 100 avours experimental Favours control
G Study or Subgroup	Robot	ic team s Tot	n L tal	aparosco Events	pic tea T	m otal V	Veight N	Odds Ratio 1-H, Fixed, 95% Cl	Odds Ratio M-H, Fixed, 95% Cl
Eom 2012 Kim 2010		0	30	0		62 11		Not estimable Not estimable	
r-ark 2012 Pugliese 2009 Song 2009 Subtotal (95% CI) Total events Heterogeneity: Not ap Test for overall effect	oplicable $Z = 0.7$	1 0 1 9 (P = 0	16 20 12	0 1 0 1		48 20 261	10.8% 10.8%	Not estimable 3.13 (0.18, 53.21) Not estimable 3.13 (0.18, 53.21)	
2.7.2 Total group Yoon 2012 Subtotal (95% CI) Total events Heterogeneity: Not ap	oplicable	0	36 36	0 0		65 65		Not estimable Not estimable	
2.7.3 Subtotal and to	tal grou	plicable p	20				17.07	1 00 10 1	
Huang 2012 Hyun 2012 Kang 2012 Kim 2012 Woo 2012 Woo 2012 Subtotal (95% CI) Total events		1 0 1 2 4 1 2 8 4	39 38 00 36 36 49	1 0 3 2 6	,	64 83 282 861 591 881	17.0% 46.1% 26.1% 89.2%	1.66 [0.10, 27.29] Not estimable Not estimable 1.32 [0.22, 7.92] 1.25 [0.11, 13.89] 1.36 [0.38, 4.88]	
Heterogeneity: Chi*= Test for overall effect: Total (95% CI) Total events Heterogeneity: Chi*=	0.02, df Z = 0.41	5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	= 0.99 .63) 97 = 0.96	$r_{1}^{2} = 0\%$ (5); $r_{2}^{2} = 0\%$	2	207	100.0%	1.65 [0.49, 4.94]	0.01 0.1 10 100
. est ior overall effect	2 = 0.71	- (r- = 0.	nolics	able					avours experimental Favours control

Figure 3. RG *vs.* LG: a) Operation time; b) Intraoperative blood loss; c) Hospital stay; d) Lymph node harvest; e) Anastomotic leakage; f) Morbidity; g) Mortality. doi:10.1371/journal.pone.0103312.g003

1	A	Robotic	team	Lanarosconi	c team		Odds Batio	Odds Batio
_	Study or Subgroup 2.8.1 Subtotal group	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
	Eom 2012 Song 2009	3 1	30 20	3 2	62 20	2.1% 2.2%	2.19 [0.41, 11.54] 0.47 [0.04, 5.69]	
	Park 2012 Subtotal (95% CI)	4	30 80	7	120 202	2.9% 7.2%	2.48 [0.68, 9.12] 1.77 [0.69, 4.54]	-
	Total events Heterogeneity: Chi ² = Test for overall effect:	8 1.40,df= Z=1.19	2 (P = 0. (P = 0.23)	12 50); I ² = 0%				
	2.8.2 Total group Yoon 2012	5	36	4	65	2.9%	2.46 [0.62, 9.82]	
	Subtotal (95% Cl) Total events Heterogeneity: Not ap Test for overall effect: :	5 plicable Z = 1.27 (36 (P = 0.20)	4	65	2.9%	2.46 [0.62, 9.82]	
	2.8.3 Subtotal and tot	al group	400	40	202	6.70	0.07/0.04 0.47	
	Kang 2012 Huang 2012 Hyun 2012	8 3 12	100	10 8 19	282	5.7% 6.6%	2.37 [0.91, 6.17] 0.58 [0.15, 2.35]	
	Kim 2012 Woo 2011	24	436 236	44	861 591	32.9%	1.08 [0.65, 1.80] 0.71 [0.41, 1.25]	
	Subtotal (95% CI) Total events	65	849	138	1881	90.0%	1.06 [0.77, 1.44]	†
	Heterogeneity: Chi ² = Test for overall effect:	7.05, df= Z = 0.34 (4 (P = 0. (P = 0.73)	13); I ^a = 43%				
	Total (95% CI)	70	965	151	2148	100.0%	1.15 [0.86, 1.53]	+
	Heterogeneity: Chi ² = Test for overall effect: Test for subgroup diffe	78 10.76, df Z = 0.94 (erences:	= 8 (P = ((P = 0.35) Not appli	154 0.22); I≊ = 26%) cable			F	0.01 0.1 1 10 100 avours experimental Favours control
	В	Robotic	team	Laparoscopi	c team		Odds Ratio	Odds Ratio
-	Study or Subgroup 2.9.1 Subtotal group	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
	Eom 2012 Park 2012 Song 2009	1	30	1 2 0	120 20	1.4%	2.10 [0.13, 34.83] 2.03 [0.18, 23.22]	
	Subtotal (95% CI) Total events	2	80	3	202	3.0%	2.07 [0.33, 13.01]	
	Heterogeneity: Chi ² = Test for overall effect: 2.9.2 Total group	0.00, df= Z=0.77	1 (P = 0.44)	99); I ² = 0%				
	Yoon 2012 Subtotal (95% CI)	1	36 36	6	65 65	9.0% 9.0 %	0.28 [0.03, 2.43] 0.28 [0.03, 2.43]	
	Total events Heterogeneity: Not ap Test for overall effect:	1 plicable Z = 1.15	(P = 0.25)	6				
	2.9.3 Subtotal and tot Huang 2012	al group 3	39	2	64	3.0%	2.58 [0.41, 16.20]	
	Hyun 2012 Kang 2012	5 6	38 100	12 12	83 282	14.2% 12.8%	0.90 [0.29, 2.75] 1.44 [0.52, 3.93]	
	Kim 2012 Woo 2011 Subtotal (95% CI)	17	436	30 13	861 591	42.1%	1.12 [0.61, 2.06] 0.77 [0.25, 2.38]	_
	Total events Heterogeneity: Chi ² = Test for overall effect:	35 1.61,df= Z=0.52	4 (P = 0. (P = 0.60)	69 81); I² = 0%	1881	87.9%	1.12 [0.74, 1.70]	T
	Total (95% CI) Total events	20	965	70	2148	100.0%	1.07 [0.72, 1.60]	+
	Heterogeneity: Chi ² = Test for overall effect: Test for subgroup diffe	3.63, df = Z = 0.34 erences:	7 (P = 0. (P = 0.73) Not appli	82); I ² = 0% cable			F	0.01 0.1 1 10 100 avours experimental Favours control
C	Stude of Subaroun	Robotic	team	Laparoscopi	ic team	Mainht	Odds Ratio	Odds Ratio
-	2.10.1 Subtotal group	events	30	Events	62	weight	Not estimable	M-H, Fixed, 95% Ci
	Park 2012 Song 2009	0	30 20	0	120 20		Not estimable Not estimable	
	Subtotal (95% CI) Total events	0	80	0	202		Not estimable	
	Heterogeneity: Not ap Test for overall effect:	plicable Not appli	cable					
	2.10.2 Total group	0	36	0	65		Not estimable	
	Subtotal (95% CI) Total events	0	36	0	65		Not estimable	
	Heterogeneity: Not ap Test for overall effect:	plicable Not appli	cable					
	2.10.3 Subtotal and to Huang 2012	otal group 1	p 39	2	64	7.6%	0.82 [0.07, 9.31]	
	Hyun 2012 Kang 2012	0	38 100	2 7	83 282	8.0% 20.1%	0.42 [0.02, 9.03] 0.18 [0.01, 3.23]	
	Kim 2012 Woo 2011	1 7	436 236	3 19	861 591	10.3% 54.0%	0.66 [0.07, 6.34] 0.92 [0.38, 2.22] 0.70 [0.34, 1.43]	
	Total events Heterogeneity: Chi ² =	9 1.34,df=	4 (P = 0.	33 85); I² = 0%	1001	100.078	6.1 0 [0.54, 1.45]	
	Test for overall effect:	Z = 0.99	(P = 0.32))				
	Total events	9 1.34 df -	965 4 (P = 0	33 85): I ^z = 0%	2148	100.0%	0.70 [0.34, 1.43]	
	Test for overall effect. Test for subgroup diffi	Z = 0.99 erences	(P = 0.32) Not appli) cable			F	0.01 0.1 1 10 100 avours experimental Favours control
I	D	Det					044- 5-4	p.11- p.4-
_	Study or Subgroup	Robotic Events	Total	Laparoscopio Events	; team Total	Weight	M-H, Fixed, 95% Cl	Udds Ratio M-H, Fixed, 95% Cl
1	Eom 2012 Park 2012	0	30 30	0	62 120		Not estimable	
	Song 2009 Subtotal (95% CI)	õ	20 80	õ	20 202		Not estimable Not estimable	
1	Total events Heterogeneity: Not app Test for overall effect: N	0 Ilicable Jot applic	able	0				
;	2.11.2 Total group Yoon 2012	0	36	0	65		Not estimable	
	suptotal (95% CI) Total events Heterogeneity: Not app Test for overall effect: N	0 Ilicable Not applic	36 able	0	65		Not estimable	
	2.11.3 Subtotal and to	tal group	20		~ •	10.0~	1 66 10 40 07 07	
	Hyun 2012 Hyun 2012 Kang 2012	0	39 38 100	0	83 292	19.0%	Not estimable	
1	Kim 2012 Woo 2011	2	436	3	861 591	51.7% 29.3%	1.32 [0.22, 7.92] 1.25 [0.11, 13.89]	
	Subtotal (95% CI) Total events	4	849	6	1881	100.0%	1.36 [0.38, 4.88]	
	Heterogeneity: Chi ² = 0 Test for overall effect: 2	1.02, df = 1 = 0.48 (1	2 (P = 0.9 P = 0.63)	99); I ² = 0%				
	Total (95% CI)		965	-	2148	100.0%	1.36 [0.38, 4.88]	-
	Heterogeneity: Chi ² = 0 Test for overall effect: 2	4 1.02, df = 1 = 0.48 (1	2 (P = 0.9 P = 0.63)	99); I ^z = 0%			E	0.01 0.1 1 10 100 avours experimental Favours control
	Test for subaroup diffe	rences: N	lot applic	able				

Figure 4. RG vs. LG: a) Clavien-Dindo grade I and II; b) Clavien-Dindo grade III; c) Clavien-Dindo grade IV; d) Clavien-Dindo grade V. doi:10.1371/journal.pone.0103312.g004

Supporting Information

Checklist S1 (DOC)

Diagram S1

(DOC)

References

- 1. Hohenberger P, Gretschel S (2003) Gastric cancer. Lancet 362: 305-315.
- Kitano S, Iso Y, Moriyama M, Sugimachi K (1994) Laparoscopy-assisted Billroth I gastrectomy. Surg Laparosc Endosc 4: 146–148.
- (1993) National Institutes of Health Consensus Development Conference Statement on Gallstones and Laparoscopic Cholecystectomy. Am J Surg 165: 390–398.
- Adachi Y, Suematsu T, Shiraishi N, Katsuta T, Morimoto A, et al. (1999) Quality of life after laparoscopy-assisted Billroth I gastrectomy. Ann Surg 229: 49–54.
- Kim MC, Kim KH, Kim HH, Jung GJ (2005) Comparison of laparoscopyassisted by conventional open distal gastrectomy and extraperigastric lymph node dissection in early gastric cancer. J Surg Oncol 91: 90–94.
- Cadière GB, Himpens J, Germay O, Izizaw R, Degueldre M, et al. (2001) Feasibility of robotic laparoscopic surgery: 146 cases. World J Surg 25: 1467– 1477.
- Tooher R, Pham C (2004) The da Vinci Surgical Robotics System: Technology Overview ASERNIP-S Report No. 45. Adelaide, South Australia: ASERNIP-S ISBN: 0909844658.
- Atug F, Castle EP, Woods M, Davis R, Thomas R (2006) Robotics in urologic surgery: an evolving new technology. Int J Urol 13: 857–863
- Caruso S, Patriti A, Marrelli D, Ceccarelli G, Ceribelli C, et al. (2011) Open vs robot-assisted laparoscopic gastric resection with D2 lymph node dissection for adenocarcinoma: a case-control study. Int J Med Robot 7: 452–458.
- Eom BW, Yoon HM, Ryu KW, Lee JH, Cho SJ, et al. (2012) Comparison of surgical performance and short-term clinical outcomes between laparoscopic and robotic surgery in distal gastric cancer. Eur J Surg Oncol 38: 57–63.
- Huang KH, Lan YT, Fang WL, Chen JH, Lo SS, et al. (2012) Initial Experience of Robotic Gastrectomy and Comparison with Open and Laparoscopic Gastrectomy for Gastric Cancer. J Gastrointest Surg 16: 1303–1310.
- Hyun MH, Lee CH, Kwon YJ, Cho SI, Jang YJ, et al. (2013) Robot versus laparoscopic gastrectomy for cancer by an experienced surgeon: comparisons of surgery, complications, and surgical stress. Ann Surg Oncol 20: 1258–1265.
- Kang BH, Xuan Y, Hur H, Ahn CW, Cho YK, et al. (2012) Comparison of Surgical Outcomes between Robotic and Laparoscopic Gastrectomy for Gastric Cancer: The Learning Curve of Robotic Surgery. J Gastric Cancer 12: 156– 163.
- Kim MC, Heo GU, Jung GJ (2010) Robotic gastrectomy for gastric cancer: surgical techniques and clinical merits. Surg Endosc 24: 610–615.
- Kim KM, An JY, Kim HI, Cheong JH, Hyung WJ, et al. (2012) Major early complications following open, laparoscopic and robotic gastrectomy. Br J Surg 99: 1681–1687.
- Park JY, Jo MJ, Nam BH, Kim Y, Eom BW, et al. (2012) Surgical stress after robot-assisted distal gastrectomy and its economic implications. Br J Surg 99: 1554–61.
- Pugliese R, Maggioni D, Sansonna F, Costanzi A, Ferrari GC, et al. (2010) Subtotal gastrectomy with D2 dissection by minimally invasive surgery for distal adenocarcinoma of the stomach: results and 5-year survival. Surg Endosc 24: 2594–2602.
- Song J, Kang WH, Oh SJ, Hyung WJ, Choi SH, et al. (2009) Role of robotic gastrectomy using da Vinci system compared with laparoscopic gastrectomy: initial experience of 20 consecutive cases. Surg Endosc 23: 1204–1211.
- Woo Y, Hyung WJ, Pak KH, Inaba K, Obama K, et al. (2011) Robotic gastrectomy as an oncologically sound alternative to laparoscopic resections for the treatment of early-stage gastric cancers. Arch Surg 146: 1086–1092.

Author Contributions

Conceived and designed the experiments: LZ. Performed the experiments: LZ. Analyzed the data: LZ SA. Contributed reagents/materials/analysis tools: LZ TT. Contributed to the writing of the manuscript: LZ YS. Revised the manuscript: LZ YS.

- Yoon HM, Kim YW, Lee JH, Ryu KW, Eom BW, et al. (2012) Robot-assisted total gastrectomy is comparable with laparoscopically assisted total gastrectomy for early gastric cancer. Surg Endosc 26: 1377–81.
- Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, et al. (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials.; 17: 1–12.
- Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, et al. (2003) Methodological index for non-randomized studies (MINORS): development and validation of a new instrument. ANZ J Surg 73: 712–716.
- Pugliese R, Maggioni D, Sansonna F, Ferrari GC, Forgione A, et al. (2009) Outcomes and survival after laparoscopic gastrectomy for adenocarcinoma. Analysis on 65 patients operated on by conventional or robot-assisted minimal access procedures. Eur J Surg Oncol 35: 281–288.
- Zeng YK, Yang ZL, Peng JS, Lin HS, Cai L (2012) Laparoscopy-assisted versus open distal gastrectomy for early gastric cancer: evidence from randomized and nonrandomized clinical Trials. Ann Surg 256: 39–52.
- Shimizu S, Uchiyama A, Mizumoto K, Morisaki T, Nakamura K, et al. (2000) Laparoscopically assisted distal gastrectomy for early gastric cancer: is it superior to open surgery? Surg Endosc 14: 27–31.
- Katsios GC, Baltogiannis G, Roukos DH (2010) Laparoscopic surgery for gastric cancer: comparative-effectiveness research and future trends. Expert Rev Anticancer Ther 10: 473–476.
- Cuschieri A, Fayers P, Fielding J, Craven J, Bancewicz J, et al. (1996) Postoperative morbidity and mortality after D1 and D2 resections for gastric cancer: preliminary results of the MRC randomised controlled trial. The Surgical Cooperative Group. Lancet 347: 995–9.
- Songun I, Putter H, Kranenbarg EM, Sasako M, van de Velde CJ (2010) Surgical treatment of gastric cancer: 15-year follow-up results of the randomised nationwide Dutch D1D2 trial. Lancet Oncol 11: 439–449
- Park do J, Han SU, Hyung WJ, Kim MC, Kim W, et al. (2012) Long-term outcomes after laparoscopy-assisted gastrectomy for advanced gastric cancer: a large-scale multicenter retrospective study. Surg Endosc 26: 1548–53.
- Patriti A, Ceccarelli G, Bellochi R, Bartoli A, Spaziani A, et al. (2008) Robotassisted laparoscopic total and partial gastric resection with D2 lymph node dissection for adenocarcinoma. Surg Endosc 22: 2753–60.
- D'Annibale A, Pende V, Pernazza G, Monsellato I, Mazzocchi P, et al. (2011) Full robotic gastrectomy with extended (D2) lymphadenectomy for gastric cancer: surgical technique and preliminary results. J Surg Res 166: e113–20.
- Uyama I, Kanaya S, Ishida Y, Inaba K, Suda K, et al. (2012) Novel integrated robotic approach for suprapancreatic D2 nodal dissection for treating gastric cancer: technique and initial experience. World J Surg 36: 331–337.
- McCulloch P, Taylor I, Sasako M, Lovett B, Griffin D (2002) Randomised trials in surgery: problems and possible solutions. BMJ 324: 1448–1451.
- Kim KH, Kim MC, Jung GJ, Kim HH (2006) The impact of obesity on LADG for early gastric cancer. Gastric Cancer 9: 303–307
- Lee HJ, Kim HH, Kim MC, Ryu SY, Kim W, et al. (2009) The impact of a high body mass index on laparoscopy assisted gastrectomy for gastric cancer. Surg Endosc 23: 2473–2479.
- Park SS, Kim MC, Park MS, Hyung WJ (2012) Rapid adaption of robotic gastrectomy for gastric cancer by experienced laparoscopic surgeons. Surg Endosc 26: 60–67.