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ABSTRACT
The gut microbiota is a complex, densely populated community, home to many different species
that collectively provide huge benefits for host health. Disruptions to this community, as can result
from recurrent antibiotic exposure, alter the existing network of interactions between bacteria and
can render this community susceptible to invading pathogens. Recent findings show that direct
antagonistic and metabolic interactions play a critical role in shaping the microbiota. However, the
part played by quorum sensing, a means of regulating bacterial behavior through secreted
chemical signals, remains largely unknown. We have recently shown that the interspecies signal,
autoinducer-2 (AI-2), can modulate the structure of the gut microbiota by using Escherichia coli to
manipulate signal levels. Here, we discuss how AI-2 could influence bacterial behaviors to restore
the balance between the 2 major bacteria phyla, the Bacteroidetes and Firmicutes, following
antibiotic treatment. We explore how this may impact on host physiology, community susceptibility
or resistance to pathogens, and the broader potential of AI-2 as a means to redress the imbalances
in microbiota composition that feature in many infectious and non-infectious diseases.
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The gut microbiota - a multispecies consortium

The human body is home to a multitude of microor-
ganisms, collectively known as the microbiota. These
organisms live in intimate association with their host,
often providing many gains for human health. This is
particularly evident in the large intestine, which har-
bors the most densely populated and diverse bacterial
community in the body.1 The massive genetic capacity
of these organisms encodes for many functions, sup-
plementing the host’s existing metabolic repertoire to
provide sources of vitamins B and K, break down
complex polysaccharides and produce a plethora of
important molecules such as short chain fatty acids
(SCFAs).2–4 These interactions promote host homeo-
stasis and protection from insults associated with
intestinal injury,4–6 as well as conferring resistance to
both intestinal and systemic infection.7,8

The need to understand how interactions within
this microbial community influence human health
stems from the ever-increasing spectrum of infectious
and non-infectious diseases associated with imbalan-
ces or disturbances in the microbiota (known as dys-
biosis). One of the more frequent causes of dysbiosis

in humans is the use of broad spectrum antibiotics,
which exert a significant impact upon gut commensal
bacteria. Antibiotic-induced changes in bacterial pop-
ulation density and diversity, coincident with declines
and expansions in certain taxa,9 frequently leave the
host at increased risk of infection by specific patho-
gens such as vancomycin-resistant Enterococcus and
Clostridium difficile.10,11 This link between particular
changes to the microbiota and increased infection by
certain pathogens illustrates the protection, referred to
as colonization resistance, provided by the specific
interactions between bacteria within the microbiota
that limit the ability of invading organisms to become
established within this community.12

Many of these interactions have a basis in metabo-
lism and nutrition. Intricate cross-feeding networks
exist, which limit nutrient availability and thus popu-
lation expansion by potential colonizers.13 By-prod-
ucts from metabolism that have antagonistic effects
including SCFAs and secondary bile acids can further
inhibit growth and in some cases also the virulence of
bacteria such as Salmonella and C. difficile.13–16 Non-
nutritional antagonism between bacteria such as the
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removal of nearby competitors using secreted bacter-
iocins or direct cell contact-dependent delivery of tox-
ins by specialized machineries such as Type 6
Secretion Systems, likely also influence community
composition and its ability to provide colonization
resistance.17,18 Motility, adherence and biofilm forma-
tion are further non-nutrititive behaviors that can also
contribute to the ability of both commensal and path-
ogenic bacteria alike to expand in the gut. These
behaviors are often regulated through a form of cell-
to-cell communication called quorum sensing, in
which small chemical signals known as autoinducers
are secreted and accumulate as bacteria multiply. Sub-
sequent signal detection enables bacteria to determine
cell density, regulate gene expression at the population
level and engage in group behaviors.19 Though such
regulation has proved integral to the success of many
host-microbe interactions, its precise role within the
gut microbiota is not yet known. Given the polyspe-
cies nature of this complex community, communica-
tion between species must be required to enable
bacteria to optimally fine-tune behavior to their given
social and environmental context. One quorum sens-
ing molecule, Autoinducer-2 (AI-2), is produced by
multiple bacterial species found in the gastrointestinal
tract, including Bacteroides spp., Ruminococcus spp,
Eubacterium rectale and Lactobacillus spp.,20–24 while
AI-2-dependent signaling and subsequent modulation
of bacterial behaviors across the species barrier has
been shown in several other multispecies settings.25–27

These observations led to the hypothesis that AI-2 is
one of the signaling molecules which might regulate
bacterial behavior and community dynamics in the
microbiota.28

A toolkit to investigate AI-2 quorum sensing in
the gut microbiota

To determine if AI-2 signaling influences the gut
microbiota, a means of manipulating its levels in vivo
was required. This small, 5 carbon molecule can be
chemically synthesized, but its relative instability
makes production of large quantities difficult and
raised questions over its longevity following oral
administration to mice.29 This approach also gave no
means of lowering signal concentration in vivo. To
overcome these technical hurdles, we harnessed the
natural properties of the AI-2-producing and
-importing bacterial strain, Escherichia coli K-12

MG1655. This bacterium synthesizes and releases AI-
2 into the environment as it grows. Once a threshold
concentration of signal is reached, binding and inter-
nalization ensues through the activity of a high affin-
ity periplasmic binding protein and an ABC-type
transporter, collectively known as the Lsr transporter
(Fig 1A). AI-2 is then sequestered inside the cell fol-
lowing phosphorylation by a kinase, known as LsrK.
This phospho-AI-2 then binds and inhibits a repres-
sor, LsrR, which leads to de-repression of expression
of its target, the Lsr transporter. Thus AI-2 uptake
creates a positive feedback loop, whereby signal
import drives increased expression of the transporter,
the subsequent uptake of more signal and rapid
depletion of extracellular AI-230. E. coli mutants
affected in certain components of this Lsr system con-
sequently have altered abilities to accumulate or
deplete extracellular AI-2 levels in vitro, with conse-
quent effects upon the AI-2-dependent regulation of
behaviors in other species upon co-culture.25,30 No
AI-2-dependent transcriptional responses other than
induction of the Lsr system have been described for
this MG1655 K-12 strain of E. coli, indicating that
the effects upon neighboring bacteria are likely due to
changes in AI-2 availability and not the result of
altered E. coli physiology.

With this knowledge, we engineered fluorescent,
streptomycin-resistant strains for use in vivo, targeting
LsrK to produce E. coli which do not sequester AI-2
intracellularly, nor induce transporter expression
(Fig. 1B). This mutant successfully accumulated AI-2
in the gastrointestinal tract of mono-colonized gnoto-
biotic mice.28 To deplete extracellular signal levels, we
deleted both luxS, so that bacteria cannot produce AI-
2, and lsrR, to induce constitutive Lsr transporter
expression and signal import. The resulting E. coli
mutant strain efficiently scavenged signal produced by
neighboring LuxS-positive bacteria in vivo (Fig. 1C).
To distinguish between the effects of introducing
E. coli into the microbiota and of modulating AI-2
availability, we constructed a DluxS and DlsrK double
mutant strain. These bacteria neither produced nor
sequestered signal upon co-colonization of gnotobiotic
mice, validating their use as a control that does not
manipulate ambient signal levels (Fig. 1D).28 The
engineered mutant strains all efficiently colonized the
mice to the same extent, making them effective tools
with which to investigate the role of AI-2 within the
gut microbiota.
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Chemical communication between bacteria
alters antibiotic-induced gut dysbiosis

To determine whether and how changes in AI-2 avail-
ability influenced the microbiota, mice were first
treated with streptomycin to create conditions of dys-
biosis that are typically associated with expansion of
enteric bacteria like E. coli.31 Streptomycin affected
the microbiota hugely, causing transient decreases in
bacterial load and progressive changes in the bacterial
community structure during the month-long treat-
ment.28 Huge losses in the Firmicutes occurred, while
abundance of just a few members of the Bacteroidetes
increased to such an extent that they almost
completely dominated the community.28 Despite the
strong influence of streptomycin, changes in the
microbiota were observed in mice colonized by DlsrK
mutant E. coli (which increase signal availability) com-
pared to that in mice colonized by either of the other 2
mutant strains.28 Increased AI-2 levels led to the
decreased abundance of 11 members of the Bacteroi-
detes phylum and significant increases in abundance

of 2 members of the Lachnospiraceae. Multiple
changes of this nature combined to give an increase in
the ratio of Firmicutes to Bacteroidetes, which
opposed the huge imbalance imposed by streptomycin
(Fig. 2A).28 In promoting the Firmicutes, AI-2 also
promoted the phylum with the greatest proportion of
signal producers: 83% of currently available sequenced
genomes belonging to the Firmicutes encode a LuxS
homolog compared to only 17% of those pertaining to
the Bacteroidetes. These results suggest that positive
feedback (a common feature of quorum sensing sys-
tems) might exist within the microbiota, whereby AI-
2 signaling and downstream responses drive increases
in abundance of the AI-2 producers which then fur-
ther increases signal levels and amplifies the response
throughout the community.

Questions now arise as to how these AI-2-depen-
dent changes in the microbiota are brought about, not
to mention the effects they have upon the community
itself and the host. It is difficult to know at this stage
whether these changes are the direct result of positive
effects of AI-2 upon the Firmicutes, inhibitory effects

Figure 1. Using the Lsr transporter system to manipulate AI-2 levels. A. Wild-type E. coli synthesize AI-2 using the LuxS synthase (left
panel). Signal is secreted to the extracellular environment where it accumulates with cell number. Once a threshold concentration is
reached, signal binds and is internalised by the Lsr transporter. Imported AI-2 is then phosphorylated by LsrK, which sequesters the sig-
nal intracellularly. Phospho-AI-2 binds and inhibits the repressor, LsrR, which enables the expression of more Lsr transporter and an
amplification loop that leads to further signal uptake and the rapid removal of AI-2 from the environment. A graphical representation of
how this affects extracellular signal concentration during growth in vitro is shown in the right panel. B. DlsrK mutant E. coli accumulate
AI-2 extracellularly. Deletion of lsrK means phospho-AI-2 cannot be generated, transporter expression is not induced and signal cannot
be sequestered intracellularly. This mutant does not degrade AI-2, so AI-2 produced by E. coli or its neighbors accumulates.
C. DlsrRDluxS mutant E. coli scavenge extracellular AI-2. Deletion of the signal synthase, LuxS, abolishes signal production, while
removal of the repressor, LsrR, results in over-expression of the transporter. The resulting mutant E. coli efficiently imports AI-2 produced
by bacteria in its vicinity. D. DlsrKDluxS mutant E. coli do not manipulate exogenous signal levels. Deletion of these 2 genes results in a
mutant which does not produce nor import and degrade signal, so it does not affect ambient levels of AI-2 in polyspecies communities.
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upon the Bacteroidetes, or a mix of both. AI-2 signal-
ing could also have some indirect effect, as behavioral
changes in one species are likely to affect neighboring
bacteria, through altered nutrient and attachment site
availability, incorporation into developing biofilms or
changes in production of inhibitory metabolites, for
example. One thing is clear: at least some of the bacte-
ria involved must detect AI-2 (whether originating
from E. coli or other AI-2-producing members of the
microbiota) in order to respond to it. Two classes of
AI-2 receptors have been identified so far: LuxP,
restricted to the Vibrionales; and LsrB, found more
widely across members of the Proteobacteria and in
several species of Bacilli.32–34 Six residues are critical
for AI-2 binding by the LsrB receptor, which are con-
served across all functional homologues so far identi-
fied. This, alongside an overall sequence identity of

more than 60% and the presence of all necessary
accessory proteins for signal transport and processing,
have already provided criteria through which LsrB
homologues were identified in Bacillus cereus and B.
anthracis.32 As these bacteria internalize AI-2 and
have an Lsr system that responds to the same AI-2
adduct as E. coli (personal communication from K.
Xavier32), it is likely that other Firmicutes, more rele-
vant in the gut environment, will also respond to AI-2
using receptors similar to LsrB. Interestingly, bacteria
such as Streptococcus mutans and Staphylococcus epi-
dermidis respond to AI-2 without having either of the
known receptors.23 Novel, as yet uncharacterised,
receptor classes must exist in these organisms; this
may also be the case for some or all of the AI-2-
responsive bacteria inhabiting the gut. Identifying
new receptor classes remains a major challenge:

Figure 2. AI-2-dependent effects within the gut microbiota A. Approximately equal ratios of the 2 major phyla, the Bacteroidetes and
Firmicutes, were found in the gut microbiota of untreated mice (left panel). Though streptomycin caused a depletion of the Firmicutes
and enabled the Bacteroidetes to dominate the microbiota (middle panel), colonisation by AI-2-accumulating DlsrK mutant E. coli pro-
moted an increase in abundance of the Firmicutes (right panel). B. In vitro and in vivo studies show that AI-2 regulates multiple pheno-
types in different bacteria which might promote colonisation if also induced in the Firmicutes. AI-2 induces motility which could help
bacteria find nutrients under conditions of starvation (a). This signal can also upregulate attachment to epithelial cells (b) and biofilm
formation (c) which could also increase resistance to antimicrobials such as streptomycin (d). In some bacteria, AI-2 acts as a signal for
biofilm dispersal (e), and can trigger the release of phage and transfer of genetic material between bacteria within the gut microbiota
(f). Expression of iron uptake mechanisms in response to AI-2 could help bacteria to outcompete their neighbors when this important
metal ion is limiting (g). The discovery that a much greater proportion of species of Firmicutes than Bacteroidetes encode the AI-2 syn-
thase, LuxS, suggests positive feedback might also occur: the bacteria which respond positively to this signal also produce it (h), leading
to increasing amounts of AI-2, further induction of the above responses and greater expansion of the Firmicutes.
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despite overall structural similarity, the known
receptors, LsrB and LuxP, share only 11% sequence
identity, suggesting that sequence analysis alone is
unlikely to find new candidates effectively. Novel
strategies are clearly required to make this essential
step forward in determining the molecular mecha-
nisms through which microbiota members respond
to AI-2.

The phenotypes regulated by AI-2 in vitro can pro-
vide some clues as to how signaling might drive the
community shifts seen in vivo. Adherence to epithelial
cells is upregulated in an AI-2-dependent manner in
Actinobacillus pleuropneumoniae,35 while increased
expression of motility genes and regulation of chemo-
taxis in response to AI-2 is reported for several strains
of E. coli.36,37 If such behaviors are also induced
among the Firmicutes, they could promote nutrient
scavenging and provide access to new niches that con-
fer a competitive edge over non-responding bacteria
in this environment (Fig. 2B). Flagellar structures and
motility also promote attachment and influence the
development and structure of bacterial biofilms. These
multicellular aggregates of bacteria are surrounded in
an extracellular matrix comprised of polysaccharides,
proteins and DNA, all of which provides protection
from both immune attack and antimicrobial expo-
sure.38 AI-2 can promote the formation of such bio-
films, not only between bacteria of the nasopharyngeal
and oral cavities,26,27,39 but also by certain gut com-
mensal bacteria including Bifidobacterium longum.40

This behavior might further promote colonization
and persistence within the intestinal tract, potentially
also contributing to the AI-2-dependent expansions
that we observed for some members of the commu-
nity.28 Conversely, AI-2 stimulates biofilm dispersal in
some bacteria, acting as a chemorepellent for Helico-
bacter pylori, for example.41 Such a response could be
of benefit in promoting clearance of biofilm-forming
pathogens from the host, and if induced in the Bacter-
oidetes, might explain their decreased abundance
when AI-2 levels increased.

AI-2-associated changes in the gut microbiota
might also result from interactions with the host,
which also responds to and exerts some influence over
the bacteria residing within the intestinal tract. Tran-
sient proinflammatory responses induced upon expo-
sure to AI-2 were detected in epithelial cells in vitro,42

suggesting that detection of this signal in vivo may
alter inflammatory status within the intestinal

epithelium. Changes in the metabolite pool caused by
bacterial responses to AI-2 are also likely to affect host
physiology: AI-2-induced shifts in the proportions of
Firmicutes and Bacteroidetes will alter the relative
concentrations of SCFAs such as butyrate, propionate
and acetate. These molecules influence gene expres-
sion, cytokine secretion and regulatory T cell induc-
tion, ultimately also modulating host inflammatory
responses.2 Antibiotic-induced losses in such metabo-
lites, and the changes in inflammation and physiology
that result, can lead to changes in the microbiota and
generate conditions conducive to pathobiont out-
growth or pathogen invasion. Thus AI-2, by promot-
ing the expansion of the Firmicutes, which are the
major source of many of these compounds, might
restore the intestinal metabolite pool and thereby indi-
rectly inhibit such events.

Alongside the possibility of restoring community
structure, function and its associated metabolome, AI-
2 signaling by commensals might also contribute more
directly to host health and protection from pathogens.
This molecule can promote probiotic capabilities in
some bacteria and reduce virulence in others: AI-2 reg-
ulates iron acquisition and the ability to inhibit Salmo-
nella infection by Bifidobacteria breve,43 while signal
produced by Ruminococcus obeum downregulates viru-
lence and reduces colonization by Vibrio cholerae.22,44

Although signaling through AI-2 can also upregulate
virulence in a few bacteria: it triggers phage release
from the pathobiont, Enterococcus faecalis, which is
associated with increased virulence and transfer of
genetic material;45 this simply highlights how individu-
ally tailored approaches to either quench or enhance
signaling will be required if using AI-2 to manipulate
the microbiota.

Though the levels of AI-2 within a normal healthy
microbiota are not yet known, the high incidence of
putative LuxS homologues among the Firmicutes, a
prevalent group within the normal gut microbiota,
strongly suggests that AI-2 is present. It is not yet
clear however, how this signal will influence the bal-
ance between Bacteroidetes and Firmicutes under
conditions of homeostasis. Our finding that AI-2
promotes Firmicutes, the group most affected during
a streptomycin-induced dysbiosis, provides a strong
case for exploring AI-2 signaling as a means to shape
community composition and function for the benefit
of human health. Increasing AI-2 availability during
antibiotic treatment moved the microbiota toward
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re-establishment of the balance between the Bacter-
oidetes and the Firmicutes.28 This shift, alongside
the positive effect of AI-2 upon AI-2 producers,
argues for the possibility of using signal supplemen-
tation to accelerate microbiota recovery and restore
colonisation resistance following antibiotic treat-
ment. This ability of AI-2 signaling to shape the
microbiota is unlikely to be specific to streptomycin-
induced dysbiosis, but as different antibiotics have
distinct effects on the microbiota, increasing AI-2
levels might not always be beneficial. For example,
some antibiotics favor the expansion of the Firmi-
cutes, which should per se lead to an increase in AI-
2 levels. In these cases, signal depletion may be of
more benefit in restoring communities to their pre-
treatment state.

As many non-infectious diseases including obesity,
irritable bowel disease, autism and stress are also asso-
ciated with abnormal abundances of the Bacteroidetes
and Firmicutes, AI-2 could perhaps provide a tool
with which to investigate and perhaps redress the bal-
ance between these 2 phyla in a whole range of micro-
biota-associated pathologies. Multiple strategies can
be envisioned, either involving signal supplementation
to restore certain commensal populations, quorum
quenching using antagonistic signal analogs to block
species-specific receptors, or engineered AI-2-manip-
ulating bacteria as probiotics to inhibit specific patho-
gen virulence or growth. Increased understanding of
the mechanisms and consequences of interspecies
chemical communication working within the gut
microbiota is clearly required: such knowledge could
yield much-needed alternatives to antibiotics and
simultaneously enable us to manipulate community
composition and bacterial functions to the great bene-
fit of human health.
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